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Quantum and classical behavior of spin-S Kitaev models in the anisotropic limit
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We study low-energy properties of spin-S Kitaev models in an anisotropic limit. The effective form of a local
conserved quantity is derived in the low-energy subspace. We find this is the same as that of S = 1/2 case for
the half-integer spins but shows a different form for the integer spins. Applying the perturbation theory to the
anisotropic Kitaev model, we obtain the effective Hamiltonian. In the integer spin case, the effective model is
equivalent to a free spin model under a uniform magnetic field, where quantum fluctuations are quenched. On
the other hand, in the half-integer case, the system is described by the toric code Hamiltonian, where quantum
fluctuations play a crucial role in the ground state. The boundary effect in the anisotropic Kitaev system is also
discussed.
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I. INTRODUCTION

Quantum spin liquid (QSL), which does not exhibit any
magnetic orders even at zero temperature, has attracted much
interest in condensed-matter physics [1–3]. One typical exam-
ple is a ground state of the one-dimensional quantum Heisen-
berg spin systems. In the simple one-dimensional spin chains,
the existence of the gap reflects the topological nature depen-
dent on the spin magnitude [4,5]; low-energy excitations are
gapless for the half-integer spins, while it is gapful for the inte-
ger spins. In fact, corresponding low-energy excitations have
been observed in real materials such as CuCl2 · 2N(C5D5)
(S = 1/2) [6] and Ni(C2H8N2)2NO2(ClO4) (S = 1) [7,8]. It
is also known that the topology of lattice structure in addition
to that associated with the spin magnitude affects ground-state
properties in the one-dimensional systems [9–14].

Another candidate for the QSL state has recently attracted
considerable attention in the two-dimensional quantum spin
model, the so-called the Kitaev model [15–17]. This model
describes the S = 1/2 quantum spin system with bond-
dependent Ising interactions on a honeycomb lattice [see
Fig. 1(a)]. Its ground state is exactly shown to be a QSL
state, where spin degrees of freedom are fractionalized into
itinerant Majorana fermions and Z2 fluxes. In the anisotropic
interaction limit of this model, it was also suggested that
topological computation with anyons can be implemented.
While the Kitaev model was originally introduced as a simple
model in the viewpoint of the quantum information, Jackeli
and Khaliullin [18] suggested that this model provides a
good description of magnetic interactions in certain insulating
magnets with strong spin-orbit couplings. A lot of works have
been done intensively in candidate materials of this model
such as A2IrO3(A = Na, Li) [19–28] and α-RuCl3 [29–40].
To understand how the Kitaev physics appears in these real
materials, additional interaction effects [24,41–46] and finite
temperature, dynamical, and transport properties have been
studied so far [47–73]. Moreover, other possibilities to gen-
erate the Kitaev coupling have been suggested beyond the
Jackeli-Khaliullin setup [74–76]. In contrast to the quantum

spin chains, it is still unclear whether or not the qualitative
difference between half-integer and integer spins appears in
ground-state properties of the generalized Kitaev models with
spin magnitude S. This is because the exact solvability is ab-
sent for the Kitaev models with spin S > 1/2 in the isotropic
case [77–81].

In this paper, we investigate spin-S Kitaev models in the
anisotropic limit, where the interactions in one of three kinds
of bonds are much larger than the others. This anisotropic
model has an advantage to study ground-state properties in
the thermodynamic limit correctly, in contrast to the isotropic
Kitaev model. Applying the perturbation expansion to the
anisotropic models, we derive the exactly solvable low-energy
effective Hamiltonian, where the qualitative difference in
spins plays a crucial role in ground-state properties. In the
half-integer spin cases, we obtain the toric code Hamiltonian
in the 8Sth-order perturbation, which is essentially the same as
the S = 1/2 case. On the other hand, the integer spin system is
simply represented by isolated spins under the magnetic field,
whose Hamiltonian is obtained by the 4Sth-order perturba-
tion. The effect of the open boundary is also addressed.

This paper is organized as follows. In Sec. II, we in-
troduce the spin-S Kitaev models and their local conserved
quantities. In Sec. III, we show the explicit representation of
the local conserved quantity in the low-energy subspace of
the anisotropic limit. We derive the effective Hamiltonians,
applying the perturbation theory to the spin-S Kitaev models
in Sec. IV. The summary is provided in the last section.

II. MODEL

We consider the Kitaev model on a honeycomb lattice,
which is given by the following Hamiltonian, as

H = −Jx

∑
〈i, j〉x

Sx
i Sx

j − Jy

∑
〈i, j〉y

Sy
i Sy

j − Jz

∑
〈i, j〉z

Sz
i Sz

j, (1)
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FIG. 1. (a) Lattice structure of the Kitaev model. x and y bonds
are expressed by the thin red and blue lines and z bonds by the
bold lines. (b) Lattice structure of the effective model in the large
Jz limit. Each site has the pseudospin σ̃ . The shaded areas in (a) and
(b) represent the fluxes Wp and W eff

p in the original and low-energy
effective Hilbert spaces, respectively.

where Sα
i is the α(=x, y, z) component of a spin-S operator

at the ith site. Jγ is the exchange constant on the γ (=x, y, z)
bonds, which connect the nearest-neighbor sites 〈i, j〉γ .

In Fig. 1(a), the Kitaev model is schematically depicted.
The exact solvability is lost in the general S cases, in contrast
to the S = 1/2 case. However, even in the general spin cases,
there also exists a local conserved quantity Wp for each
plaquette p, which is given by [77]

Wp = ∓ exp
[−iπ

(
Sx

1 + Sy
2 + Sz

3 + Sx
4 + Sy

5 + Sz
6

)]
, (2)

where the sign ∓ is chosen to be − for half-integer S and +
for integer S, and the site positions 1, 2, . . . , 6 on the plaquette
p are indicated in Fig. 1(a). From Eq. (2), W 2

p = 1 is satisfied,
and hence Wp is a Z2 conserved quantity.

In this study, we consider low-energy properties of the
Kitaev model in the anisotropic limit, |Jx|, |Jy| � Jz, where Jz

is positive. To this end, we split the Hamiltonian Eq. (1) into
two parts; H0 = −Jz

∑
〈i, j〉z

Sz
i Sz

j and V = −Jx
∑

〈i, j〉x
Sx

i Sx
j −

Jy
∑

〈i, j〉y
Sy

i Sy
j . The ground states for H0 are 2N/2-fold degen-

erate with E0 = −JzS2N/2, where N is the total number of
sites. The subspace of H0 belonging to the ground-state man-
ifold is represented by direct products of the fully polarized
states |+S〉i|+S〉 j or |−S〉i|−S〉 j at the dimer consisting of
sites i and j on the z bond, where |m〉i is the local eigenstate of
Sz

i with the eigenvalue m(=−S,−S + 1, . . . , S) at site i. This
allows us to introduce the pseudospin σ̃ on each z bond so that
σ̃ z

r |σ̃ 〉r = σ̃ |σ̃ 〉r with |↑̃〉r = |S〉i|S〉 j and |↓̃〉r = |−S〉i|−S〉 j ,
where σ̃ takes +1 (↑̃) or −1 (↓̃) and r specifies the location
of the z bond.

The ground-state degeneracy should be lifted by introduc-
ing the perturbed Hamiltonian V . In the conventional S = 1/2
Kitaev model, the low-energy effective Hamiltonian is derived
from the fourth-order perturbation expansion with respect to
Jx and Jy [15]:

HS=1/2
eff = − J2

x J2
y

64J3
z

∑
p

σ̃
y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p) (3)

= − J2
x J2

y

64J3
z

∑
p

W eff
p , (4)

where we have used the fact that the local conserved quan-
tity is represented by W eff

p = σ̃
y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p) [see

Fig. 1(b)]. This effective model is equivalent to the toric code
Hamiltonian under a unitary transformation associated with
suitable spin rotations [82,83]. It is known that the unusual
anyon excitations appear due to quantum fluctuations.

In the Kitaev models generalized to spin S > 1/2 cases, the
effective Hamiltonian is also represented by the pseudospin
operators, which are introduced above. However, it is non-
trivial whether or not, in the anisotropic limit, the generalized
Kitaev models are described by the local conserved quantities
and are reduced to the toric code Hamiltonian. In the follow-
ing sections, we consider the local conserved quantities and
effective Hamiltonians in the anisotropic limit to study the role
of the spin magnitude in the system.

III. EFFECTIVE-SPIN REPRESENTATION OF LOCAL
CONSERVED QUANTITIES

First, we focus on the local conserved quantity Wp, which
may provide a clue to understand the effective Hamilto-
nian of the generalized Kitaev model in the anisotropic
limit. In the low-energy subspace, neighboring spins on
each z bond are parallel and fully polarized along the z
direction. Therefore, the low-energy spin state on six sites
of the plaquette p [see Fig. 1(a)] should be specified as
|m1〉1|m1〉2|m3〉3|m4〉4|m4〉5|m6〉6, where m1, m3, m4, and m6

take +S or −S.
To identify the effective form of Wp in the low-energy

subspace, we introduce the rotations by the angle π about the
x, y, and z axis as

exp[−iπSx]|m〉 = e−iπS|−m〉, (5)

exp[−iπSy]|m〉 = e−iπ (m−S)|−m〉, (6)

exp[−iπSz]|m〉 = e−iπm|m〉. (7)

Using these relations, the operation of Wp for the spin states
on the honeycomb plaquette is given by

Wp|m1〉1|m1〉2|m3〉3|m4〉4|m4〉5|m6〉6

= ∓[e−iπm1 |−m1〉1|−m1〉2][e−iπm3 |m3〉3]

× [e−iπm4 |−m4〉3|−m4〉4][e−iπm6 |m6〉6], (8)

where mi (i = 1, 3, 4, 6) takes ±S. In the integer spin case,
the prefactor qi = exp[−iπmi] is independent of its local
magnetization mi as qi = (−1)S . On the other hand, this
clearly depends on mi as qi = (−1)Ssgn(mi) for half-integer
spins. Therefore, W eff

p obeys the following relation:

W eff
p |σ̃1〉left(p)|σ̃3〉top(p)|σ̃4〉right(p)|σ̃6〉bottom(p)

= C| − σ̃1〉left(p)|σ̃3〉top(p)| − σ̃4〉right(p)|σ̃6〉bottom(p), (9)

where the coefficient is given by C = −σ̃1σ̃3σ̃4σ̃6 for half-
integer spins, and C = 1 for integer spins. The pseudospin
representation of W eff

p is then obtained as

W eff
p =

{
σ̃

y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p) (S: half integer)

σ̃ x
left(p)σ̃

x
right(p) (S: integer)

.

(10)
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FIG. 2. Schematic picture for the perturbation bonds connected
with a certain z bond with the pseudospin σ̃ .

Note that, in the integer spin cases, the local conserved quan-
tity is represented only by two pseudospin operators although
it is defined in each plaquette. This is because the phase factor
for the spins at sites 3 and 6 disappears due to Eq. (7). An
important point is that the formulation Eq. (10) depends on
the spin magnitudes. This result should suggest a qualitative
difference even in the ground-state properties, which will be
discussed in the following section.

IV. EFFECTIVE MODEL

In this section, we consider the effective Hamiltonian of the
spin-S Kitaev model in the anisotropic limit. The low-energy
model is obtained via the perturbation procedure with respect
to the interactions on x and y bonds. The nth-order effective
Hamiltonian is formally given as

H(n)
eff = PV

(
1

E0 − H0
QV

)n−1

P + H̃(n)
eff , (11)

where Q(=1 − P) is the projection operator out of the low-
energy subspace. In this form, the first term represents contri-
butions from the perturbation processes, where any interme-
diate states do not belong to the low-energy subspace. On the
other hand, the second term H̃(n)

eff represents the contributions
from the other processes. In the perturbation expansions for
the spin-S Kitaev model, H̃(n)

eff merely gives a constant in the
lowest-order relevant contributions. Therefore, we focus on
the first term of Eq. (11) to obtain the form of the effective
Hamiltonian.

Before we proceed with our discussions, we consider the
key process of the perturbations. The perturbed Hamiltonian
V is composed of the x-bond interaction −JxSx

i Sx
j and y-bond

interaction −JySy
i Sy

j . A certain site i is connected by the x
and/or y bonds, as shown in Fig. 2. Since x and y components
of the spin operators are given as Sx = (S+ + S−)/2, Sy =
(S+ − S−)/2i, each bond increments or decrements the local
quantum number m by 1. This yields two constraints in the
possible perturbation processes.

(i) When the initial spin state at site i coincides with
the final one in the perturbation calculation, the number of
perturbation bonds connecting to the site i must be even. Note
that, when the number of the perturbations on y bonds among
them is odd, the phase factor appears depending on the initial
spin state |±S〉. In the case where this condition is satisfied at
either site i or j on a z-bond dimer r, the z component of the

FIG. 3. Schematic pictures for the perturbation process for the
S = 1 Kitaev model. x and y perturbation bonds are expressed by the
thin red and blue lines, and z bonds are by the bond lines. n-fold x
bonds (y bonds) mean that n times JxSx

i Sx
j (JySy

i Sy
j ) are considered in

the perturbation process.

pseudospin operator, σ̃ z
r , appears in the effective Hamiltonian.

Furthermore, using the above conditions, it is shown that
the interaction terms consisting of the product only of σ̃ z

do not appear in the effective Hamiltonian with finite-order
perturbations. Thus, there must be pseudospins flipped in the
perturbation processes. This consideration is also supported
from the viewpoint of the presence of the local conserved
quantity. In fact, the finite products

∏
r σ̃ z

r on linked z bond
dimers do not commute with all local conserved quantities
given in Eq. (10) in the low-energy subspace.

(ii) 2S-times perturbations on the bonds connecting to the
site i are, at least, needed to flip its spin state. This means that
the effective Hamiltonian should be described by the 4Sth per-
turbations since 2S-times perturbation interactions are needed
for both sites i and j on a z bond to flip the pseudospin.
We here note that, in the half-integer case, when 2S-times
perturbation interactions applied for the bonds connecting to
the site i, either iR or iL shown in Fig. 2 is connected by the
odd number of perturbation interactions. In this case, the con-
straint (i) is not satisfied in the site. Therefore, in the effective
Hamiltonian, such perturbation processes do not contribute to
the effective Hamiltonian within the 4Sth-order perturbations
and 8Sth-order perturbations should dominate the low-energy
effective Hamiltonian. On the other hand, in the integer spin
case, 2S is even, and thereby the low-energy Hamiltonian
should be described by the 4Sth-order perturbations. In the
following, taking into account the qualitative difference in
spins, we examine the effective Hamiltonians with S > 1/2.

Let us start with the S = 1 case as a first example for
integer spins. There are four kinds of perturbation processes
relevant for the effective Hamiltonian. Two processes are
schematically depicted in Figs. 3(a) and 3(b). Neighboring
spins on the z bond are connected by two perturbation bonds,
which flip the pseudospin defined on the z bond. On the
other hand, the perturbation process with four distinct bonds,
as shown in Fig. 3(c), never contributes to the effective
Hamiltonian since each site on the z bonds do not satisfy the
constraint (ii). This is in contrast to the case of the S = 1/2
Kitaev model, where such a process plays an essential role
in the effective Hamiltonian. By taking into account relevant
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FIG. 4. Excitation gap in the S = 1 system with Jy/Jx = 0.2.
Open circles represent the results obtained by the exact diagonal-
ization for the system with N = 12 and solid line the gap � of the
effective Hamiltonian given by Eq. (12).

perturbation processes for the S = 1 Kitaev model, the low-
energy effective Hamiltonian is then given as

HS=1
eff = −JS=1

eff

∑
r

σ̃ x
r , (12)

where JS=1
eff = 7(J2

x − J2
y )2/192J3

z . To confirm the validity of
the above effective Hamiltonian in the anisotropic limit, we
numerically calculate the lowest excitation gap � using the
exact diagonalization in the N = 12 cluster with Jy/Jx = 0.2.
The effective model Eq. (12) suggests that the excitation

energy is written by � = 2JS=1
eff . The comparison between

the numerical results and the analytical form is shown in
Fig. 4. These are in a good agreement particularly for the
anisotropic case with Jx � Jz. This analysis clearly indicates
that low-energy properties in the anisotropic region are well
described by the effective Hamiltonian Eq. (12).

This model is equivalent to an isolated spin model under
the magnetic field in the x direction and is not given by the
sum of W eff

p unlike the S = 1/2 case. Nevertheless, it is obvi-
ous that the effective Hamiltonian commutes with all W eff

p . We
wish to note that, in the case |Jx| = |Jy|, JS=1

eff vanishes from its
explicit form. In this case, the effective Hamiltonian is instead
obtained from higher-order perturbations; their examples are
schematically shown in Figs. 3(d) and 3(e). Nevertheless, the
sixth-order contributions are shown to vanish for the same
reason as the fourth-order one in the case with |Jx| = |Jy|. By
performing the perturbation expansion, we obtain the effective
model as follows:

HS=1
eff = −J̃

∑
p

σ̃ x
left(p)σ̃

x
right(p) + h̃

∑
r

σ̃ x
r , (13)

where J̃ and h̃ are effective exchange coupling and field,
which are given by the eighth order of |Jx| = |Jy|. This Hamil-
tonian is regarded as longitudinal field Ising spin chains.

By performing similar calculations for S = 2 and 3 cases,
we obtain the effective Hamiltonians as

HS
eff = −JS

eff

∑
r

σ̃ x
r , (14)

where

JS=2
eff = 18 604 521

(
J8

x + J8
y

) − 82 758 048
(
J6

x J2
y + J2

x J6
y

) + 129 273 554J4
x J4

y

5 138 022 400J7
z

, (15)

JS=3
eff =

(
J2

x − J2
y

)2

152 769 160 756 403 896 320 000J11
z

[
36 052 814 083 126 422 740

(
J8

x + J8
y

)
− 176 028 114 277 347 622 010

(
J6

x J2
y + J2

x J6
y

) + 287 126 525 350 219 384 887J4
x J4

y

]
. (16)

The system can be regarded as isolated spins under the
magnetic field, which is essentially the same as the S = 1
system. Therefore, in the integer spin Kitaev models, quantum
fluctuations are quenched due to the anisotropy of interactions
and the system becomes classical in the limit. Namely, the
ground state is fully polarized for the σ̃ x direction and is
given as

|g〉 =
⊗
〈i, j〉z

1√
2

[|+S〉i|+S〉 j + |−S〉i|−S〉 j]. (17)

This is invariant with respect to time reversal and its exci-
tation energy is given by � = 2JS

eff . Note that, in the S = 2
case, the effective Hamiltonian never disappears even in the
|Jx| = |Jy| case, which is in contrast to the S = 1 and S = 3
cases.

To address this issue, we focus on the phase factor for
the perturbation processes in the integer spin cases. Figures 3
(a) and 3(b) show two of the relevant perturbation processes

in the S = 1 case. In these perturbation processes, a local
spin state for a certain site flips due to two x-bond interac-
tions [Fig. 3(a)] and y-bond interactions [Fig. 3(b)], which
lead to the contributions with different signs, J2

x and −J2
y ,

respectively. Therefore, the contribution is canceled out in the
case |Jx| = |Jy|. On the other hand, different behavior appears
in the S = 2 case. Figures 5(a)–5(c) show the perturbation
processes for the S = 2 case. The corresponding factors are
generally given as J4

x , −J2
x J2

y , and J4
y , which should lead

to finite contributions. Some relevant perturbation processes
for the S = 3 case are shown in Figs. 5(d)–5(g). According
to the above discussions, these perturbation processes yield
J6

x , −J4
x J2

y , J2
x J4

y , and −J6
y , respectively. Therefore, they are

exactly canceled out in the case |Jx| = |Jy|. In the odd spin
S case with |Jx| = |Jy|, we have confirmed that the effective
Hamiltonian is generally described by Eq. (13), where J̃ (h̃)
are given by 8Sth [(4S + 4)th] order of |Jx| = |Jy|.

Next, we consider the S = 3/2 spin model, as an
example for half-integer spins. As mentioned before, the
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FIG. 5. Examples of perturbation processes in the integer spin
Kitaev models: (a)–(c) for S = 2 and (d)–(g) for S = 3.

lowest order contribution is of 8Sth order. Five of these
processes are schematically shown in Fig. 6. First, we consider
the perturbation process shown in Fig. 6(a). In this process,
two pseudospins on each z bond are flipped since three
perturbations are applied to the x and/or y bonds connected
to them. On the other hand, the top and bottom sites of the
hexagon in Fig. 6 contribute as σ̃ z in the effective Hamiltonian
due to the constraint (i). Therefore, the process in Fig. 6(a)
is described by σ̃

y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p). Other possible

perturbation processes satisfying two constraints also have a
loop structure in the bond configuration, as shown in Fig. 6.
This is in contrast to that for the integer spin cases. By taking
into account all possible perturbation processes, we obtain the
effective Hamiltonian

HS=3/2
eff

= −[
3 214 648 723 397 092 084J6

x J6
y

+ 1 646 995 686 930 432 837 306J2
x J2

y

(
J2

x − J2
y

)4

FIG. 6. Example of sixth-order perturbation processes in the S =
3/2 Kitaev model.

FIG. 7. Coefficient of the effective Hamiltonian, JS
eff , as a func-

tion of θ = arctan(Jy/Jx ). Here, JS
eff is normalized by its maximum

JS
max, and JS

eff/JS
max does not depend on Jz.

+ 91 522 768 044 989 658 195J4
x J4

y

(
J2

x − J2
y

)2]
× 1

3 076 979 551 468 152 422 400 000J11
z

×
∑

p

σ̃
y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p). (18)

As seen above, we can expect that there exists a loop
structure for relevant perturbation processes in half-integer
spin Kitaev models. In the case, the effective Hamiltonian in
general should be given by

HS
eff = −JS

eff

∑
p

σ̃
y
left(p)σ̃

z
top(p)σ̃

y
right(p)σ̃

z
bottom(p) (19)

= −JS
eff

∑
p

W eff
p , (20)

where the coupling constant JS
eff is given in the 8Sth order with

respect to Jx and/or Jy. This model is essentially the same
as the low-energy Hamiltonian for S = 1/2, and quantum
fluctuations play a crucial role in the ground state. The low-
energy excitations are described by the anyons and the ground
state is 4g-fold degenerate due to the topological order, where
g is the genus of the surface [82].

We here discuss how the imbalance between the exchange
constants Jx and Jy affects the coupling constant of the effec-
tive Hamiltonians. We introduce the parameter θ so that Jx =
J cos θ and Jy = J sin θ , and examine the coupling constant
JS

eff normalized by its maximum, as shown in Fig. 7. First,
we focus on the integer spin Kitaev models. We find that the
coefficients have a maximum at θ = 0 and are finite except
for the case with θ = π/4 and odd S. In addition, nonmono-
tonic behavior appears in the integer spin system with S > 1,
and the coupling constant has a minimum around θ = 0.669
(0.626) for the S = 2 (3) system. As for the half-integer spin
cases, monotonic behavior appears in the S = 1/2 case, while
nonmonotonic behavior appears in the S = 3/2 case. It is
expected that the coupling constants are also positive in the
other S cases, which is consistent with the previous theoretical
work [77], where Wp is always unity in the ground state in the
original spin-S Kitaev models.
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FIG. 8. Lattice structures associated with (a) the armchair-type
and (b) zigzag-type edges. On the dotted bonds shown in (a), the
relevant contributions given in Eq. (21) appear.

We have considered the Kitaev model in the anisotropic
limit and have clarified that the qualitative difference of
the effective Hamiltonian appears between half-integer and
integer spins. In the classical spin limit with S → ∞, infinite-
order perturbation processes are needed to derive the effective
Hamiltonian in the anisotropic limit. Therefore, it is difficult
to address the connection between the present results and
those in the classical spin limit discussed in Ref. [77].

Before closing the section, we would like to discuss how
the boundary of the lattice affects ground-state properties in
the Kitaev model. Here, we consider armchair and zigzag
type edges, as shown in Fig. 8. As discussed in the previous
section, we have considered the effective Hamiltonian via the
virtual processes. Open boundary conditions may rule out
some perturbation processes, leading to peculiar boundary
effects in the effective Hamiltonian. In particular, boundary
contributions play an essential role for the odd-spin systems
with |Jx| = |Jy|. When the system has the armchair type edge,
the lack of some perturbation process induces the 4Sth-order
perturbations for the pseudospins on the edge. In fact, for z
bonds on the right edge in Fig. 8(a), the perturbation process
shown in Fig. 3(a) is ruled out. Therefore, in the effective
Hamiltonian, the dominant 4Sth perturbations appear around
the edges, while the effective Hamiltonian in the bulk is given
by higher-order perturbations. In this case, the lowest-order
effective Hamiltonian is given as

Heff = JS
edge

∑
r∈edge

σ̃ x
r , (21)

where JS
edge ∼ O(J2S

x J2S
y /J4S−1

z ). Namely, in the S = 1
case, the effective coupling constant is given by JS=1

edge =
7J2

x J2
y /(192J3

z ). On the other hand, around the boundary with
the zigzag structure, the above boundary term does not appear
because of the following reason. For example, if we focus
on a right edge in the S = 1 Kitaev model [see Fig. 8(b)],
two perturbation processes shown in Figs. 3(a) and 3(b)
are allowed and these contributions are canceled out in the

|Jx| = |Jy| case. Therefore, such an open boundary leads to no
drastic change in the Kitaev model with zigzag edges.

V. SUMMARY

We have investigated low-energy properties of the
anisotropic limit of the spin-S Kitaev model. We have ob-
tained low-energy representation of a local conserved quan-
tity, which should play a key role in stabilizing the quantum
spin-liquid state. It has been found that the effective form
of the local conserved quantity for the half-integer spins
is different from that for the integer spins. Applying the
perturbation theory to the anisotropic Kitaev model, we have
obtained the effective Hamiltonian. In the integer spin case,
the effective model is given by a noninteracting spin model
under a uniform magnetic field, which is a classical system
without quantum fluctuation. Therefore, the ground state is
nondegenerate in this case. On the other hand, in the half-
integer case, the system is described by the Hamiltonian of the
toric code, where quantum fluctuations in pseudospins play a
crucial role in the ground state. In this case, nontrivial ground
states appear due to the topological order.

The effective Hamiltonian is given by the 4Sth (8Sth)-order
perturbation expansion in the integer (half integer) spin Kitaev
model in the anisotropic limit. Therefore, its energy scale is
much lower than the exchange coupling Jz. This means that
low-energy physics described by the effective Hamiltonian
appears at very low temperatures. This is consistent with
the numerical results for the anisotropic Kitaev model [80],
where the clear plateau at S = 1

2 ln 2 appears in the entropy of
the anisotropic system. Unfortunately, there are no candidate
materials described by the spin-S Kitaev model beyond S =
1/2 systems, to the best of our knowledge. However, using
first-principle calculations, spin-1/2 Kitaev materials have
been suggested in addition to iridium and ruthenium com-
pounds [74–76]. Therefore, we believe that higher spin Kitaev
materials have a chance to be synthesized, which can exhibit
interesting low-temperature magnetic properties suggested in
the present results.

We have clarified how the qualitative difference between
integer and half-integer spins appears in the effective Hamil-
tonian describing low-energy properties. The spin dependence
in isotropic spin-S Kitaev models and their implementation
in real materials remain interesting problems, which are now
under consideration.
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