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Twists in ferromagnetic monolayers with trigonal prismatic symmetry
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Two-dimensional materials such as graphene or hexagonal boron nitride are indispensable in industry. The
recently discovered 2D ferromagnetic materials also promise to be vital for applications. In this work, we
develop a phenomenological description of noncentrosymmetric 2D ferromagnets with trigonal prismatic crystal
structure. We chose to study this special symmetry group since these materials do break inversion symmetry
and therefore, in principle, allow for chiral spin structures such as magnetic helices and skyrmions. However,
unlike all noncentrosymmetric magnets known so far, we show that the symmetry of magnetic trigonal prismatic
monolayers neither allow for an internal relativistic Dzyaloshinskii-Moriya interaction (DMI) nor a reactive
spin-orbit torque. We demonstrate that the DMI only becomes important at the boundaries, where it modifies
the boundary conditions of the magnetization and leads to a helical equilibrium state with a helical wave vector
that is inherently linked to the internal spin orientation. Furthermore, we find that the helical wave vector can
be electrically manipulated via dissipative spin-torque mechanisms. Our results reveal that 2D magnets offer a
large potential for unexplored magnetic effects.
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I. INTRODUCTION

The successful fabrication of isolated graphene in 2004
[1] initiated an intense interest in manufacturing and ex-
ploring two-dimensional (2D) materials [2]. The last ten
years’ rapid progress within material engineering has revealed
that graphene is just one of a whole family of stable 2D
materials, which includes insulators, semiconductors as well
as semimetals [3,4]. In addition to graphene, other impor-
tant examples are hexagonal boron nitride, transition metal
dichalcogenides (TMDs), and phosphorene [3]. Recent ex-
periments have demonstrated that the TMDs even become
superconducting at low temperatures [5]. The unique tunable
electronic and optical properties of the 2D materials, com-
bined with their mechanical flexibility and stretchability, make
them particularly attractive as building blocks to create novel
quantum materials with the potential for integration in the next
generation of electronic devices.

A novel member of this family is the 2D ferromagnets.
In 2017, two independent research groups experimentally
demonstrated long-range ferromagnetic ordering in monolay-
ers and bilayers of CrI3 and Cr2Ge2Te6 at temperatures below
61 and 30 K, respectively [6,7]. The experiments showed only
a weak coupling of the spins to the adjacent substrates, thus
indicating that the ordered spins could be regarded as purely
2D ferromagnetic systems. Furthermore, a recent experiment
reported strong ferromagnetic ordering in monolayers of the
TMD VSe2 at temperatures far above 300 K [8]. The ob-
served room-temperature ferromagnetism in TMDs makes
this class of materials particularly promising for spintronics
applications. In particular, it is believed that their remarkable
2D properties will unlock a multitude of new exotic spin
phenomena with potential applications in the development of
novel ultracompact spin-based devices.

The TMDs crystallize in two different phases, either in the
1T phase or in the 2H phase [3]. The 1T phase is characterized
by the octahedral point group D3d , whereas the 2H phase is
determined by the trigonal prismatic point group D3h (see
Fig. 1). The experiment on the magnetic monolayer in Ref. [8]
was performed for VSe2 in the centrosymmetric 1T phase.
Ferromagnetism in the 2H phase has not yet been experimen-
tally observed. However, theory predicts that nanosheets of
ferromagnetic TaS2 exist in the 2H phase [3].

We anticipate the spatially asymmetric 2H phase to exhibit
more intriguing spin physics than the centrosymmetric 1T
phase. Generally, broken inversion symmetry combined with
spin-orbit coupling (SOC) yields an anisotropic relativistic ex-
change interaction known as the Dzyaloshinskii-Moriya inter-
action (DMI) [9,10]. Several experiments have demonstrated
that the DMI gives rise to complex physical effects such as he-
lical spin phases [9], helimagnons [11,12], boundary-induced
twist states [13–21], and topologically stabilized magnetic
skyrmion textures [22–29]. Additionally, spatial asymmetric
SOC strongly affects the coupling between the magnetization
and the itinerant charge carriers and leads to novel current-
driven spin-torque mechanisms such as the spin-orbit torques
(SOTs) and spin-Hall torque [30].

So far, there have been no previous studies of the SOC-
induced spin phenomena in ferromagnetic monolayers with
2H structure. Importantly, the relativistic effects can be par-
ticularly strong in the trigonal prismatic state, because first-
principles calculations indicate that the phase is often semi-
conducting [4,8]. Consequently, we expect the SOC and the
potentially accompanying DMI and SOTs to be particularly
strong.

Here, we develop a phenomenology of the magnetization
dynamics in 2D ferromagnets with 2H structure. In stark
contrast to previously investigated ferromagnets with broken
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FIG. 1. (a) Ferromagnets with 2H structure lack inversion sym-
metry. Nevertheless, the systems do not have an internal DMI field.
Only a boundary-DMI field exists, which in equilibrium stabilizes
a helical spin phase (arrows). (b) The crystal structure of the 2H
monolayer. (c) Shows the atomic configuration at a lattice point. In
the TMDs, the red atom represents the transition metal atom and the
blue atoms are the chalcogen atoms.

inversion symmetry, we find that the 2H ferromagnets exhibit
no internal DMI field and no reactive SOT. This is a direct
consequence of the trigonal prismatic crystal symmetry of the
2H phase. Remarkably, the DMI reveals itself only close to the
edges of the sample, where the asymmetric exchange interac-
tion, denoted as boundary DMI in the following, modifies the
micromagnetic boundary conditions (BCs). We demonstrate
that the DMI-induced BCs produce a helical modulation of the
magnetic moments with a helical wave vector that is locked to
the internal orientation of the magnetization. Importantly, we
show that this unique locking enables all-electric manipula-
tion of the helical wave vector via the dissipative SOT and
spin-transfer torque (STT).

II. THEORY

To derive a phenomenological description of ferromagnetic
materials with trigonal prismatic 2H structure, we start by
writing down the magnetic free-energy functional dictated by
the D3h symmetry. We parametrize the local magnetization
direction by the unit vector m(r, t ) and expand the free energy
up to second order in the magnetization gradients. In this case,
the free energy can be expressed as [31]

F [m] =
∫

dr[Fe + FD + Fh + Fa], (1)

where Fe = Ji j ∂im · ∂ jm represents the symmetric exchange
interaction, FD = Di jkmi∂ jmk is the general form of DMI
[31], Fh = −m · Hext describes the coupling to an external

magnetic field, Fa = Ki jmimj represents the anisotropy en-
ergy, and the integration is over the 2D plane covered by the
monolayer.

The tensors Ji j , Ki j , and Di jk are polar tensors of rank
two and three respectively, and their tensorial structures are
governed by the symmetry of the system. For systems charac-
terized by the D3h point group, polar second-rank tensors have
three nonvanishing tensor elements that are parameterized by
two independent parameters [32]. In the following, we choose
a coordinate system where the z axis is parallel to the threefold
rotation axis and y is along a twofold rotation axis, see Fig. 1.
In this reference frame, the ferromagnetic monolayer lies in
the xy plane and the symmetric exchange interaction and
anisotropy energy have the following nonzero coefficients:
Jxx = Jyy ≡ J , Jzz and Kxx = Kyy, Kzz. The DMI tensor1 has
four nonvanishing tensor elements that are parameterized by a
single parameter D [32]:

D ≡ Dxyy = Dyxy = Dyyx = −Dxxx. (2)

Substitution of the above tensor coefficients into Eq. (1) yields
the free energy density

F = J[(∂xm)2 + (∂ym)2] − m · Hext + Kum2
z

+ D[my∂ymx + my∂xmy + mx∂ymy − mx∂xmx]. (3)

Here, we have introduced the anisotropy constant Ku = Kzz −
Kxx and only taken into account spatial variations in the xy
plane.

The magnetization dynamics are given by the Landau-
Lifshitz-Gilbert (LLG) equation [33,34]

ṁ = −γ m × Heff + m × αṁ + τ, (4)

where γ is the gyromagnetic ratio, Heff is the effective field,
and τ is the current-induced torque. The matrix α is the Gilbert
damping tensor, which is a second-rank polar tensor with the
nonvanishing elements αxx = αyy = α⊥ and αzz. The effective
field Heff is determined by the internal value of the functional
derivative,

Heff = − δF
δm

= 2J
[
∂2

x m + ∂2
y m

] + Hext − 2Kumzẑ, (5)

whereas the boundary terms in the variational equation
δF/δm = 0 lead to the following micromagnetic BCs of the
LLG equation [14]:

2Jn̂ · ∇m = −m × (�D × m). (6)

Here, n̂ = [nx, ny]T (T denotes the transpose of the vector) is
the surface normal and �D is the boundary-induced DMI field:

�D = D[myny − mxnx, mxny + mynx, 0]T . (7)

1The DMI term can be expressed as Di jkmi∂ jmk ≡ D(ik) j

2 ∂ j (mimk ) +
D[ik] j

2 [mi∂ jmk − mk∂ jmi], where D(ik) j = (Di jk + Dk ji )/2 and D[ik] j =
(Di jk − Dk ji )/2 represent the symmetric and antisymmetric parts
of the tensor, respectively. The antisymmetric part corresponds to
the internal DMI that is typically expressed in terms of the DMI
vector D j · (∂ jm × m) or the Lifshitz invariant Di jLi j (m), where
Di j = (D j )i, Li j = (∂ jm × m)i, and (Dj )μ = −εμikD[ik] j/2.
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Equations (4)–(7) are the first central result of this work
and represent a general phenomenological theory of the mag-
netization dynamics in 2H ferromagnets. Importantly, we find
that the DMI only affects the BCs in such systems. Despite
the fact that 2H ferromagnets have broken spatial inversion
symmetry, the DMI does not enter the effective field Heff in
Eq. (5). The reason for this is that only the parts of the DMI
tensor, which are antisymmetric with respect to the magnetic
indices D[ik] j = Di jk − Dk ji [14], appear in the effective field
(HD)k = (Di jk − Dk ji )∂ jmi. These, however, vanish for sys-
tems with trigonal prismatic crystal symmetry, see Eq. (2).
This differs markedly from other noncentrosymmetric mag-
nets, in which the main effect of the DMI is to produce an
internal effective field that favors a helical modulation of
the magnetization direction. With having derived Eq. (6), we
predict that despite the absence of internal DMI, the DMI
will still influence the magnetization at the boundaries via the
Neumann BCs.

III. RESULTS AND DISCUSSIONS

Next, we will use the above formalism to investigate
the equilibrium state of ferromagnetic 2H monolayers. We
assume a strong in-plane alignment of the spins (Ku � 0),
which is consistent with the recent experiment on VSe2 [8].
In this case, the magnetic state is completely determined by
the azimuthal angle φ(r, t ):

m(r, t ) = [cos(φ), sin(φ), 0]T . (8)

For simplicity, we disregard external magnetic fields.
The equilibrium equations for the magnetization are found

from the static LLG equation, i.e., when ṁ = 0 in Eq. (4).
Substituting Eq. (8) into Eqs. (4)–(7) produces the following
boundary-value problem (BVP) for φ:

∇̃2φ = 0, internally, (9)

n̂ · ∇̃φ = −D̃n̂ · f̂ (φ), at boundaries. (10)

Here, we have scaled the axes by a length scale a that
characterizes the typical size of the sample, x̃ = x/a and ỹ =
y/a, and introduced the dimensionless 2D nabla operator ∇̃ =
[∂x̃, ∂ỹ]T and DMI parameter D̃ = Da/2J . The unit vector f̂ is
a function of φ and given by f̂ (φ)T = [sin(2φ), cos(2φ)] =
[2mxmy, m2

x − m2
y ]. We see that φ is governed by the 2D

Laplace equation with nonlinear inhomogeneous Neumann
BCs. Qualitatively, we expect for larger discs that the internal
equation plays the dominant role, while the BCs become more
important for smaller systems. We note, however, that for very
small samples our continuum description is not applicable.

The effect of the DMI-induced BCs is to produce a mag-
netic twist state at the edges of the sample. Such boundary-
induced twist states have been studied in ferromagnetic het-
erostructures, where a DMI field occurs in the bulk of the
sample. In contrast, the 2H ferromagnets are only affected by
the DMI via the BCs in Eq. (10).

Note that n̂ and f̂ consist of respectively the linear and
quadratic basis functions for the irreducible representation E

′

of D3h. Consequently, the BCs (10) are as expected invariant

under any symmetry transformation of D3h that acts simulta-
neously on n̂ and f̂ .

While being linear in the relativistic interactions, the DMI
is much smaller than the exchange interaction. Therefore we
expect D̃ to be a small parameter in our problem, which allows
us to solve the BVP in Eqs. (9) and (10) perturbatively to first
order in D̃. To this end, we consider a perturbative solution for
φ of the form

φ(r̃) = φ0 + D̃φ1(r̃). (11)

The zeroth-order solution φ0 represents the magnetization
direction in absence of any DMI, while the first-order solution
φ1 determines the boundary-driven spatial modulation of the
magnetization direction.

Further, we will assume that our sample has the shape of
a disk with a rescaled radius of R/a = 1. Upon substitution
of Eq. (11) into Eqs. (9) and (10), we find the equations for
φ0 and φ1. The zeroth-order contribution is given by the 2D
Laplace equation ∇̃2φ0 = 0 with the homogeneous Neumann
BCs n̂ · ∇̃φ0 = 0. The solution of this equation is just a
constant that represents the internal value of the magnetization
direction. The first-order correction to this solution is given by
the BVP

∇̃2φ1 = 0, when x̃2 + ỹ2 < 1, (12)

n̂ · ∇̃φ1 = −n̂ · f̂ (φ0), when x̃2 + ỹ2 = 1. (13)

Via separation of variables, one obtains φ1 = −x̃ sin(2φ0) −
ỹ cos(2φ0). Thus, to first order in the relativistic interactions,
we find the solution

φ(r̃) = φ0 + k̃D · r̃, (14)

where r̃ = (x̃, ỹ)T is the position vector on the unit disk. The
dimensionless wave vector k̃D is determined by

k̃D = −D̃[sin(2φ0), cos(2φ0)]T . (15)

Equations (14) and (15) represent the second central result
of this work and demonstrate that the DMI-induce Neumann
BCs (10) to first order in D̃ produces a helical modulation
of the magnetization direction. Significantly, we find that the
direction of the helical wave vector k̃D is inherently linked to
the internal orientation of the magnetization. The functional
relationship k̃D,x ∼ sin(2φ0) [k̃D,y ∼ cos(2φ0)] between k̃D

and the magnetization implies that the wave vector has a
twofold symmetry with respect to φ0. This is illustrated in
Fig. 2, which shows the function D̃φ1 and the magnetization
in Eq. (8) for five different values of φ0.

The locking of k̃D to the internal magnetization opens
the possibility to electrically control the helical spin phase
via current-driven magnetization torques. In what follows,
we study the effects of the STT and SOT to first order in
the applied current density J , the magnetization gradients
and the degree of magnetic anisotropy, as well as to lowest
order in the relativistic interactions. In this case, the STT
takes the form of τSTT = (1 − βm×)(PJ · ∇)m, where P
is proportional to the spin polarization of the current and
β is the nonadiabatic torque parameter [35,36]. The SOT
is τSOT = −γ m × HSOT, with the current-induced effective
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FIG. 2. [(a)–(e)] Shows the equilibrium state of the magnetiza-
tion (arrows) on the 2D disk for φ0 = 0, π/4, π/2, 3π/4, and π ,
respectively. The density plots illustrate the first-order correction
D̃φ1 to the magnetic equilibrium state produced by the DMI-induced
BCs. For clarity, we have used D̃ = 0.5.

field HSOT,i = (
(r)
i j + 


(d )
i jk mk )J j . 


(r)
i j (
(d )

i jk ) represents the
reactive (dissipative) contribution to the SOT [35,36].

The tensors 

(r)
i j and 


(d )
i jk originate from the intrinsic

SOC and their tensorial structures are solely determined by
the crystallographic point group of the system [35,36]. In-
terestingly, the D3h group implies that 


(r)
i j = 0 [32]. As a

result, ferromagnetic trigonal prismatic monolayers do not
exhibit any reactive SOT under the application of an external
electric field. This is in stark contrast to previously studied
asymmetric ferromagnets, in which the reactive SOT is the
dominant current-driven torque mechanism (see Ref. [30] and
references therein). Only the dissipative SOT is present in
ferromagnets with D3h symmetry and its tensor is determined
by a single parameter 
so. The nonvanishing tensor elements
are [32]


so ≡ 
(d )
yyx = 
(d )

yxy = 
(d )
xyy = −
(d )

xxx, (16)

in analog to Eq. (2). As the dissipative SOT is governed by
the momentum space Berry curvature [37], the strength of
the SOT in ferromagnetic trigonal prismatic monolayers is
strongly linked to the band structure topology of the system.
In particular, the appearance of band crossings close to the
Fermi surface will greatly enhance the strength of the Berry
curvature and thus the SOT.

For modeling the current-induced magnetization dynam-
ics, we apply a collective coordinate description assuming that
the magnetic state is described by the perturbative solution
(14). The Thiele equation for the time dependent collective
angle φ0(t ) is given by �φ̇0 = L, where L = ∫

dr ∂m/∂φ0 ·

1.0

-1.0

2.01.0

FIG. 3. Vector-field plot of the differential equation in Eq. (17)
with the current density applied along the x axis. The red cir-
cles indicate unstable fix points for the solution φ0(t ), whereas
the red dots represent stable fix points. Here, we assume A ≡
−|J |D̃

α⊥
( Pβ

R − γ
so
D̃

) > 0.

(m × (τSTT + τSOT)) and � = ∫
drα⊥(∂m/∂φ0)2. The result-

ing equation becomes

φ̇0 = 1

α⊥

(
Pβ

R
− γ
so

D̃

)
J · k̃D. (17)

Both the dissipative STT and SOT contribute to the dynam-
ics. Note that the current density couples directly to kD ∼
sin(2φ0) and thus directly to the orientation of the helix. For
any applied current, the twofold symmetry of kD induces two
(un-)stable fix points, i.e., (un-)preferred directions for φ0 (see
Fig. 3). As the locations of these fix points can be tuned
by changing the direction of the current, the helix can be
orientated along any axis in the xy plane via the electric field.
The current-driven effects on the boundary-induced helix are
very different from those on bulk helical textures, where an
applied current usually only leads to a weak tilting of the
bulk magnetization [38]. The boundary-induced spin texture
therefore opens the door for a unique way of controlling the
helical wave vector solely by means of electric currents.

IV. CONCLUSIONS

In summary, we have developed a phenomenological de-
scription of the magnetization dynamics in 2D ferromagnetic
materials with trigonal prismatic 2H structure. Extraordinar-
ily, we find that the system exhibits no internal DMI field,
despite the fact that the 2H structure lacks inversion sym-
metry. We derive that the DMI only affects the spin physics
at the boundaries, where it yields nontrivial BCs for the
magnetization. The DMI-induced BCs turn a field-polarized
phase into a helical phase, where the direction of the helical
wave vector is locked to the ferromagnetic orientation. By
symmetry considerations we show that these systems are sub-
ject to dissipative STTs and SOTs, which allow to electrically
control the direction of the helical wave vector.
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