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Ab initio investigation of magnetic ordering in the double perovskite Sr2NiWO6
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Ab initio calculations, the generalized gradient approximations (GGA/GGA+U ), are used to propose a
spin Hamiltonian for the B-site ordered double perovskite Sr2NiWO6. Our results show that the exchange
interaction constants between the next-nearest neighbors in both intra- and inter-ab planes (J2 and J2c) are an
order of magnitude larger than the ones between the nearest neighbors (J1 and J1c). Employing the Monte
Carlo simulation, we show that the obtained Hamiltonian properly describes the finite-temperature properties
of Sr2NiWO6. Our ab initio calculations also reveal a small magnetic anisotropy and nontrivial biquadratic
interaction between the nearest inter-ab plane neighbors, which play essential roles in stabilizing the type-II
antiferromagnetic ground state of Sr2NiWO6.
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I. INTRODUCTION

Ordered double perovskites with a general chemical for-
mula A2BB′O6 have received great attention owing to the
magnetic interactions tunable by substitutions on B and B′
ions [1–3]. For instance, the substitution of Mo by W in
Sr2CuMoO6 tends to decrease the Curie-Weiss temperature
from −116 to −300 K [4]. The wide variety of A2BB′O6

compounds with different A, B, and B′ ions represents var-
ious novel properties such as colossal magnetoresistance in
Sr2FeMoO6 [5], half-metallicity in Sr2CrWO6 [6], multi-
ferroics in Sr2NiMoO6 [7–9] and Pb2FeMeO6 (Me = Nb,
Ta, Sb) ceramics [10,11], photovoltaics in Bi2FeCrO6 [12]
and Sc2FeCrO6 [13], and low-dimensional antiferromagnetic
(AFM) behavior in Ba2CuB′O6 and Sr2CuB′O6 (B′ = W, Te)
compounds [14].

In the majority of magnetic ordered double perovskites
A2BB′O6, the B site, B′ site, or both could be occupied
by transition-metal magnetic ions. For the cases where B
is magnetic and B′ is a diamagnetic ion, the magnetic ions
interact with each other through B-O-B′-O-B bonds (Fig. 1).
The magnetic B ions can interact with each other through
direct and superexchange interactions. Due to the large dis-
tance between the B ions the direct exchange interaction is
negligible, hence the dominant magnetic interaction would
be the superexchange interaction mediated by the B′ and
O ions. The B-B′-B angle is 90◦ for the nearest and 180◦
for the next-nearest neighbors (Fig. 1), which could make
the nearest-neighbor (NN) superexchange interaction much
smaller than the next-nearest-neighbor (NNN) interaction.
The dependence of the superexchange interaction on the bond
angle is given by the Goodenough-Kanamori-Anderson rules
[15,16], according to which the superexchange is AFM and its
strength is maximum for a 180◦ bond angle.
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Typically, ordered double perovskites show low-
temperature AFM ordering, except for some compounds
including the La2BMnO6 (B = Mg,Co,Ni,Cu) group which
represent ferromagnetic (FM) ordering [17].

Sr2NiWO6 is a B-site ordered double perovskite in which
the magnetic Ni+2 ion resides on the B site and the hexavalent
diamagnetic W+6 ion occupies the B′ locations. Its crystalline
structure at room temperature is tetragonal and transforms
to the cubic symmetry above 520 K. The lattice distortion
tilts the Ni-O-W angle from 180◦ to 165◦ in the ab plane
[18]. Sr2NiWO6 exhibits a sharp transition to a type-II AFM
(AFM-II) spin ordering below the Néel temperature 54 K
[18,19]. Analysis of the spin-wave excitation spectrum indi-
cates that the 90◦superexchange interaction in Sr2NiWO6 is
much smaller than the 180◦ one [20,21]. On the contrary,
Iwanaga et al. argued that these magnetic interactions in
Sr2NiWO6 are comparable [18]. Hence, the relative strength
of these superexchange interactions in Sr2NiWO6 is a matter
of dispute. Furthermore, the existence of a sharp peak in the
magnetic susceptibility of Sr2NiWO6, unlike Sr2CuWO6, is
an indication of a three-dimensional ordering in this com-
pound.

The frustration of the exchange interactions between the
spins could lead to magnetic degeneracy in antiferromagnetic
materials. The fcc magnetic lattice with antiferromagnetic NN
and NNN interactions is an example of frustrated magnets.
This lattice is composed of four Heisenberg antiferromagnetic
cubic sublattices, in such a way that the sum of the first
neighboring ion magnetic fields at a given site vanishes. This
results in four independent magnetic sublattices with AFM
ordering. The magnetic moment directions of the sublattices
are not constrained on each other. Such a freedom to se-
lect the relative magnetic moment direction can be lifted by
including some higher-order exchange interactions such as
biquadratic interactions or single-ion interactions generated
by the spin-orbit effect. Neglecting the small tetragonal dis-
tortion in ordered double perovskites such as Sr2NiWO6, the
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FIG. 1. Crystal structure of Sr2NiWO6. The thick violet arrows
show the nearest and next-nearest neighbors at the intra-ab plane (J1

and J2) and inter-ab plane (J1c and J2c), respectively [22].

magnetic lattice turns out to be fcc, hence one expects the
emergence of frustration in these compounds. In this paper,
we study Sr2NiWO6 as a prototype of a (rocksalt) ordered
double perovskite to shed light on the magnetic features
of these compounds. Moreover, the experimental spin-wave
excitation spectrum obtained for Sr2NiWO6 [20,21] will help
us to compare the parameters of our spin Hamiltonian with
those extracted by fitting the spin-wave spectrum using linear
spin-wave theory.

In this study, we employ density functional calculations
including the Hubbard correction to build a spin model
Hamiltonian for Sr2NiWO6. We show that the NNN exchange
couplings between the intra- and inter-ab plane Ni ions are
in the same order, which guarantees the three-dimensional
magnetic ordering in Sr2NiWO6. We also discuss the thermo-
dynamic properties of the obtained model Hamiltonian using
the classical Monte Carlo (MC) simulation. In addition to the
Heisenberg exchange couplings, we consider the biquadratic
magnetic interaction and magnetic anisotropy interaction in
the spin Hamiltonian and argue the key role of these in-
teractions in finding the correct magnetic ground state of
Sr2NiWO6.

The paper is organized as follows. Section II discusses the
ab initio methods to construct the spin Hamiltonian and also
the details of the MC simulation. The results and discussions
are given in Sec. III, and Sec. IV is devoted to the conclusions.

II. METHOD

The major parts of the ab initio calculations were done by
the QUANTUM ESPRESSO (QE) package [23], which is based
on density functional theory (DFT). To treat the electron-
nucleus interaction, the projector augmented-wave (PAW)
pseudopotentials were employed. The exchange-correlation
potential was approximated by the Perdew-Burke-Ernzerhof
(PBE) functional within the generalized gradient approxima-
tion (GGA) [24]. To improve the on-site Coulomb repulsion
of the localized d electrons, we have applied the GGA+U
method in a simplified approach by Dudarev [25], which

only needs an effective Hubbard parameter (Ueff ). We used
8 × 8 × 6 k-point meshes for Brillouin zone sampling of the
primitive unit cell (which contains two formula units). The
experimental crystal structure was taken from Ref. [18]. An
energy cutoff of 40 Ry (440 Ry) was chosen for the wave-
function (electron density) expansion in the plane-wave basis
set. Higher-energy cutoffs were chosen for the lattice and site
geometry optimizations (50 and 550 Ry for the wave-function
and density expansions, respectively). We have estimated the
Ueff parameter by using the linear response (LR) method [26].
For these calculations, a 2 × 2 × 2 supercell, containing 16 Ni
atoms, was used. We employed the full-potential linearized
augmented plane-wave (LAPW) method, using the FLEUR

code [27], to verify the PAW pseudopotentials. For the LAPW
calculation, we set kmax = 4.5 a.u.−1, and we chose 2.0, 2.0,
2.2, and 1.4 a.u. for the muffin-tin radii of Sr, Ni, W and O,
respectively.

To find an effective spin Hamiltonian, the collinear spin-
polarized DFT results were mapped to the Heisenberg Hamil-
tonian given by

H = −1

2

∑
i, j

Ji j n̂i · n̂ j, (1)

where n̂i denotes a unit vector in the direction of the mag-
netic moment at the ith lattice site, and Ji j’s are Heisenberg
exchange constants describing the strength of the magnetic
coupling between the magnetic ions residing on the ith and
jth sites. To derive the exchange constants, the DFT total
energies of various magnetic configurations were calculated.
Then, by employing the least-squares method, the NN and
NNN exchange couplings at the intra-ab plane (J1 and J2) and
inter-ab plane (J1c and J2c) were computed (Fig. 1).

For the Ni ion with S = 1, a biquadratic interaction∑
i> j Bi j (n̂i · n̂ j )2 is also expected [28]. To estimate the bi-

quadratic couplings Bi j , we used the LAPW FLEUR code
[27] which is more specialized for noncollinear spin-polarized
DFT. Because of the existence of the heavy element W
in Sr2NiWO6, we investigated the effect of the magnetic
anisotropy, �

∑
i(n̂i · ẑ)2, where � denotes the strength of

the anisotropy. These calculations also were done within the
LAPW method by including the spin-orbit coupling (SOC)
and Hubbard correction (GGA+U+SOC).

In the end, we have used classical MC simulations to
investigate the finite-temperature properties of the obtained
spin Hamiltonian. The parallel tempering MC method was
carried on a lattice size N = 2 × 123, and a uniform temper-
ature range including 64 temperatures was selected. We used
1 × 106 MC steps per spin for equilibration and 1 × 106 MC
steps for sampling. To reduce the correlation between the data,
we skipped ten MC steps between the data collections. In a
parallel tempering algorithm, we allowed the spin configu-
rations at the different temperatures to swap with each other
after ten MC steps.

III. RESULTS AND DISCUSSION

A. Spin Hamiltonian

Sr2NiWO6 crystallizes in the tetragonal space group I4/m
with cell parameters (a = 5.5571, c = 7.9133 Å) [18]. As
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FIG. 2. Schematic representation of the Ni spin moments in the various magnetic configurations used for calculating the exchange
constants. The numbers in parentheses are the total energy difference of each magnetic configuration (meV/f.u.) with respect to the
ferromagnetic (FM) configuration for Ueff = 5 and 4.72 eV, respectively.

shown in Fig. 1, the transition-metal ions including the mag-
netic Ni+2 ions and nonmagnetic W+6 ions are located at the
center of the oxygen octahedra. In order to have insight into
the DFT magnetic ground state, different magnetic configura-
tions are considered, as presented in Fig. 2. The calculations
are performed within GGA, and GGA+U approximations
for the experimentally identified as well as ab initio opti-
mized crystal structures. For any on-site Hubbard parameter
Ueff varying from 0 to 7 eV, the magnetic ground state of
Sr2NiWO6 is the AFM-II ordering (Fig. 2), consistent with
the experimental observation [20,21]. In AFM-II, each Ni ion
aligns its moment parallel to half and antiparallel to the other
half of its nearest neighbors, whose number is 4 in the ab
plane and 8 out of plane. However, for both the intra- and
inter-ab plane NNNs, the directions of the magnetic moments
are antiparallel (Fig. 2).

To evaluate the on-site Coulomb repulsion Ueff , we use
the linear response (LR) method [26]. In the LR approach,
a perturbed repulsive Coulomb interaction is applied as a
small shift of the potential on d levels such that the response
of the system to this perturbation remains linear. Using the
experimental structure of Sr2NiWO6, the Ueff converges to
6.2 eV for Ni, independent of magnetic ordering. Therefore,
in the GGA+U calculations with the experimental structure
we take the values 5, 6, and 7 eV for the Hubbard parameter.

To obtain consistent results in an ab initio theory, one needs
to include all relevant details such as optimized structural
geometry. Therefore, using the GGA+U , we optimize the
structural geometry. For a fully consistent result, we also
estimate Ueff in a self-consistent LR (SCLR) scheme [29]. For
this purpose, in each step, the crystal structures are optimized
in the GGA+U calculation with the value of the U parameter
obtained from the previous step. Given the new structure, the
value of U is updated in the SCLR scheme. Iterating this
process makes the value of U converge to a constant. Starting
from Ueff = 6.2 eV of the experimental structure, we find that
the on-site Hubbard parameter converges to 4.72 eV. The total

energy difference of the considered magnetic configurations
and the FM state are reported in Fig. 2 for the experimental
structure and ab initio optimized structure with Ueff = 5 eV
and Ueff = 4.72 eV, respectively.

Now, we proceed to find the spin Hamiltonian. For this pur-
pose, we map the resulting total energies onto the Heisenberg
Hamiltonian. The relevant exchange constants (J1, J1c, J2, J2c)
for the experimental structure with Ueff = 0, 5, 6, and 7 eV
and the optimized structure with Ueff = 4.72 eV are listed
in Table I, showing that all the couplings are AFM. The
details of this calculation are given in the Appendix. The small
difference between the energy of AFM-I and FM magnetic
configurations (see Fig. 2) justifies the smallness of the inter-
ab plane NN coupling J1c. Indeed, one can simply find J1c =
(EAF-I − EFM)/8.

Table I also shows that NNN coupling constants (J2, J2c)
are an order of magnitude larger than the NN ones (J1, J1c).
Indeed, the 90◦ Ni-W-Ni bond angle in both the intra- and
inter-ab planes makes the superexchange interaction between
the NN magnetic ions too weak. On the other hand, the
Ni-W-Ni angle for both the intra- and inter-ab plane NNN
ions is 180◦, which substantially enhances the NNN exchange
constants. Moreover, the Ni-O-W bond angle in the intra-
ab plane (165.8◦) is slightly smaller than the corresponding
bond angle in the inter-ab plane (180◦), which somewhat
enhances J2c compared with J2. It can be seen from Table I
that the coupling constants decrease by increasing Ueff , which
is a consequence of attenuating the hopping amplitude of
neighboring d electrons at the expense of enlarging the on-site
Coulomb repulsion.

To check how the exchange constants depend on the
method, we employ the LAPW method and compare its
results to those obtained by PAW. For GGA (i.e., U = 0) there
is a 10% (in average) discrepancy in the exchange constants
between the two methods, which is reasonable. We repeat the
LAPW calculation using GGA+U . It is worth mentioning
that the GGA+U implementation in the FLEUR LAWP code
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TABLE I. Obtained exchange constants (meV) and Néel temperature TN (K) at different values of the Hubbard parameter (eV) for
experimental and optimized crystal structures of Sr2NiWO6 within the PAW and LAPW methods. The calculations (PAW/GGA + U ) with
Ueff = 0, 5, 6, and 7 eV were done in the experimental structure and the one with Ueff = 4.72 eV corresponds to the optimized structure. All of
the LAPW calculations have been done by using the experimental structure. The last row indicates the INS results for the exchange parameters
[20]. For each exchange parameter set (except for the INS results), TN is derived from MC simulations.

Ueff (eV) J1 (meV) J1c (meV) J2 (meV) J2c (meV) TN (K)

PAW 0 −0.36 −0.34 −8.06 −9.07 139
5 −0.16 −0.12 −3.06 −3.45 52
6 −0.14 −0.10 −2.52 −2.83 43
7 −0.11 −0.08 −2.05 −2.30 35

4.72 −0.24 −0.05 −2.44 −2.90 43
LAPW 0 −0.54 −0.47 −8.22 −10.18 146

5 (U = 6.0, JH=1.0) −0.27 −0.18 −1.87 −2.90 36
Expt. (INS) [20] −0.02 ± 0.08 −1.81 ± 0.09 54 [18,19]

is based on Liechtenstein’s approach [30], which includes two
parameters: U as the on-site Coulomb repulsion and JH as the
on-site (Hund’s) exchange. However, in the PAW/GGA+U
method we employ Dudarev’s approach [25], which uses only
one parameter, i.e., Ueff . Generally, the relationship between
Ueff , U , and JH is Ueff = U − JH . Knowing that in many
oxides JH ∼ 1 eV [31,32], in this work we set JH to 1 eV. In
principle, one has to calculate U and JH in LAPW/GGA+U ,
but as a rough approximation we use U = Ueff + JH , where
Ueff is the PAW value. The exchange parameters obtained
by LAPW/GGA+U (U = 6.0, JH = 1.0 eV) are reported in
Table I. These results are comparable with those obtained by
PAW when Ueff = 5–6 eV is used.

Linear spin-wave (LSW) fitting of the excitation spectrum
obtained by the inelastic neutron scattering (INS) experiment
results in J1 ≈ −0.02 meV and J2 ≈ −1.81 meV [20,21]. The
discrepancy between our result and LSW comes from the lin-
ear approximation in LSW, which yields an error of the order
of 1/S (which for S = 1 could be large). We will further
discuss the INS result in Sec. III B.

Now we consider the biquadratic interaction between the
NN along the inter-ab planes. The dependence of the total
energy on the angle between the Ni magnetic moments reveals
if there is a biquadratic interaction in this compound. The
Ni+2 ions in Sr2NiWO6 are located in the lattice points
of two tetragonal sublattices shifted by (a/2, a/2, c/2). To
calculate the biquadratic coupling constants Bi j , starting from
a FM configuration, we compute the total energy of the
magnetic configurations in which the directions of the mag-
netic moments in these two sublattices are rotated by the
angle θ .

Figure 3 presents the variation of energy [�E = E (θ ) −
E (θ = 90◦)] for GGA (i.e., Ueff = 0) and GGA+U (Ueff =
5 eV) with the experimental structure. The �E -θ curve can
be well fitted by the function f (x) = 8(B cos2 θ − J1c cos θ ),
which comes from the spin Hamiltonian containing only the
inter-ab plane NN Heisenberg and biquadratic interactions
(the NNN interactions do not have any contribution in �E ).
As a result, there is a biquadratic interaction in Sr2NiWO6 in
both GGA and GGA+U . The biquadratic coupling constant
is negative and its value is B ≈ −0.03 and −0.04 meV for
Ueff = 0 and 5 eV, respectively. Similar results are obtained if
we use the optimized crystal structure with Ueff = 4.72 eV.

Finally, we investigate the single-ion anisotropy arising
from the spin-orbit effect. The single-ion term can be written
as �

∑
i(n̂i · d̂)2, where d̂ denotes the easy-axis direction.

We assume that d̂ is along the lattice c axis (see Fig. 1).
Using GGA+U+SOC with Ueff = 5, we calculated the total
energy for the FM spin configuration as the angle θ (the
angle between the magnetic moment direction and the z axis)
varies from 0 to π . Figure 4 shows the variation of �E vs θ .
This figure represents that the minimum energy is achieved at
θ = 0. The value of � from this calculation is ≈ − 0.05 meV,
whose sign indicates that the z axis is indeed an easy axis.
We also checked that the total energy is independent of
the azimuthal angle φ. It should be noted that the two-spin
Ising anisotropy (JzSi,zS j,z) may make a contribution to the
energy difference curve in Fig. 4. Nevertheless, it is hard
to separate its contribution since both single-ion and Ising
anisotropy terms have the same angular dependence for a
uniform rotation of the spin direction. Due to this limitation
we assign it totally to the single-ion anisotropy.

FIG. 3. Total energy vs rotational angle θ (the angle between the
magnetic moments of the two tetragonal sublattices). The reference
of energy is set to θ = 90◦. The dashed line denotes the fit to the data
using the function f (x) = 8(B cos2 θ − J1c cos θ ).
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FIG. 4. Total energy vs rotational angle θ with respect to the
lattice c axis within GGA+U+SOC. The reference of energy is set
to θ = 0◦.

B. Monte Carlo simulation

To investigate the finite-temperature behavior of the spin
Hamiltonian, we carry out classical MC simulations, using the
coupling constants obtained by Ueff = 0, 5, 6, and 7 eV in the
experimental and Ueff = 4.72 eV in the optimized structure.
It is found that all the spin Hamiltonians, containing NN and
NNN Heisenberg couplings (given in Table I) and NN inter-
ab plane biquadratic terms (B = J1c), in both experimental
and optimized structures, and the exchange couplings show
a transition to an AFM-II ordering with the Néel temperatures
(TN ) given in Table I. Comparing the measured TN ≈ 54 K
[18,19], we find that taking Ueff ≈ 5 eV would be fine choice
for the experimental structure. Moreover, in the optimized
structure, the TN obtained by the SCLR value Ueff = 4.72 eV
is in good agreement with the experimentally measured value.
The SCLR method gives reasonable results for the compounds
whose bonds have a high ionic character. Using the CRITIC2
code [33,34], we find the following valence state based on
a Bader charge analysis: Sr2

+1.60Ni+1.39W+3.00O6
−1.26. The

charge analysis shows that the nature of the Ni-O bonds in
Sr2NiWO6 is predominantly ionic, which is the reason that
SCLR works for this compound.

The exchange constants obtained by INS result in TN =
34 K in a MC simulation which is 40% less than experimental
value TN (54 K). This discrepancy, as already discussed, could
be due to using the LSW for S = 1 which underestimates the
value of J2.

It should be mentioned that the biquadratic and single-ion
interactions do not have much of an effect on TN , nevertheless,
we will show in the following that they have an essential role
in singling out a collinear spin configuration.

To gain insight into the low-temperature magnetic ordering
in the MC simulations, we calculate the average spin-spin
correlation at T = 4 K. Figure 5 represents the averages of
the products of the neighboring spins (〈Si · S j〉) and also their
absolute values (〈|Si · S j |〉) for the spin Hamiltonian given
by the couplings obtained by Ueff = 5 eV. As can be seen
from this figure, regardless of the absence or presence of the
biquadratic and single-ion interactions, 〈Si · S j〉 is ≈0 for both
intra- and inter-ab plane NN spins and ≈1 for all NNN spins.

-1
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-1<|Si . Sj|>

-1
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FIG. 5. Average (absolute) spin-spin correlation of intra- and
inter- ab plane NN and NNN obtained by MC simulations at T =
4 K with the derived exchange parameters using Ueff = 5 eV.

However, for the NN spins the value of 〈|Si · S j |〉 is less than 1
(≈0.5) in the absence of a biquadratic term or single-ion term
and about 1 when including one or both of these interactions
(B ≈ −0.04, � ≈ −0.05 eV). These calculations show that
when both B and � are zero, the magnetic moments have
the freedom to rotate with respect to their nearest neighbors,
however, when either B or � is turned on, they lose their
freedom and fix their directions parallel or antiparallel to their
neighbors, hence stabilizing the collinear configuration AFM-
II. Indeed, the freedom of the magnetic moments to rotate
would give rise to a residual entropy at low temperatures,
however, the experimental results do not show such an entropy
[19].

Our MC simulations show that the ground state of
Sr2NiWO6 is doubly degenerate. This can be verified by
calculating the elastic neutron scattering structure function
given by

S(q) =
∑
i; j

〈(
Si − Si · q

q · q
q
)

·
(

S j − S j · q
q · q

q
)〉

× exp[iq · (Ri − R j )]. (2)

Indeed, different MC runs end in two collinear spin con-
figurations AFM-II and AFM-IIb illustrated in Fig. 6. The
difference between these two configurations is the rotation of
the (0,0,2) planes (highlighted in gray) by 90◦ with respect
to the (0,0,1) planes along the c direction. The right panels
in Fig. 6 show the density plots of S(q) for these two spin
configurations. The main difference between the pattern of
S(q) for these two spin configurations is the elimination of
some Bragg peaks in AFM-II.

While AFM-II and AFM-IIb are classically degenerate, it
has been shown that in a large S limit the quantum effects lift
the degeneracy of these two magnetic configurations in favor
of AFM-II [35].
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FIG. 6. A schematic of the type-II antiferromagnetic (AFM-II)
and type-IIb antiferromagnetic (AFM-IIb) ordering and their MC
neutron structure factor S(q) in the (0hl ), (h0l ), (lhh), and (hlh)
planes at T = 4 K by including the Heisenberg, biquadratic, and
anisotropy terms in the spin Hamiltonian which is derived from
GGA+U (Ueff = 5 eV).

IV. CONCLUSIONS

In summary, we studied the magnetic interactions and ther-
modynamic properties of Sr2NiWO6, using ab initio GGA and
GGA+U calculations and classical Monte Carlo simulations.
We found that interactions of the next-nearest neighbors in
the intra- and inter-ab plane, the biquadratic interaction be-
tween the inter-ab plane nearest neighbors, and the magnetic
anisotropy along the ẑ are the key players in determining
the magnetic ordering of this compound. Our results show
that the classical ground state of Sr2NiWO6 has a double
degeneracy denoted by AFM-II and AFM-IIb. The elastic
neutron scattering structure factors corresponding to these
two magnetic configurations were calculated and presented as
reliable theoretical references for the experimental refinement
of the true magnetic ground state of this compound by using
neutron scattering experiments.
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TABLE II. The total energy difference of different magnetic
configurations (meV/f.u.) with respect to the ferromagnetic con-
figuration within GGA+U/PAW and the Heisenberg model. For
GGA+U/PAW, we used an optimized structure with Ueff = 4.72 eV.
For the Heisenberg model, we used exchange parameters from an
optimized structure of GGA+U/PAW with Ueff = 4.72 eV.

Method GGA+U/PAW Heisenberg model

AFM-I − 0.544 − 0.368
AFM-II − 16.264 − 16.217
AFM-III − 7.068 − 6.954
AFM-IV − 1.071 − 1.147
AFM-V − 5.848 − 5.991
AFM-VI − 10.440 − 10.410
AFM-VII − 5.759 − 5.778
AFM-VIII − 5.544 − 5.584
AFM-IX − 7.956 − 7.974
AFM-X − 2.817 − 2.953
AFM-XI − 3.051 − 3.087

APPENDIX: DETAILS ABOUT THE TOTAL ENERGIES
OF ALL OUR CONFIGURATIONS

The total energies for eight formula units without consider-
ing the nonmagnetic part, by the Heisenberg Hamiltonian for
ferromagnetic ordering, can be written as

EFM = (32J1 + 64J1c + 32J2 + 16J2c)S2, (A1)

and for the considered AFM orderings as

EI = (32J1 − 64J1c + 32J2 + 16J2c)S2,

EII = (0J1 + 0J1c − 32J2 − 16J2c)S2,

EIII = (−32J1 + 0J1c + 32J2 − 16J2c)S2,

EIV = (−32J1 + 0J1c + 32J2 + 16J2c)S2,

EV = (32J1 + 0J1c + 32J2 − 16J2c)S2,

EVI = (0J1 + 0J1c − 32J2 + 16J2c)S2,

EVII = (−16J1 + 0J1c + 0J2 + 16J2c)S2,

EVIII = (0J1 − 16J1c + 0J2 + 16J2c)S2,

EIX = (0J1 + 0J1c − 16J2 + 16J2c)S2,

EX = (16J1 − 32J1c + 16J2 + 16J2c)S2,

EXI = (32J1 + 0J1c + 32J2 + 0J2c)S2.

In Table II we gather and compare the GGA+U/PAW total
energies with their counterpart Heisenberg Hamiltonians. The
mean absolute error of the Heisenberg Hamiltonian energy
with respect to the GGA+U/PAW total energy is about
0.07 meV/f.u.
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