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Magnetochiral nonreciprocity of spin wave damping in long-period structures
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The spin wave in long-periodic spiral magnetic structures demonstrates the so-called magnetochiral non-
reciprocity, i.e., a noninvariance of its dispersion when it propagates parallel and antiparallel to the chiral
wave vector. Motivated by recent experiments on systems with magnetochiral long-periodic orders, we studied
the effect of static spatially varying magnetization structure on spin wave relaxation. A description of an
intrinsic nonlocal magnetization relaxation is given within the scope of a phenomenological equation called the
Landau-Lifshitz-Baryakhtar equation (V. G. Bar’yakhtar, Zh. Eksp. Teor. Fiz. 87, 1501 (1984) [Sov. Phys. JETP
60, 863 (1984)]) for crystals of different symmetry. Spiral magnetic structures with a helicity step due to
competitive exchange interactions or due to the Dzyaloshinskii-Moriya interaction are considered, and related
dissipative functions are obtained. Within the general phenomenological approach, it is demonstrated that
magnetochiral nonreciprocity manifests itself in different nonlocal dampings of spin waves with opposite wave
vectors, as well. More fundamentally, we show that static but spatially varying magnetization causes a finite
damping of the Goldstone mode. Understanding the peculiar nonlocal relaxation of the magnetization precession
in materials with spatially varying magnetic order is important for applications of such magnets in magnonics
and spintronics.
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I. INTRODUCTION

Spin wave damping has been extensively studied in con-
nection with the ferromagnetic resonance (FMR) in garnets
(see, e.g., [1]). It has been established with detailed experi-
ments that, on a phenomenological level, the intrinsic damp-
ing in magnetic dielectrics is well described by the Landau-
Lifshitz-Gilbert (LLG) equation, where magnetic damping
is parametrized by the Gilbert constant αG [2,3]. The FMR
provides a way to measure the damping αG from the FMR
linewidth [4], and the LLG equation is useful for numerical
simulation of magnetization dynamics on the basis of the
continuous-medium approximation and for interpretation of
experiments. However, the research activity in spintronics
with the purpose to manipulate magnetization by electric
current raises a question about the role of nonlocal torque
generated by the nonuniform magnetization ordering when
an electron current flows through a spatially and temporally
varying magnetization background M(r, t ). It was shown
[5–8] that for systems with spatially and temporally varying
magnetization M(r, t ) the dynamics equation should include
not only a conventional precession term due to an effective
field Heff and a phenomenological damping term of first
order in the magnetization time derivative (adiabatic torque
∼M× ∂M

∂t ) but also a nonadiabatic spin torque generated by a
spatially nonuniform magnetization vector ∼M × ∂M

∂r .
Magnetization dynamics in materials with spatially varying

magnetic structures is currently an area of considerable inter-
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est for magnonics and spintronics, where the primary goal is
to create devices based on manipulation and transportation of
spin current with minimal losses [9,10]. Whereas materials
with inhomogeneous magnetic order have been known for a
long time, some features of spin wave propagation in them
still remain insufficiently investigated. In particular, a phe-
nomenological description of the magnetization precession
intrinsic damping in materials with a long-periodic magnetic
order still remains not fully understood. The point is that the
nonadiabatic spin torque generated by a spatially nonuniform
magnetization vector affects not only the magnon energy
but the magnetization precession damping as well. Thus, the
magnetization dynamic equation should include not only the
relaxation term αG as a constant parameter (as it was used,
e.g., in Refs. [11–15]) but the spin wave damping due to
nonadiabatic effects (nonlocal torques) generated by a spa-
tially nonuniform magnetization vector. In general, this is
an example of the connection between the space geometry
and dynamics, and the conversion of magnetization spatial
structure into dynamical characteristics of the system is being
actively discussed within the “s-d” model [5–8].

Recently, there has been much interest in materials with
inhomogeneous magnetochiral magnetic structures. For ex-
ample, in magnetic materials with competitive exchange fer-
romagnetic and antiferromagnetic interactions, incommen-
surate or amplitude-modulated magnetic structures can be
preferable. Typically, incommensurate magnetic structures
have periodicity that does not match the periodicity of the
crystalline lattice. A classic example of a long-periodic struc-
ture is the spiral magnetic ordering. Rare-earth intermetallic
compounds, where the interionic exchange interaction is the

2469-9950/2019/99(10)/104407(9) 104407-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.104407&domain=pdf&date_stamp=2019-03-06
http://www.jetp.ac.ru/cgi-bin/dn/e_060_04_0863.pdf
https://doi.org/10.1103/PhysRevB.99.104407


BAR’YAKHTAR, DANILEVICH, AND KRIVORUCHKO PHYSICAL REVIEW B 99, 104407 (2019)

oscillatory Ruderman-Kittel-Kasuya-Yoshida coupling, can
exhibit modulated or helical magnetic structures at finite
temperature [16,17]. An example of another origin for long-
periodic structures is the systems with both broken inversion
symmetry and strong spin-orbit coupling. In this case, the
antisymmetric component of exchange interaction, known as
the Dzyaloshinskii-Moriya (DM) interaction [18], may lead
to chiral long-range magnetic order. In chiral magnets, we
generally get in touch with an asymmetric spin wave dis-
persion ω(k) �= ω(−k) [19,20]. As a consequence, magnons
with wave vectors k and −k possess different group veloc-
ities, giving rise to nonreciprocal magnon propagation. The
bulk DM interaction is determined by the lattice symmetry,
while the interfacial DM interaction can occur at coupled
magnetic interfaces [11]. It is particularly strong at the in-
terface between a ferromagnet and a normal metal having
strong spin-orbit coupling [11]. The DM interaction has been
studied mostly for the B20 structures such as MnAu, MnSi
[21,22], FeCoSi [23,24], and FeGe [25,26]. Nonreciprocal
magnon propagation has been experimentally demonstrated
for LiFe5O8 [27], FeGe, and Co-Zn-Mn alloys [28] using
spin wave spectroscopy. The nonreciprocal character of both
magnon propagation and damping was detected and inves-
tigated in the noncentrosymmetric ferromagnet Cu2OSeO3

by employing spin wave spectroscopy [12,13,29] and in the
antiferromagnet α-Cu2V2O7 [30] by employing the magnonic
Faraday effect. In these crystals, nonreciprocal magnons are
due to the incompatibility between the exchange and an-
tisymmetric DM interactions, which results in helical spin
dynamics. Just recently, the nonreciprocal magnon spectrum
was observed in the chiral magnet MnSi [31,32]. Asymmetry
of the magnon dispersion relation and the magnon lifetime
in their counterpropagating directions, due to an interfacial
DM interaction, was recently directly observed in a multilayer
film [14].

The nonreciprocity leads to differences in propagation of
spin waves with the same energy but opposite wave vec-
tors, namely, to differences in amplitude, phase and group
velocities, the wave refractive index, etc. Understanding the
specifics is important for many applications of such materials
in magnonics and spintronics. For example, the nature of
the magnetization precession relaxation and of the associated
spin wave damping is highly important for both fundamen-
tal physics and the efficiency of any nanomagnetic devices.
These and other features are fundamental for the creation
of functional elements of quantum information processing
based on the ideas of magnonics and magnetic spintronics
[9,10,33–36]. So recent research activity in magnonics to
manipulate quasiparticles associated with the magnetization
dynamics, known as spin waves or magnons, renewed inter-
est in the specifics of magnetization precession in magnetic
dielectric materials with nonuniform ground-state configura-
tions of both the magnetization and effective magnetic fields.

In this paper, we theoretically investigate the peculiar-
ities of the magnetization precession damping in materi-
als with a long-periodic magnetic order. To establish the
dominant/specific intrinsic damping mechanisms for these
systems with nonlocal torque, we used the general phe-
nomenological approach to relaxation phenomena in magnetic
materials developed previously in Refs. [37,38] (see also

[39]). Here, we have generalized this theory to systems with
a long-periodic magnetization order. It is shown that the
presence of a preferential direction in the magnetic structure
not only leads to a difference in the phase velocities of
volume spin waves with given energy but also manifests itself
in different linewidths of these spin waves with opposite
wave vector directions. The magnetochiral nonreciprocity of
dynamic and damping characteristics of long-periodic mag-
netic structures should be taken into account when magnetic
properties of these materials are being predicted and tailored.

II. DISSIPATIVE FUNCTION OF LONG-PERIODIC
MAGNETS

As is known, the general relation leading to the LLG
equation is the torque equation of the form

∂M
∂t

= gM × δF

δM
+ R, (1)

where F is the total energy of the system, M0 is the saturation
magnetization, g stands for the g factor, and R is the relaxation
term. In a standard procedure to solve Eq. (1), one first needs
to solve the corresponding static equations obtained by setting
the time derivatives to zero and thereby to find the static
spatial distribution of the magnetization. In general (e.g., as
in the case of a long-periodic spiral structure; see examples
below), the static distribution of equilibrium magnetization
is nonuniform in both its value and direction. With the static
solution at hand, the dynamical problem is solved to find the
temporal evolution of the magnetization value and direction
producing its certain perturbation. In the standard LLG model
[2,3] the relaxation term is written as αGM× ∂M

∂t . But one
should pay attention to the fact that the standard LLG is
a phenomenological equation utilized only within the local
approximation for torques and it is not suitable for studies
including nonadiabatic effects (i.e., nonlocal torques; see the
reviews [7,8] for a more complete discussion). The equation
for magnetization dynamics in the case of nonadiabatic spin
torque generated by a spatially nonuniform magnetization
usually is written as [5–8]

∂M
∂t

= −gM × Heff + αGM×∂M
∂t

+ T, (2)

where T stands for a nonadiabatic spin torque and Heff is the
effective magnetic field. But this approach is based just on
general physical considerations and does not have a general-
ized physical theory.

Reference [37] provided the basic principles of building
a general theory of the description of relaxation processes
in magnets. Let us recall the main distinct features of the
Landau-Lifshitz-Baryakhtar (LLBar) approach [37,38] to
construct a phenomenological dissipative function. In the
LLBar approach, to analyze Eq. (1) at this step, the parameter
to characterize the quasiequilibrium state is chosen to be
the effective magnetic field Heff (r, t ), not the magnetization
M(r, t ). Indeed, the effective field is more convenient than
the magnetization because it is zero in the equilibrium
state and small for all actual nonequilibrium states close to
the ground state. The effect of relaxation terms is that, at
each moment of time, the magnetization direction relaxes
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towards the instantaneous direction of ef-
fective magnetic field, while the magneti-
zation value relaxes towards that prescribed
by the instantaneous longitudinal effective magnetic field.
Thus, within the LLBar framework, the relaxation term
R should be considered a functional of Heff (r, t ), too.
Namely, R = δQ/δHeff , where Q = ∫

q(Heff )dV is the total
dissipative function of the system. For states close to the
ground state, one can expand the relaxation term R(Heff ) in a
power series in Heff (r, t ). Naturally, the dissipative function
density q(Heff ) must take into account the symmetry and
conservation laws for magnetization. As a result, this should
be constructed as a functional of the effective magnetic field
in the form

q(Heff ) = 1

2
λr

ikH eff
i H eff

k + 1

2
λex

ik

∂Heff

∂xi

∂Heff

∂xk
+ · · · , (3)

where the parameters λr
ik , λex

ik , etc., are the relativistic and
exchange relaxation damping constants and generally are
tensors constructed according to the crystalline symmetry.

Traditionally, the intrinsic Gilbert damping is considered
to have a relativistic origin, and as shown from first-principles
calculations [40], it does arise from the spin-orbit coupling.
Phenomenologically, the Gilbert damping is local; that is,
the damping due to the nonuniform magnetization dynamics
is ignored [3]. Taking into account the exchange terms in
the dissipative function density q(Heff ) and ∼λex

ik , we de-
scribe the nonlocal damping due to the nonuniform effec-
tive field [41]. Thus, in the LLBar approach [37,38], the
torques generated by the nonuniform magnetization back-
ground (nonadiabatic/nonlocal torque) and by the time-
variable magnetization M(r, t ) (adiabatic/local torque) are
naturally taken into account on equal footing.

By definition, the effective magnetic field Heff (r, t ) is the
system’s total energy F variation with respect to magnetiza-
tion, taken with opposite sign, and it can be generally written
as

Heff = − δF

δM
= − ∂F

∂M
+ ∂

∂xi

∂F

∂ ∂M
∂xi

− ∂2

∂x2
i

∂F

∂ ∂2M
∂x2

i

+ · · · + (−1)n+1 ∂n

∂xn
i

∂F

∂ ∂nM
∂xn

i

. (4)

The expression for quasiequilibrium total energy (thermody-
namic potential) of a magnet in the state with magnetization
M(r, t ) at a given temperature is determined by integrating
the density of total magnetic thermodynamic potential over
the crystal volume V :

F =
∫

f
(
M, ∂M/∂xi

)
dV, (5)

where f (M, ∂M/∂xi ) is the total energy density for a magnet
with a given (e.g., spiral) magnetic structure.

Note the LLBar approach is based on the general phe-
nomenological principles of constructing the dissipative func-
tion in Refs. [42,43]. Namely, the dissipative function must be
developed according to the same principles as the quasiequi-
librium thermodynamic potential and must include terms of
the same nature as the total energy. It should be noted that the
constants included in the terms of the same nature have the

same origin. Actually, it could be concluded that relaxation
constants are proportional to corresponding constants from
the energy [37,38] (see also [39]).

For a system with a given dynamic symmetry, one must
also take into account the corresponding conservation laws,
for example, those of total spin for the exchange symmetry or
of total spin projection on a selected axis for a purely uniaxial
symmetry. Such an approach was used earlier to describe
the relaxation motion of different solitons, domain walls, and
Bloch points [41,44,45]. In particular, it was shown that the
lifetime and propagation length of short-wavelength magnons
in the presence of nonlocal damping could be much smaller
than those given by the LLG equation [41].

Below we consider, as an example, a system in which a
spiral type of magnetic order is realized. For definiteness, we
will assume that the magnetic structure under consideration is
a long-periodic modulation of a ferromagnetic state.

A. Exchange spiral

If the symmetry of a crystal does not allow the Lifshitz
invariants, which are linear spatial derivatives, the competition
between positive and negative exchange interactions in a
magnet is responsible for the appearance of the magnetization
order called the exchange spiral (see, e.g., Ref. [16]). The
density of the total magnetic energy of the exchange spiral
in the case of a uniaxial crystal and in the absence of external
magnetic field can be written as

f
(
M, ∂M/∂xi

) =
(
M2 − M2

0

)2

8χ||M2
0

+ 1

2
α

∂M
∂z

∂M
∂z

+ 1

2
α⊥

(
∂M
∂x

∂M
∂x

+ ∂M
∂y

∂M
∂y

)

+ 1

2
γ

∂2M
∂z2

∂2M
∂z2

− 1

2
K1M2

z − 1

4
K2M4

z .

(6)

Here, M0 stands for the saturation magnetization, and the first
term in this expression is the energy of the homogeneous
exchange interaction, which is characterized by a local lon-
gitudinal magnetic susceptibility χ|| [37,38]. The anisotropy
energy is described by the last two terms with the corre-
sponding uniaxial magnetic anisotropy constants K1 and K2.
The second, third, and fourth terms in Eq. (6) describe the
inhomogeneous exchange interaction, which is responsible for
the spiral structure formation. We will suppose that the corre-
sponding inhomogeneous exchange constants satisfy the con-
ditions α < 0, α⊥ > 0, γ > 0. This leads to an inhomogeneity
only in the direction of the Oz axis. In such magnets, the
following modulated magnetic structures can be realized: a
“simple spiral” (SS) and a “longitudinal spin wave”. In both
cases the spiral wave vector is k0 = (0, 0, k0 = √|α|/2γ ).

For the case of the exchange spiral structure with the
energy (6), the dissipative function takes the form

q(Heff ) = 1

2
λr

ikH eff
i H eff

k + 1

2
λex

ik

∂Heff

∂xi

∂Heff

∂xk

+ 1

2
λexs

ik

∂2Heff

∂x2
i

∂2Heff

∂x2
i

, (7)
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where λr
ik , λex

ik , and λexs
ik are tensors which characterize the

dissipative processes of relativistic (λr
ik) and exchange (λex

ik ,
λexs

ik ) natures. It is important to note that nonzero components
of these tensors are determined by the crystalline symmetry
[37,38]. In the case of energy represented by expression
(6), they will have the form λr

ik = diag(λr
11, λ

r
11, 0), λex

ik =
diag(λex

11, λ
ex
11, λ

ex
33), λexs

ik = diag(0, 0, λexs
33 ). As was said above,

relaxation constants λex
11 and λex

33 must be proportional α and
α⊥, respectively, and λexs

33 must be proportional to γ . Note
that if there are high-order derivatives in the system’s energy,
we must take into account magnetization derivatives in the
dissipation function up to this order, too. Thus, from Eq. (7),
it is easy to obtain the relaxation term in the form

R = λr
ikHeff − λex

ik

∂2Heff

∂xi∂xk
+ λexs

ik

∂4Heff

∂x2
i ∂x2

k

. (8)

We see that the presence of higher-order derivatives in the
dissipative function (7) leads to the appearance of the higher-
order spatial derivatives in the relaxation term of the LL
equation as well. These terms represent both the adiabatic
torque generated by the magnetization variation in time, gen-
erally considered the intrinsic Gilbert damping [the first term
in Eq. (8)], and the nonadiabatic torque generated by the
magnetization variation in space [last two terms in Eq. (8)].

B. Exchange-relativistic spiral

The competition between exchange and exchange-
relativistic anisotropic interactions is another cause for the
appearance of a spiral structure in magnets. In this case,
there are terms in the system’s energy that are linear in
magnetization derivatives, conventionally written as ∼MrotM
and describing the so-called DM interaction in the absence of
an inversion center in the crystal [18,46]. The magnetic energy
density of crystal now acquires linear derivatives and reads

f
(
M, ∂M/∂xi

) =
(
M2 − M2

0

)2

8χ||M2
0

+ 1

2
α

∂M
∂xi

∂M
∂xi

+ DMrotM

− 1

2
K1

(
M2

x M2
y + M2

x M2
z + M2

y M2
z

)
− 1

2
K2M2

x M2
y M2

z . (9)

At a strong enough DM interaction D, the presence of the
Lifshitz invariant MrotM leads to the appearance of a long-
wave modulation state, the so-called relativistic spiral. In
this case the modulated magnetic structure of the SS type is
realized, with the spiral wave vector k0 = (0, 0, k0 = D/α).
Here, the constant of inhomogeneous exchange interaction α

is positive α > 0, while the constant D which characterizes
the DM interaction magnitude can have any sign [18,47].

The density of the dissipative function of a magnet with a
spiral magnetic structure of exchange-relativistic origin takes
the form

q(Heff ) = 1

2
λr

ikH eff
i H eff

k + λnr
ik Heff rotHeff

+ 1

2
λex

ik

∂Heff

∂xi

∂Heff

∂xk
. (10)

Again, in accordance with the expression for magnetic energy
density, the tensors in the first and second terms must obey
the crystalline symmetry. Particularly, for a cubic crystal we
have λr

ik = diag(λr
11, λ

r
11, λ

r
11), λex

ik = diag(λex
11, λ

ex
11, λ

ex
11). The

tensor λnr
ik describes inhomogeneous relativistic interaction.

Its components are also chosen based on the correspond-
ing term in the energy density (9). In the simplest case,
when D is a constant, the tensor components will be λnr

ik =
diag(λnr

11, λ
nr
11, λ

nr
11), and λnr

11 must be proportional D. However,
it is possible [18,47] that only some of the MrotM compo-
nents should be taken into account in the energy (9). In this
case, only the corresponding components in the tensor λnr

ik are
nonzero.

In accordance with Eq. (10), the relaxation term in the LL
equation for the case of relativistic spiral reads

R = λr
ikHeff + 2λnr

ik rotHeff − λex
ik

∂2Heff

∂xi∂xk
. (11)

Equation (11) reveals directly that the damping term includes
the local damping (adiabatic torque ∼Heff ) and nonlocal
torque/damping generated by a spatially nonuniform mag-
netic order (nonadiabatic contributions ∼rotHeff and ∼ ∂2Heff

∂xi∂xk
).

Hence, the DM interaction modifies the magnon damping by
the term ∼rotHeff , which now contains linear derivatives and
thus is antisymmetric in the wave vector. As a result, the
presence of a preferential direction in the system will also be
manifested in different dampings of spin waves with opposite
wave vectors along the selected direction. From the relaxation
term expression for the exchange spiral, Eq. (8), the spin wave
damping nonreciprocity is not so directly evident, but it is
present there. We illustrate the obtained results with simple
examples.

III. SPIN WAVE DAMPING

A. Exchange-relativistic spiral

We start with the consideration of relativistic spiral struc-
tures due to the DM interaction which is among topical
issues today [11,12,14,15,47–49]. To simplify cumbersome
formulas for the dispersion law and damping of spin waves,
we will neglect fourth-order terms in magnetization in the
energy, Eq. (9). Propagation of a spin wave is considered
along the Oz axis of the magnet, so that the direction of the
magnetic oscillation wave vector k = (0, 0, k) coincides with
the direction of the spiral wave vector k0 = (0, 0, k0).

From the group-theoretical interpretation of the functional
(9) for a cubic crystal, the energy density reads

f (M, ∂M/∂xi )

= r
(
M+M− + M2

z

) + i
D

2

(
∂M+
∂z

M− − ∂M−
∂z

M+

)

+α

2

[
∂M+
∂z

∂M−
∂z

+
(

∂Mz

∂z

)2
]

, (12)

where r = −1/4χ|| and the components of the magnetization
vector are presented in the form M± = Mx ± iMy, Mz. Then,
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the dissipative function density q is

q = 2iλnr
11

(
∂H eff

−
∂z

H eff
+ − ∂H eff

+
∂z

H eff
−

)

+ 1

2
λex

33

[
∂H eff

+
∂z

∂H eff
−

∂z
+

(
∂H eff

z

∂z

)2
]

. (13)

Here, the relativistic part of the dissipative function is omitted
because the anisotropy terms in energy are neglected.

The equation of motion of the magnetic moment in the
component form is

∂M+
∂t

= ig
(
M+H eff

z − 2MzH
eff
−

) + R+,

∂M−
∂t

= −ig
(
M−H eff

z − 2MzH
eff
+

) + R−, (14)

∂Mz

∂t
= ig

(
M−H eff

− − M+H eff
+

) + Rz.

In the system (14), the effective magnetic field Heff can be
easily found from the energy, Eq. (12), using expression (4),
and the relaxation term R can be obtained similarly from
Eq. (13). To calculate the frequencies of spin waves, we
will consider small deviations from the equilibrium values
of magnetic moment M(r, t ) = M0(r) + m(r, t ) and also
represent them in terms of the Fourier components m(r, t ) ∼
exp[−i(ωt − kr)]. We have

M+ = M0+ + m+ = M0eik0z + m1eik0ze−i(ωt−kr),

M− = M0− + m− = M0e−ik0z + m2e−ik0zei(ωt−kr), (15)

Mz = 0 + mz = m3e−i(ωt−kr).

Here, k and ω are the wave vector and the angular frequency
of spin waves, respectively, and M0 stands for the saturation
magnetization. The factor exp(±ik0z) in the components of
magnetization vector describes a long-periodic spiral structure
with the modulation period 2π/k0. After substituting Eqs. (15)
into Eqs. (14) and their linearization, we obtain the system of
equations

iωm1 = L1Z1m1 + igM0
1m3,

iωm2 = L2Z2m2 − igM0
1m3, (16)

i2ωm3 = igM0
2m1 − igM0
3m2 + 2L3Z3m3,

where the quantities 
1 = [2Dk0 + α(k2 − k2
0 )], 
2 =

k[−2D + α(k + 2k0)], and 
3 = k[2D + α(k − 2k0)] deter-
mine the spin wave frequencies, while Z1 = [2r − 2D(k +
k0) + α(k + k0)2], Z2 = [2r + 2D(k − k0) + α(k − k0)2],
Z3 = (2r + αk2), L1 = [−2λnr

11(k + k0) + λex
33(k + k0)2],

L2 = [2λnr
11(k − k0) + λex

33(k − k0)2], and L3 = λex
33k2

characterize the spin wave damping. The spin wave dispersion
relation can be obtained from the system of equations (16),
and its general form can be written as

g2M2
0
1
2(iω − L1Z1) − (iω − L2Z2)(2ω2 + 2iω

−g2M2
0
1
2 − 2L1L3Z1Z3) = 0. (17)

Within a linear approximation in the relaxation tensor, the
dispersion law can be represented in the form

ωsw = ±
 + i�, (18)

FIG. 1. (a) Dispersion of the spin wave frequency and (b) spin
wave damping in the exchange-relativistic spirals. The dispersion
curves were computed for various values of the DM interaction.

where the spin wave frequency 
 is


 = 
(k, k0) = gM0

√

1(
2 + 
3), (18a)

and the spin wave damping � reads

� = �(k, k0)

= −1

2

(

2


2 + 
3
L1Z1 + 
3


2 + 
3
L2Z2 + L3Z3

)
. (18b)

The quadratic terms in the damping parameter omitted here
describe the decrease in spin wave frequency; they are cum-
bersome but small.

Note that the dispersion law (18) is obtained in the intrinsic
(rotated) frame of the spiral. To find the spectrum of spin
waves in the laboratory frame, one needs to do the transition
k −→ k′ − k0. In this case, the Goldstone mode arises in the
spectrum at k′ = k0. This Goldstone mode is associated with
the violation of the ground-state translational symmetry in the
direction of the k0 vector (for more details see, e.g., Ref. [16]).

The results of numerical calculations of the spin wave
spectrum of a relativistic spiral in the laboratory coordinate
system are shown in Fig. 1, where the dispersion of spin
wave frequency [Fig. 1(a)] and spin wave damping [Fig. 1(b)]
are shown for different values of the DM interaction. For
the material parameters to have such a structure occur we
used [12,14,15,49] g ≈ 2 × 107 Oe−1 s−1, M0 ≈ 104 Oe, α ≈
10−18 m2 (corresponding to A ≈ 10−11 J/m), D ≈ 10−10 m
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(≈10−3 J/m2), χ|| ≈ M0μB/kBTC , and TC ≈ 300 K; kB and
μB are the Boltzmann constant and the Bohr magneton,
respectively. The relaxation constants are roughly estimated
for the case of small damping. Stasinopoulos et al. found
for the insulating chiral magnet Cu2OSeO3 a remarkably
small Gilbert damping of about 10−4 [13]. For our effective
damping parameter we used the values λnr

11 = 10−4 m and
λex

33 = 10−10 m2.
As one can see in Fig. 1(a), if k′ −→ k0, the frequency

of the spin waves goes to zero, and in the vicinity of this
wave vector the energy of the spin wave exhibits almost linear
momentum dependence. But, as Fig. 1(b) shows, due to the
DM interaction, at k′ = k0(= D/α) the spin wave relaxation
stays finite, and the spin wave frequency ωsw becomes fully
imaginary. Hence, there is a nonzero spin wave damping of
the nonreciprocal magnons even for the Goldstone mode.
Namely, when k′ −→ k0 the spin wave damping is a function
of the spiral wave vector k0 modulus:

�k′−→k0 −→ −1

2

(
2r − 2Dk0 + αk2

0

)( − 2λnr
11k0 + λex

33k2
0

)
= D

2α

(
1

2χ||
+ D2

α

)(
λex

33
D

α
− 2λnr

11

)
. (19)

This result is sufficiently general and robust against the details
of the magnon scattering mechanism. Since the anisotropy
energy of relativistic nature (fourth-order terms in magneti-
zation) was not taken into account in expression (12) for the
total energy, the corresponding relativistic part was omitted
also in the dissipative function (13). If we take into account
the relativistic part of the dissipation, we obtain an additional
term, ( 1

2χ||
+ D2

α
)(λr

11), that corresponds to a standard LLG-
like part of the damping.

B. Exchange spiral

Let us now investigate the spin wave spectrum for the SS
structure that is realized if K1 < 0 in Eq. (6). As above, the
propagation of spin waves will be considered along the chiral
axis. Assuming the same simplifications as for the relativistic
spiral structure and using the M± and Mz variables, the energy
density for a system with exchange spiral structure reads

f (M, ∂M/∂xi )

= r
(
M+M− + M2

z

) + 1

2
α

[
∂M+
∂z

∂M−
∂z

+
(

∂Mz

∂z

)2
]

+ 1

2
γ

[
∂2M+
∂z2

∂2M−
∂z2

+
(

∂2Mz

∂z2

)2
]

− 1

2
K1M2

z , (20)

and the dissipative function density q is

q = 1

2
λr

11H eff
+ H eff

− + 1

2
λex

33

[
∂H eff

+
∂z

∂H eff
−

∂z
+

(
∂H eff

z

∂z

)2
]

+ 1

2
λexs

33

[
∂2H eff

+
∂z2

∂2H eff
−

∂z2
+

(
∂2H eff

z

∂z2

)2
]

. (21)

The effective magnetic field Heff can easily be found from
the energy (20) using expression (4), and the relaxation

FIG. 2. (a) Dispersion of the spin wave frequency and (b) spin
wave damping in the exchange spirals. The dispersion curves
were computed for various values of the inhomogeneous exchange
interaction.

term R can be obtained similarly from Eq. (8). After
substituting them into Eq. (14) and using approximation
(15), we can calculate the dispersion law of spin waves.
It also can be presented as Eq. (18) and dispersion
laws (18a) and (18b), but with different quantities. Now
we have 
1 = [−K1 + α(k2 − k2

0 ) + γ (k4 − k4
0 )], 
2 =

k(k + 2k0)[α + γ (2k2
0 + 2k0k + k2)], 
3(k0) = 
2(−k0),

Z1 = [2r + α(k + k0)2 + γ (k + k0)4], Z2(k0) = Z1(−k0),
Z3 = (2r − K1 + αk2 + γ k4), L1 = [λr

11 + λex
33(k + k0)2 +

λexs
33 (k + k0)4], L2(k0) = L1(−k0), and L3 = λex

33k2 + λexs
33 k4.

Equation (18a) gives a well-known result for the frequency of
spin waves in a spiral ferromagnet [16] when the damping is
neglected. A formal transition to a uniaxial ferromagnet with
an “easy-plane” anisotropy occurs when the wave vector of
the spiral structure k0 goes to zero. In this case the dispersion
law (18a) transforms into the previously obtained results
[37,38].

The results of numerical calculations of the spin wave
spectrum in the exchange spiral in the laboratory coordinate
system are shown in Fig. 2, where the dispersion of the spin
wave frequency [Fig. 2(a)] and spin wave damping [Fig. 2(b)]
are shown for different values of the exchange parameter.
(The relaxation constants are roughly estimated for the case of
small damping in a magnet with TC ≈ 360 K and λr

11 = 10−6,
λex

33 = 10−15 m2, and λexs
33 = 10−30 m4.) As in the case of a

relativistic spiral, the spin wave frequency goes to zero at
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the point k′ = k0 (= √−α/2γ ), while the spin wave damping
remains finite when k′ −→ k0. Now we have in the limit

�k′−→k0 −→ −1

2

(
2r + αk2

0 + γ k4
0

)(
λr

11 + λex
33k2

0 + λexs
33 k4

0

)
= 1

4

(
1

χ||
+ α2

2γ

)(
λr

11 − λex
33

α

2γ
+ λexs

33
α2

4γ 2

)
.

(22)

From expression (22), one can see that the spin wave damp-
ing consists of the standard LLG-like part �LLG ∼ α2

γ
λr

11

(for the exchange-relativistic spiral, �LLG ∼ D2

α
λr

11). This
part takes into account the nonreciprocity of the damping
but only partially. Our results show that there are addi-
tional nonadiabatic parts (due to nonlocal torques) �NL ∼
( 1
χ||

+ α2

2γ
)(−λex

33
α

2γ
+ λexs

33
α2

4γ 2 ) and (19). The contribution of
these nonadiabatic parts is important for the nonzero wave
vector k′ and substantially increases for short spin waves
(large k′ values).

Since the frequency (18a) of spin waves for k′ −→ k0 tends
to zero, it also follows from (19) and (22) that, in magnets
with a modulated magnetic structure, spin waves with a
wave vector equal to k0 are absolutely damped and cannot
propagate. This situation is similar to that found for the case
of longitudinal oscillations in ferromagnets [37–39]. From
the system of Eqs. (16), the frequency ωm of longitudinal
oscillations of the magnetic moment absolute value in the
equilibrium state can also be obtained. In the linear approxi-
mation in relaxation tensors, it equals the spin wave damping:
ωm = i� [see Eq. (18b)]. Thus, the oscillation frequency of
the magnetic moment absolute value is purely imaginary. This
fact indicates a rapid aperiodic alignment of magnetization
along its equilibrium direction [37,38].

An important general feature of the magnetization dynam-
ics damping in long-periodic structures comes from the exis-
tence of the term 1/χ|| (this term characterizes the homoge-
neous exchange energy) in expressions (18b), (19), and (22).
The longitudinal magnetic susceptibility describes the homo-
geneous exchange interaction, and its order of magnitude is
χ|| ∼ M0μB/Jexc, where Jexc is the exchange integral. Thus,
there is an exchange amplification of both the transversal spin
wave damping and the frequency of longitudinal magnetiza-
tion oscillations. It is determined in this case by the anisotropy
of exchange interaction (different inhomogeneous exchange
constants for different directions). This result differs from
those obtained in earlier works [37–39] where the exchange
interaction was assumed to be isotropic and an amplification
was obtained only for longitudinal magnetization oscillations.

IV. DISCUSSION AND CONCLUSION

During the past decade spin waves, as elementary exci-
tations in nanostructured magnetic materials, have been the
subject of many experimental and theoretical studies. Now, it
has become clear that increasing the lifetime and the stability
of magnons, primarily determined by the relaxation processes,
is of crucial importance for their applications. The standard
LLG equation is useful in numerical simulations of spin
dynamics. However, one should pay attention to the fact that

FIG. 3. The chiral-induced damping difference �� = �(−k) −
�(+k) of different counterpropagating spin waves for (a) the
exchange-relativistic and (b) exchange spirals.

it is a phenomenological equation utilized only within a local
approximation of torques and is not suitable for studies of
nonlocal effects in systems with noncollinear magnetic struc-
ture. Recently, it was shown within the phenomenological
description of the LLG equation that in noncollinear magnetic
systems (e.g., magnetic vortices, skyrmions, etc.) the effective
damping parameter αeff is larger than the Gilbert damping due
to the noncollinear spin arrangement [50].

In this paper, a general method was given to find the relax-
ation term in the magnetization equation of motion for mag-
netic materials with magnetochiral structure. It was shown
that the presence of a preferential direction in the magnetic
structure not only leads to a difference in the phase velocities
of volume spin waves with given energy and opposite wave
vectors but also manifests itself in different dampings of these
waves. In Fig. 3, the chiral-induced damping difference �� =
�(−k) − �(k) of different counterpropagating spin waves is
shown for exchange-relativistic [Fig. 3(a)] and exchange [Fig.
3(b)] spirals. Figure 3 directly reveals that, in the long-wave
limit, the damping for spin waves propagating against the
spiral direction is faster than for those propagating along spiral
direction.

Damping nonreciprocity is physically conditioned by
the competition between different magnetic interactions.
In the case of exchange-relativistic long-periodic magnetic
structures, the isotropic exchange interaction α stabilizes
the collinear ferromagnetic spin state, whereas the DM
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interaction D favors helical magnetochirality, and their
ratio D/α determines the incommensurate wave vector
of the helical modulation. Because of the competition
between these two terms, spin fluctuations of the dynamical
state are not around the static spin structure, in particular,
resulting in a nonreciprocal magnon damping. In the case
of the exchange spiral, there is a competition between the
exchange interactions stabilizing the ferromagnetic and
antiferromagnetic orders. Again, due to competition between
different magnetic orders, spin fluctuations of the dynamical
state are not around the static spin structure, which results in
different spin wave damping of nonreciprocal magnons. This
feature of magnetization dynamics in materials with spatially
varying local magnetic structures is sufficiently general and
robust against the detailed magnon scattering mechanisms. In
particular, this causes finite damping even of the Goldstone
mode. These are the main results of our analysis.

Just recently, the asymmetry of the magnon dispersion
relation and the magnon lifetime with respect to their counter-
propagating directions was observed in multilayer films [14].
The nonreciprocal character of magnon propagation caused
by the bulk crystallographic structure has been detected and
investigated in a noncentrosymmetric ferromagnet [12,13,29]
and in a such an antiferromagnet [30]. The authors analyzed
the obtained results in the framework of the standard LLG
equation where the relaxation term reads R = αGm× ∂m

∂t and
the Gilbert damping αG is constant. In linear approximation
by the parameter αG, it was found that spin wave damping
is � ≈ αG
(k, k0). Thus, in the presence of the DM interac-
tion, the spin wave linewidth is modified by a term ∼ωDM ,
which is antisymmetric in the wave vector. This, indeed, ac-
counts for the experimentally observed asymmetric linewidth
[12–14,29,30], but only partially. In particular, within this
approach, the Goldstone mode damping becomes zero at k′ =
k0 [see Figs. 1(a) and 2(a) for spin wave frequency dispersion

(k, k0)], in qualitative disagreement with the results ob-
tained using the relaxation term (8) or (11) [see Figs. 1(b) and
2(b)]. Thus, while some peculiarities of spin wave dynamics
are reproduced within the standard LLG framework, it does
not take into account all the magnetochiral nonreciprocity
effects in magnetization dynamics. To get them, the dissipa-
tive function should be constructed with the same principles
as the quasiequilibrium thermodynamical potential and has
to contain terms with the same nature as the total energy.
Thus, it should be noted that the phenomenological models

obtained in this work may be applicable to all similar cases
(DM interaction or inhomogeneous exchange interaction).

In conclusion, the interrelation between space-time geom-
etry and dynamics may be the most fundamental concept in
modern physics. From this aspect, the meaning of chirality
is to convert the spatial structure to the dynamical properties
of matter [8,51]. In this paper, within the LLBar phenomeno-
logical description of relaxation phenomena in magnetic ma-
terials, a dissipative function was constructed for crystals
with different symmetry with magnetochiral nonreciprocity.
It was shown that the existence of a distinguished spatial
direction in the static magnetic structure not only leads to
an “energy” nonreciprocity but manifests itself in different
intrinsic nonlocal dampings of volume spin waves for a given
wave vector but with opposite directions, �(k) �= �(−k). This
feature of magnetization dynamics in materials with spatially
varying local magnetic structures is general and does not
depend on the details of magnon scattering. The “damping”
nonreciprocity for magnetic dynamics should be taken into
account in numerical simulations of spin waves dynamics
in such systems (e.g., by incorporating the LLBar equation
into the Object Oriented Micromagnetic Framework (OOMMF)
code [52]). Experimental analysis of the spin wave dynamics
should include these specifics too. We expect that the present
results may have practical applications in the field of magnon-
ics, and they could be applied for other types of periodically
modulated structures [53]. In particular, these features of spin
wave dynamics pave a way for the design of efficient spin
wave diodes based on crystallographic symmetry and long-
periodic magnetic structures.
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