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Magnetic interactions in BiFeO3: A first-principles study
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First-principles calculations, in combination with the four-state energy mapping method, are performed to
extract the magnetic interaction parameters of multiferroic BiFeO3. Such parameters include the symmetric
exchange (SE) couplings and the Dzyaloshinskii-Moriya (DM) interactions up to second-nearest neighbors, as
well as the single-ion anisotropy (SIA). All magnetic parameters are obtained not only for the R3c structural
ground state, but also for the R3m and R3̄c phases in order to determine the effects of ferroelectricity and
antiferrodistortion distortions, respectively, on these magnetic parameters. In particular, two different second-
nearest-neighbor couplings are identified and their origins are discussed in details. Moreover, Monte Carlo (MC)
simulations using a magnetic Hamiltonian incorporating these first-principles-derived interaction parameters are
further performed. They result (i) not only in the accurate prediction of the spin-canted G-type antiferromagnetic
structure and of the known magnetic cycloid propagating along a 〈11̄0〉 direction, as well as their unusual
characteristics (such as a weak magnetization and spin-density-waves, respectively), (ii) but also in the finding
of another cycloidal state of low-energy and that awaits to be experimentally confirmed. Turning on and off the
different magnetic interaction parameters in the MC simulations also reveal the precise role of each of them on
magnetism.
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I. INTRODUCTION

Bismuth ferrite BiFeO3 (BFO) is one of the most robust
room-temperature multiferroic compounds. Besides its large
electric polarization, BFO exhibits different magnetic phases.
For instance, it can possess a long period cycloid or a canted
configuration in which a predominant G-type antiferromag-
netism (AFM) coexists with a weak ferromagnetic vector
[1,2]. Upon external stimuli, such as temperature, fields, strain
and pressure, such two magnetic states can transform from
one to another [1,3–10], which reflects spin-lattice couplings
in BFO. More precisely, spins have been predicted to couple
with both ferroelectric (FE) displacements and FeO6 octahe-
dral tiltings (also known as antiferrodistortive (AFD) motions)
in BFO, see, e.g., Ref. [11] and references therein.

Such spin-lattice couplings form a fundamental and impor-
tant research direction, as evidenced by the fact that different
models have been proposed to describe them and the resulting
magnetism in BFO. Examples of such models include the spin
current model [11–14], theory for electrical-field control of
magnetism from R. de Sousa and collaborators [15–17], and
various models from R. S. Fishman et al. [18–20]. However,
to the best of our knowledge, the magnetic coupling coeffi-
cients, especially the anisotropic ones (that are important to
generate complex magnetic configurations) have never been
systematically and thoroughly studied, especially from direct
first principles.
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Here, we consider an ab initio effective Hamiltonian with
all its coupling coefficients being determined from first-
principles techniques and adopting the most general matrix
form. Such matrices enable us not only to have a general
idea of the magnetic anisotropy, but also to obtain the in-
dividual isotropic/anisotropic symmetric exchange (SE) cou-
plings, Dzyaloshinskii-Moriya (DM) interactions [21,22], and
the single-anion anisotropy (SIA) by decompositions of such
matrices. The effect of FE and AFD distortions on such
couplings are also determined and discussed. The paper is
organized as follows. Section II introduces the magnetic ma-
trices and their decomposition, as well as provides details
about our density functional theory (DFT) calculations and
the Monte Carlo (MC) simulations. Moreover, Secs. III A,
III B, and III C focus on first- and second-nearest-neighbor
couplings and SIA, respectively, while Sec. III D provides re-
sults from MC simulations using the aforementioned ab initio-
based effective Hamiltonian. A brief conclusion is given in
Sec. IV.

II. METHOD

A. Magnetic effective Hamiltonian

Let us first define our convention for the coordinates as
(i) the x, y, and z axes being along the pseudocubic [100],
[010], and [001] directions, respectively; and (ii) the FE dis-
placements and the AFD axis about which the FeO6 octahedra
rotate being both along the pseudocubic [111] direction—
as consistent with the R3c rhombohedral ground state of
BiFeO3 [23,24].
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The following magnetic effective Hamiltonian H is
adopted here:

H = Hex
1 + Hex

2 + Hsi

(1)

with

Hex
1 = 1

2

∑
〈i, j〉1

Si·J1,i j ·S j, (2)

Hex
2 = 1

2

∑
〈i, j〉2

Si·J2,i j ·S j

= 1

2

∑
〈i, j〉1

2

Si·J 1
2,i j ·S j + 1

2

∑
〈i, j〉2

2

Si·J 2
2,i j ·S j, (3)

and

Hsi =
∑

i

Si·Aii·Si, (4)

where Hex
1 and Hex

2 denote the exchange coupling between
first and second-nearest neighbors, respectively, and Hsi rep-
resents SIA. Note that the sum over first-nearest neighbors
〈i, j〉1 are sixfold degenerate along 〈100〉 directions. On the
other hand, the 12 second-nearest neighbors 〈i, j〉2 can be
categorized into two types, 〈i, j〉1

2 being sixfold degenerate
along the 〈11̄0〉 directions that are perpendicular to the [111]
polarization direction versus 〈i, j〉2

2 that is also sixfold degen-
erate but along the 〈110〉 directions that are not perpendicular
to the polarization direction. Moreover, S = 5/2 is used here
to be consistent with the valence state of Fe3+ ions in BFO.

The J matrices characterizing the magnetic exchange
couplings are calculated in the most general 3×3 matrix form
as

J =

⎛
⎜⎝

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

⎞
⎟⎠.

They can always be decomposed into a symmetric part JSE

and an antisymmetric part JDM, i.e., J = JSE + JDM.
The symmetric JSE is given by

JSE =

⎛
⎜⎝

Jxx
1
2 (Jxy + Jyx ) 1

2 (Jxz + Jzx )
1
2 (Jxy + Jyx ) Jyy

1
2 (Jyz + Jzy)

1
2 (Jxz + Jzx ) 1

2 (Jyz + Jzy) Jzz

⎞
⎟⎠.

The JSE matrices prefer spins being collinearly aligned. Un-
less the fully isotropic case, it prefers an easy axis or an
easy plane, whose direction or normal, respectively, can be
determined by the diagonalization of the JSE matrices. We nu-
merically found that the off-diagonal elements of JSE are neg-
ligible and we will thus only focus on Jαα (α = x, y, and z).
Note that J > 0 favors antiferromagnetism.

The antisymmetric JDM matrices (which is related to the
DM interaction) can be obtained as

JDM =

⎛
⎜⎝

0 1
2 (Jxy − Jyx ) 1

2 (Jxz − Jzx )
1
2 (Jyx − Jxy) 0 1

2 (Jyz − Jzy)
1
2 (Jzx − Jxz ) 1

2 (Jzy − Jyz ) 0

⎞
⎟⎠.

Note that, typically, JDM is written using the vector D via
HDM = D·(Si × S j ), with

D = (Dx, Dy, Dz ),

where Dx = 1
2 (Jyz − Jzy), Dy = 1

2 (Jzx − Jxz ), and Dz =
1
2 (Jxy − Jyx ). JDM, or equivalently D, favors the spins being
perpendicular to each other within the plane for which the
normal vector is parallel to D.

It is necessary to further clarify the term of “exchange
coupling.” The exchange coupling in common sense is of the
form JSi·S j , which leads to isotropic collinear spin configura-
tions. It is usually considered as an alternative concept to DM
interaction, as in D·(Si × S j ). However, in this manuscript, we
use a stricter terminology that exchange coupling refers to the
form of Si·J ·S j , with J including a symmetric part JSE and
an antisymmetric part JDM (equivalent to D), both of which
can lead to magnetic anisotropy.

Moreover and according to point group symmetry (3m for
R3c, R3m, and 3̄m for R3̄c), the A matrices associated with
SIA for R3c, R3m, and R3̄c phases all have the form of

A =
⎛
⎝

0 � �

� 0 �

� � 0

⎞
⎠

in the (x, y, z) basis. This A matrix can be rewritten in its
diagonalizing basis as

A =
⎛
⎝

−� 0 0
0 −� 0
0 0 2�

⎞
⎠.

where the third index corresponds to the pseudocubic [111]
direction, while indices 1 and 2 are associated with perpen-
dicular directions, such as [11̄0] and [112̄]. As a result, SIA
favors [111] (or [1̄1̄1̄]) for the spin directions if � < 0, while
it prefers spins lying inside the (111) plane if � > 0.

B. DFT parameters and MC simulations

DFT calculations are performed using the Vienna ab init io
simulation package (VASP) [25]. The projector augmented
wave (PAW) method [26] is employed with the following
electrons being treated as valence states: Bi 6s and 6p, Fe
3d and 4s, and O 2s and 2p. The revised Perdew, Burke,
and Ernzerhof functional for solids (PBE_sol) [27] is used,
with a typical effective Hubbard U parameter of 4 eV for the
localized 3d electrons of Fe ions [24,28]. The dependence
of the J1 parameter from collinear calculations on U values
were also tested, yielding J1 = 7.16, 6.06, and 5.09 meV from
U = 3, 4, and 5 eV, respectively. The parameters based on
U = 4 eV yield a Néel temperature TN that is very close to
the experimental one (see Sec. III D), therefore indicating that
our choice of U = 4 eV appears to be valid and reasonable.
Moreover, Ref. [29] predicts a self-consistent value of U of
3.8 eV in BiFeO3, that is very close to 4 eV, as well as that
Ref. [30] reports that U = 4 eV leads to reasonable band gap
and magnetic moment on Fe ion. k-point meshes are chosen
such as they are commensurate with the choice of 6×6×6
for the five-atom cubic Pm3̄m phase. For instance, (i) the ten-
atom R3c phase is optimized using 4×4×4 k mesh, until the
Hellmann-Feynman forces are converged to be smaller than
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0.001 eV/Å on each ion (the R3m and R3̄c phases are obtained
from the decomposition of the optimized R3c phase, that is the
AFD (respectively, FE) displacements of the R3c ground state
are left out when constructing the R3m (respectively, R3̄c)
state); (ii) the exchange coupling coefficients are calculated
using a 4×4×2 supercell with an 1×1×3 k mesh; and (iii) the
SIA parameters are calculated using a 2×2×2 supercell with
a 3×3×3 k mesh. Note that the G-type antiferromagnetism
with the canted ferromagnetism is adopted when optimizing
R3c structures. Spin-orbital coupling and noncolinear mag-
netic configurations are employed throughout all calculations
(except for the results in Table III, see details there). The
magnetic coefficients are extracted using the four-state energy
mapping method, as detailed in Refs. [31,32]. This method
has been proven to be accurate in different works [33–36],
especially when dealing with DM interactions and SIA. We
calculate all matrices for different Fe-Fe pairs or Fe sites, and
the elements are displayed to the digit of 0.001 meV through
the manuscript.

Monte Carlo simulations are performed using the heat
bath algorithm [37]. A 12×12×12 supercell are adopted to
predict the Néel temperature (TN ). The ten-atom primitive
cell and 2×2×2 supercells are used to determine the effects
of each single magnetic parameter, while supercells with the
form of

√
2n × √

2 × 2 (n = 2, 3, . . . , 240), in which the
first axis is along the [11̄0] direction, and

√
2 × √

2 × 2n
(n = 2, 3, . . . , 240), in which the last axis lies along [001],
are adopted to determine properties of cycloidal phases that
propagate along [11̄0] and [001] directions, respectively (note
that we decided to look at cycloids propagating along the
unusual [001] direction because recent effective Hamiltonian
computations [12] predicted that such cycloids can be very
close in energy from that of the well-known cycloid of BFO
propagating along [11̄0]). The equilibrium period of cycloid
is then determined by comparing the energy of cycloids
of different periods (by technically using different supercell
lengths). In each MC simulation, 2000 exchange steps [37]
are performed, with each exchange step containing 200 MC
sweeps.

Note that our previous methods [12] employed an effective
Hamiltonian [1,2,11] that incorporates spins, electric mo-
ments, and oxygen octahedral tiltings as degrees of freedom,
in general, and assume a more simple spin current model for
which some parameters are empirically derived [11–14], in
particular. In contrast, in the present study, we (i) take into
account the most general matrix form of magnetic interactions
and (ii) ab init io calculations are conducted to obtain all
coupling coefficients.

III. RESULTS

The application of the aforementioned DFT parameters
results in the R3c structure with lattice parameters of a =
b = c = 5.584 Å and α = β = γ = 59.529◦, as well as the
internal positions of atoms being Bi 2a (0.276, 0.276, 0.276),
Fe 2a (0, 0, 0), and O 6c (0.672, 0.813, 0.217). Such lattice
parameters are within 0.8% difference as compared to previ-
ous calculations and measurements [24,38], which testify the
accuracy of our DFT calculations.

TABLE I. Calculated symmetric exchange parameters and DM
interactions for the nearest-neighbor Fe-Fe pair along the [100]
direction. The isotropic coupling coefficient J1 is the average of the
diagonal xx, yy, and zz components. Note that Da

1 and Db
1 has the

form of (0,α, −α) and (β, β, β ), respectively. D1 is the norm of D1

(unit: meV).

[100] J1,xx J1,yy J1,zz J1

R3c 6.076 6.090 6.091 6.086
R3m 7.414 7.435 7.436 7.428
R3̄c 5.847 5.858 5.860 5.855

[100] D1,x D1,y D1,z D1

D1 −0.042 0.028 −0.116 0.126
R3c Da

1 0.000 0.072 −0.072 0.102

Db
1 −0.043 −0.043 −0.043 0.074

R3m 0.003 0.135 −0.136 0.192
R3̄c −0.077 −0.027 −0.027 0.086

A. First-nearest-neighbor coupling J1

Let us first focus on the nearest-neighbor exchange cou-
pling and choose the Fe-Fe pair along the [100] direction as
an example. As shown in Table I, the isotropic J1 (which is
the average of J1,xx, J1,yy, and J1,zz) yields 6.086 meV, whose
positive sign indicates that the coupling is of AFM nature.
Such parameter is rather close to the values of 6.48 [39],
4.38 [40] and 4.34 [41] meV that are estimated from inelastic
neutron scattering, which further attests the accuracy of our
calculations. Values of J1 are also calculated for the R3m
phase, that only adopts FE displacements, and the R3̄c phase,
that only possesses AFD distortions. The J1 value for R3m
phase yields a larger 7.428 meV, while that of R3̄c phase gives
a smaller 5.855 meV. Such comparison indicates that the FE
displacements contribute more to the AFM than the oxygen
octahedral tilting does. Taking advantage of the general J
matrix, SE coupling is found to yield an easy plane that is
perpendicular to the pair direction in the R3c structure, as
J1,yy ≈ J1,zz = 6.091 meV, while J1,xx = 6.076 meV. Such
energy differences result in an easy plane that is perpendicular
to the [111] direction, when all six nearest neighbors are
considered, which is consistent with proposed directions of
the AFM vector in the spin-canted structure [1]. Note that
such anisotropic SE coupling has been recently reported to be
significant in LaMn3Cr4O12 and is responsible for inducing its
multiferroicity [42]. Similar anisotropic SE coupling is also
found in the R3m and R3̄c phases.

Moreover, the DM vector for first-nearest neighbors and in
the (x, y, z) basis is calculated to be D1 = (−0.042, 0.028,
−0.116) meV for the R3c state, resulting in a magnitude
D1 of 0.126 meV – that is about 50 times smaller than J1

(note that Ref. [43] provided a much larger magnitude of
D1 that is equal to 0.193, 0.327, and 0.321 meV for the
three different 〈001〉 pairs, which is surprising since all these
first-nearest-neighbor pairs should have the same magnitude
of D1 in the R3c state. The overestimation of the magnitude
of D1 in Ref. [43] with respect to our present results likely
lies in the choice of too small supercells used within the
four-state method in Ref. [43]). According to the formula
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of Keffer [44,45], the DM vector should be perpendicular to
the plane determined by the magnetic sites and the bridging
ligand, e.g., oxygen. However, in the present highly distorted
crystal structure, D1 is away from the perpendicular direction
of the Fe-O-Fe plane by about 30◦, which is due to symmetry
breaking caused by the neighboring atoms, e.g., distortion
of FeO6 octahedra and extra hooping path mediated by Bi
atoms.

As commonly done for magnetic Hamiltonians[18–20],
D1 can be decomposed into two parts, Da

1 (0, α, −α) that
determines the cycloidal plane and period λ [20] and Db

1
(β, β, β) that can either create components of spins forming
a spin-density wave and being away from the cycloidal plane
[11,46] for the cycloidal configuration or to the creation of
a weak magnetization in the spin-canted structure [2,47,48].
Here, we found that α = 0.072 meV and β = −0.043 meV.
As a result, Da

1 possesses a magnitude of 0.102 meV and
Db

1 has a strength of 0.074 meV. Such parameters are well
consistent with the values of 0.18 and 0.06 meV, respectively,
which are estimated from previous experiments and models
[5,19,20,46,49–51]. Moreover, the D1 vector of R3m is nu-
merically determined to be (0.003, 0.135, −0.136) meV, that
is close to adopt the form of (0, A, −A). It therefore has
mostly a Da

1 component, and, consequently, its Db
1 component

is nearly vanishing. Such fact implies that the Db
1 component

in the R3c phase mostly originates from AFD tiltings. Such
finding is consistent with the expression of the DM effect
proposed in Refs. [2,47], which involves the tiltings of first-
nearest-neighbors oxygen octahedra and which was suggested
to be responsible for the weak ferromagnetism in the spin
canted structure of BFO. Such fact is further confirmed by the
fact that the D1 vector of R3̄c is found to be equal to (−0.077,
−0.027, −0.027) meV and has therefore a (B, C, C) form,
which results in a Db

1 component that can be be estimated to be
(−0.043, −0.043, −0.043) meV when taking an average β to
be equal to (B+2C)/3. Interestingly, this resulting Db

1 vector
of R3̄c is precisely the one of the R3c structure, which further
confirms that this latter originates from oxygen octahedral
tilting rather than polarization. On the other hand, polarization
does contribute to the Da

1 of the R3c phase since the Da
1 of the

R3m phase is significant. Such feature is in-line with spin-
current models involving the polarization, P, and first-nearest
neighbors for the DM effect that has an energy of the form
C1(P × eij) · (mi × mj), where C1 is a material-dependent
coefficient, eij is the unit vector joining site i to site j and
where mi and mj are the magnetic moments at these sites
i and j, respectively [11,13]. Note that spin-current models
have been proposed to be the origin of magnetic cycloids in
BFO [11,20]. Note also that the D1 vectors of R3m and R3̄c
phases do not add up to that of R3c phase, which implies
nonlinear interactions between polarization and AFD motions
in the determination of DM vectors in the R3c state of BFO.

B. Second-nearest-neighbor coupling J2

We now look at the second-nearest-neighbor couplings.
It is found that SE couplings are nearly isotropic for both
pairs along [11̄0] and [110], since the differences between
the J2,αα’s (with α = x, y and z) are no more than 0.002 meV
for both the [11̄0] and [110] directions, as shown in Table II.

TABLE II. Calculated symmetric exchange parameters and DM
interactions for the second-nearest-neighbor Fe-Fe pairs. J2 and D2

for pairs along [11̄0] ([110], respectively) directions are marked with
superscript 1 (2, respectively). These parameters take into account
spin-orbit interactions (unit: meV).

[11̄0] J1
2,xx J1

2,yy J1
2,zz J1

2

R3c 0.192 0.193 0.194 0.193
R3m 0.338 0.338 0.338 0.338
R3̄c 0.049 0.048 0.049 0.049

[11̄0] D1
2,x D1

2,y D1
2,z D1

2

R3c 0.001 0.002 0.021 0.021
R3m 0.007 0.007 0.039 0.040
R3̄c 0 0 0 0

[110] J2
2,xx J2

2,yy J2
2,zz J2

2

R3c 0.003 0.002 0.004 0.003
R3m −0.105 −0.105 −0.102 −0.104
R3̄c 0.150 0.150 0.150 0.150

[110] D2
2,x D2

2,y D2
2,z D2

2

R3c 0.000 −0.002 0.004 0.005
R3m 0.000 0.000 0.000 0.001
R3̄c 0 0 0 0

The averaged SE coupling for pairs along [11̄0] yields J1
2 =

0.193 meV. Such value is very close to the 0.2 meV that is
estimated from inelastic neutron scattering [20,39–41]. On
the other hand, the counterpart interactions for pairs along
[110] yield minute value of J2

2 � 0.003 meV. Such contrasts
between J1

2 and J2
2 , as well as the nearly vanishing value

of J2
2 , are reported here for the first time, to the best of our

knowledge.
Further calculations are performed to determine whether

such differences result from the different Fe-Fe distances, FE
displacements and/or AFD motions. For simplicity, calcula-
tions without SOC (that is, we assume spins being colinearly
aligned) are performed, with the outputs being shown in
Table III, for that determination. (Note that the calculations
without SOC are purely for determining the effects of FE
displacements and AFD motions and the resulted J2 values
may differ from those with SOC.) We first check the J1

2 and J2
2

coefficients for the following two phases: (i) the cubic Pm3̄m
phase, for which Fe-Fe pairs along [11̄0] and [110] have the
same distance and that yields the same coupling strength as
J1

2 = J2
2 = 0.48 meV; and (ii) the rhombohedral R3c phase,

for which Fe-Fe pairs along [11̄0] have shorter distance than
those along [110], which results in different coupling strength
as J1

2 = 0.35 meV while J2
2 = 0.25 meV. Moreover, if the

internal atomic positions retain their R3c values while the
lattice vectors are changed to those of the cubic structure,
the distances of Fe-Fe pairs along [11̄0] and [110] become
identical, but the coupling strengths remain different as J1

2 =
0.35 meV while J2

2 = 0.25 meV. Furthermore, if we force the
internal atomic pattern to be that of the Pm3̄m state while
the lattice vectors are changed to those of the rhombohedral
R3c ground state, the distances of Fe-Fe pairs along [11̄0]
and [110] become different again, but the coupling strengths
J1

2 and J2
2 turn out to be the same with the precision up to
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TABLE III. Calculated isotropic exchange parameters for the
second-nearest-neighbor Fe-Fe pairs with different structures (lat-
tices and atomic patterns). J1

2 is for Fe-Fe pairs that are along [11̄0]
directions that are perpendicular to the polarization direction, while
J2

2 is for Fe-Fe pairs that are along [110] directions. These parameters
are calculated at a collinear level.

Distor. J2 DistanceStruct.
involved (meV) (Å)

J1
2 , [11̄0] 0.48 5.56

Cubic(Pm3̄m) - J2
2 , [110] 0.48 5.56

J1
2 , [11̄0] 0.35 5.55

Rhom.(R3c) FE,AFD J2
2 , [110] 0.25 5.58

J1
2 , [11̄0] 0.35 5.56

Cubic(R3c) FE,AFD J2
2 , [110] 0.25 5.56

J1
2 , [11̄0] 0.48 5.55

Rhom.(Pm3̄m) - J2
2 , [110] 0.48 5.58

J1
2 , [11̄0] 0.55 5.56

Cubic(R3m) FE J2
2 , [110] 0.28 5.56

J1
2 , [11̄0] 0.31 5.56

Cubic(R3̄c) AFD J2
2 , [110] 0.39 5.56

0.01 meV. The comparison among such cases with modified
and unmodified lattice shapes clearly demonstrates that the
difference in J1

2 and J2
2 is not related to the different distances

(0.02 Å) of Fe-Fe pairs, but rather if there is a polarization
and/or oxygen octahedral tilting axis in the considered state
and if the considered second-nearest-neighbor direction is
perpendicular or not to such polarization and/or oxygen oc-
tahedral tilting axis.

To investigate the separate effects of FE displacements
and AFD on second-nearest-neighbor couplings, we further
checked two other cases that retain the R3m and R3̄c atomic
patterns, respectively, but with lattice vectors being those of a
cubic phase. As also shown in Table III and with respect to the
situation for which both lattice and atomic displacements are
those of a cubic state (and for which J1

2 = J2
2 = 0.48 meV),

(i) the first other case (i.e., cubic for lattice and R3m for
atomic positions) enhances the couplings among the pairs
that are perpendicular to the [111] direction of polarization
with J1

2 = 0.55 meV, while suppressing the couplings among
the pairs that are not perpendicular to the [111] direction of
polarization with J2

2 = 0.28 meV; and (ii) the second other
case (namely, cubic for lattice and R3̄c phase for atomic
displacements) suppresses both types of couplings as J1

2 =
0.31 meV and J2

2 = 0.39 meV. These results for these last
two cases also imply that the difference in J1

2 and J2
2 in the

R3c ground state arises from both FE and AFD displacements
(and their interactions). In terms of atomic displacements, a
0.35 Å shift of Bi ions along the [111] direction splits J2 by
a difference of 0.27 meV, while a 0.46 Å displacement of
O ions (which corresponds to a 7.86◦ antiphase octahedral
rotation along each pseudocubic axis) narrows the difference
to 0.08 meV (see also influences of atomic displacements on
exchange couplings in Refs. [52,53]).

Moreover, the SE couplings of second-nearest neighbors
in R3m and R3̄c phases are also found to be rather isotropic,

as the corresponding J2,αα (α = x, y, and z) has the same
components along different directions, as well as that the
off-diagonal components of J2 are all smaller than 0.001 meV
(not shown here). As shown in Table II, it yields an averaged
J1

2 = 0.338 meV in the R3m phase and an averaged J1
2 =

0.049 meV in the R3̄c phase for Fe-Fe pairs along [11̄0].
Such two quantities work together and lead to the medium
J1

2 = 0.193 meV in the R3c phase. Furthermore, for Fe-Fe
pairs along [110], R3̄c phase has J2

2 = 0.150 meV, while R3m
surprisingly has J2

2 = −0.104 meV, which is ferromagnetic
in nature. Such results therefore indicate that the nearly van-
ishing J2

2 in R3c phase results from the cancellation between
FE displacements and AFD. Additionally, the facts that the
diagonal elements of J1, J1

2 , and J2
2 are all different when

going from R3c to R3m or R3̄c is consistent with the total
energy of the effective Hamiltonian of Refs. [11,29] indicating
that both FE and AFD distortions affect the magnetic ex-
change interactions (note that a recent study on an hexagonal
phase of BFO indicates that complex isotropic interactions
can also lead to long period magnetic structure through
frustration [54]).

Furthermore, the DM vector between second-nearest
neighbors is found to nearly vanish for 〈110〉 pairs, while be-
ing non-negligible and lying nearly along the 〈001〉 direction
for Fe-Fe pairs being oriented along the 〈11̄0〉 directions. In
fact and as shown in Table II, such latter DM is “only” about
6 times smaller than the DM interaction of first-nearest neigh-
bors, and mostly originates solely from FE displacements,
since the inversion centers between second-nearest-neighbor
Fe-Fe pairs in R3̄c prevent the presence of DM interaction
[22]. Such facts are consistent with a spin-current model in-
volving polarization and magnetic moments of second-nearest
neighbors (in addition to those of first-nearest neighbors), as
done in Refs. [11,12,19]. However, it is also worthwhile to
realize that a spin-current model for the [11̄0] pair provides
an energy of the form C2(P × eij) · (mi × mj), where C2 is a
material-dependent parameter and where eij is the unit vector
along the [11̄0] direction, which consequently should give a
D1

2 DM vector along the [1̄1̄2] direction and thus contrasts
with the nearly [001] direction found by the DFT calculations
and reported in Table III. As a result, the DFT D1

2 vector
contains effects going beyond the sole spin-current model for
second-nearest-neighbor interactions (note, however, that the
projection of D1

2 of the R3c phase into the [1̄1̄2] direction gives
a scalar that has a strength of about 76% of the magnitude of
D1

2, implying that these additional effects are relatively small
in comparison with those due the spin-current model).

C. Single ion anisotropy A
As we have analyzed in the method part, the point group

symmetry of R3c, R3m, and R3̄c requires that the SIA
either prefers the [111] direction or the (111) plane. The
sign and magnitude of 3� thus defines the total effect of
SIA, which is the energy difference between local moment
of one Fe ion being along the [111] direction and within
the (111) plane. As shown in Table IV, 3� = −6 μeV for
R3c phase, which indicates a weak preference for the [111]
direction. Such small value (which is, e.g., 21 times smaller
than the magnitude of the DM vector for first-nearest neigh-
bors) is in good agreement with the experimental value of
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TABLE IV. Calculated SIA, as well as the easy axis or easy
plane. Note that 3� is the total effect of SIA, which indicates the
energy difference between spins being along the [111] direction and
within the (111) plane (unit: μeV).

R3c R3m R3̄c

� −2 −25 19
3� −6 −75 57
Easy axis/plane [111] [111] (111)

−6.8 μeV [39] and also agrees well with the estimated value
of −4 μeV from combining different experiments and simula-
tions [16,19,20,39,51,55–57], as well as being consistent with
the neglect of SIA in effective Hamiltonians of BFO [11,29].
Such good agreements further attests the accuracy of our
presently used four-state method, as other numerical methods
either underestimate SIA to −1.3 μeV [58] or overestimate it
to −11 μeV [43]. Moreover, 3� is found to be −75 μeV for

the R3m phase, therefore demonstrating that FE displacements
generate an easy axis along the [111] direction. In contrast,
3� = 57 μeV for the R3̄c phase, implying that AFD motions
favor an easy (111) plane. The FE displacements and AFD
motions both have rather strong effects in determining the
SIA, as evidenced by the fact that 3� in R3m and R3̄c phases
are an order of magnitude larger than that in the R3c phase.
Interestingly, it is the competition between those two opposite
effects that results in the small SIA of the R3c phase.

D. Monte Carlo simulations

MC simulations, using the aforementioned DFT-
determined parameters and Hamiltonian of Eq. (1), are
first performed on a 12×12×12 supercell, therefore
containing 1728 Fe atoms. As shown in Fig. 1(a), the
specific heat-versus-temperature curve shows a clear peak
at 603 K, which is indicative of a magnetic transition. We
further define the AFM Néel vector L = 1

2 |S1-S2| as the
difference between spins of the two sublattices that are

FIG. 1. Magnetic properties predicted from MC simulations. (a) shows the specific heat (arb. units) as a function of temperature. The
inset of (a) shows the dependence of the AFM Néel vector L on temperature, which further emphasizes a paramagnetic-to-AFM transition
taking place at 603 K; (b) displays the energy per Fe ion with respect to the period of [11̄0] and [001] cycloids; (c) is the energy per Fe
ion with respect to the period of the [11̄0] cycloid, using selected magnetic parameters; and (d) demonstrates the tilting angles at different
phases/positions (in unit of π ) along the propagation direction of the [11̄0] cycloid. The direction notations above the horizontal axis in (d) mark
the directions of the magnetic moments. Note that the energy of the collinear G-type AFM state is set to be energy reference (zero) in both (b)
and (c).
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represented by the two Fe sites in the primitive cell. As shown
in the inset of Fig. 1(a), the AFM Néel vector L reaches the
saturated value of about 2.5, showing that such transition
is from paramagnetic to the dominant G-type AFM phase.
Further analysis indicates that such G-type AFM phase in
the 12×12×12 supercell is associated with a canted weak
ferromagnetism of 0.025 μB/Fe. The presently predicted
Néel temperature TN = 603 K agrees rather well with the
measured value of about 643 K [59,60], which attests the
accuracy of our magnetic parameters, as well as the MC
simulations.

The simulations on small cells (primitive cell or 2×2×2
supercell) are also performed, which predict not only the dom-
inant collinear G-type AFM configuration, but also a canting
moment that further lowers the energy by 0.09 meV/Fe, as
shown in Fig. 1(b). Such canting moment results from the Db

1
parameter, which originates from the oxygen octahedral tilt-
ings among first-nearest neighbors. The resulting magnetiza-
tion in the 2×2×2 supercell is determined to be 0.031 μB/Fe
(corresponding to an canting angle of 0.36◦), which agrees
very well with the value of 0.027 μB/Fe reported in previous
MC effective Hamiltonian-based simulations [2] and the value
≈0.02 μB/Fe of the measured weak ferromagnetism [61].
Note that although the measured values of such weak mag-
netization can range from 0.012 to 0.09 μB/Fe, depending on
(i) whether the sample is single crystal, ceramic or compres-
sively/tensily strained films or (ii) whether magnetic field is
applied [46,61–63], our result is of the same order with those
experimental values.

We have also explored the possibility of stabilizing a spin
spiral in the [1̄10] direction. For that we have used

√
2n ×√

2 × 2 (n = 2, 3, . . . , 240) supercells, containing 4n Fe ions
and with its first axis being along the [11̄0] direction, to
determine the period of the cycloid state along that direction.
It is found that the [11̄0] cycloid phase becomes lower in
energy than the canted G-type AFM state, when the cycloid
period is longer than 47 nm. The minimum in the energy-
versus-period curve further indicates that the cycloid period is
predicted to be λ = 83 nm, which is slightly larger but of the
same order of magnitude than the measured 62 nm cycloidal
period [64]. Note that, in order to obtain the measured period
(62 ± 3 nm), one can, for instance, increase the magnitude
of Da

1 from 0.102 to 0.184 meV, or slightly increase the
strength of D1

2 from 0.021 to 0.032 meV and that of D2
2

from 0.005 to 0.008 meV (note also that using all parameters
directly obtained from DFT gives a critical magnetic field
(aligned along the [112̄] direction) of 5.4 T associated with
the magnetic-field induced transition from the [11̄0] cycloid
phase to canted G-type AFM state, while increasing Da

1 to
0.184 meV provides a critical field of 18.4 T – which is very
close to the measured value 18 T [5]. Alternatively, if D1

2 is
increased to 0.032 meV and D2

2 to 0.008 meV, the critical field
yields 7.1 T. It therefore appears that having the best compar-
isons with different experimental data require the choice of
Da

1 to be 0.184 meV.) Furthermore, the [001] cycloid is also
investigated to compare with the [11̄0] cycloid. It is found that
(i) the [001] cycloid always has slightly higher energy than
the [11̄0] cycloid in all investigated range and (ii) its energy
has a minimum at λ = 102 nm, which is even lower than the

energies of the pure G-AFM state and of the spin-canted G-
AFM structure, as shown in Fig. 1(b). Our predictions that the
[11̄0] cycloid is the ground state and that the [001] cycloid can
be very close in energy is fully consistent with a recent study
using spin current model involving first- and second-nearest
neighbors [12].

We now further look at, and report, the effects of indi-
vidual magnetic parameters in determining the stability of
the magnetic configurations. (1) The dominant isotropic first-
nearest-neighbor magnetic exchange interaction J1 favors the
collinear G-type AFM. The isotropic second-nearest-neighbor
magnetic exchange interaction parameter J2, favors also an
AFM coupling. Therefore J1 and J2 compete with each other
and disfavor the stabilization of a collinear G-type magnetic
state. (2) Considering J1,αα , J1

2,αα , and J2
2,αα (α = x, y and z)

favors a collinear AFM within the (111) plane. Such (111)
easy plane is determined through a weak competition among
pairs along different directions. Specifically, Fe-Fe pairs along
[100] ([010] and [001], respectively) direction prefer (100)
[(010) and (001), respectively] plane, which lead to an overall
effect in favor of the (111) plane. Such competition/frustration
effect is similar to the determination of the easy axis in CrI3

and CrGeTe3 systems [35]. (3) The SIA favors an easy axis
along the [111] direction but the small value of 3� = −6 μeV
is scarcely influencing the magnetic properties determined
by other anisotropies. Specifically, when the SIA is turned
off in the MC simulations, the weakly canted G-type AFM
remains the ground state in small cells and the [11̄0] cycloid
state remains unchanged (aside a small increase of 1 nm of
its period). Such results further validate the neglect of SIA in
effective Hamiltonians of BFO in previous works [11,29]. (4)
The DM interactions, including Da

1, D1
2 and D2

2, all contribute
to generate a cycloid. Such effect is evidenced by the facts that
(i) if only isotropic J1 and Da

1 are used (all other parameters
are set to be zero), it results in a [11̄0] cycloid with a period of
λ ≈ 122 nm; while (ii) if D2 is also incorporated, it further
stabilizes the [11̄0] cycloid (by decreasing its energy) and
consequently shortens the period to λ ≈ 89 nm, as shown in
Fig. 1(c). (5) The DM interaction Db

1 creates spin canting in
the (111) plane for the nearest-neighbor moments that have
components in the (111) plane. As a result, for a small 2×2×2
supercell, it leads to a homogenous canting angle τ with
the aforementioned value of 0.36◦ for the spin-canted G-type
AFM configuration. For the [11̄0] cycloid, there is no canting
when magnetic moments are along the [111] or [1̄1̄1̄] direc-
tions and the canting angle reaches a maximum magnitude of
0.36◦ when moments are near the [11̄0] or [1̄10] directions, as
shown in Fig. 1(d). Such modulated canting corresponds to a
spin-density wave that is formed by components of magnetic
moments that are away from the plane spanned by the [111]
polarization direction and the [11̄0] propagation direction, and
that has been experimentally seen in Ref. [46]. The maximal
|τ | = 0.36◦ agrees well with the estimated 0.3◦ and 1◦values
provided in Ref. [20].

IV. CONCLUSION

To conclude, the magnetic interaction parameters of multi-
ferroic BiFeO3 are obtained using first-principles calculations,
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in combination with the four-state energy mapping method.
We explicitly considered symmetric exchange couplings
(i.e., Jxx, Jyy, Jzz), DM interactions up to the second-nearest
neighbor (for the first time, to the best of our knowledge),
as well as the SIA. MC simulations with those parameters
successfully reproduce, and explain, the energy hierarchy
between the ground state and excited states. The resulting
[11̄0] cycloid has a period of 83 nm, which is in reasonable
agreement with the value of 62 nm measured in experiments.
We also predict a magnetic cycloid propagating along a 〈100〉
direction which has a low energy, and may thus appear in
some future experiments when varying external parameters.
We are thus confident that the present work is of interest to the
scientific community, in general, and can be used as basis for
future phenomenological or ab initio-based simulations, in
particular.
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