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We construct a class of period-n-tupling discrete time crystals based on Zn clock variables, for all the integers
n. We consider two classes of systems where this phenomenology occurs: disordered models with short-range
interactions and fully connected models. In the case of short-range models, we provide a complete classification
of time-crystal phases for generic n. For the specific cases of n = 3 and n = 4, we study in detail the dynamics
by means of exact diagonalization. In both cases, through an extensive analysis of the Floquet spectrum, we are
able to fully map the phase diagram. In the case of infinite-range models, the mapping onto an effective bosonic
Hamiltonian allows us to investigate the scaling to the thermodynamic limit. After a general discussion of the
problem, we focus on n = 3 and n = 4, representative examples of the generic behavior. Remarkably, for n = 4
we find clear evidence of a crystal-to-crystal transition between period n-tupling and period n/2-tupling.
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I. INTRODUCTION

Classifying phases of matter in terms of symmetry break-
ing, one of the highlights of Landau’s legacy, is a fundamen-
tal pillar in our understanding of nature [1]. Its impact in
modern physics spans a multitude of fields, from condensed-
matter to high-energy physics, embracing both equilibrium
and nonequilibrium phenomena. Time-translation symmetry
breaking has a special place in this saga. It was considered
only a few years ago, almost a century after Landau’s work.

A time crystal is a state of matter where time-translation
symmetry is spontaneously broken. Its possible existence was
proposed by Wilczek [2–4] and generated immediately a fer-
vent debate [5]. A no-go theorem [6] forbids time-translation
symmetry breaking from taking place in the ground or thermal
state of a quantum system (at least for not too long-ranged
interacting systems). A time crystal therefore emerges as a
truly nonequilibrium phenomenon that cannot be understood
as a simple analog in time of an ordinary crystal.

The intense theoretical effort to look for nonequilibrium
time crystals has focused both on closed [7–21] and open
many-body quantum systems [24–29]. So far, periodically
driven systems have been the most successful arena in which
to study time crystals. Here, despite the quantum system
being governed by a time-dependent Hamiltonian of period
T , there are observables that oscillate, in the thermodynamic
limit, with a multiple period qT . Floquet time crystals [7]
(also known as π -spin glasses [10]) were observed in 2017
with trapped ions [8] and with Rydberg atoms [9] following
earlier theoretical predictions [7,10]. Experimental evidence
appeared very recently in Refs. [30–33].

An essential requirement for the existence of Floquet time
crystals is the presence of an ergodicity-breaking mecha-
nism which prevents the system from heating up to infinite

temperature [34–36]. Many-body localization induced by dis-
order can hinder energy absorption in support of a discrete
time-crystal phase [7]. In the absence of disorder, solvable
models with infinite-range interactions possess the necessary
ingredients [11] as well. In specific cases, subharmonic os-
cillations can be exhibited by many-body systems with long-
range interactions in a prethermal regime [18] or with a slow
critical dynamics [9,14].

While a proposal for a time crystal of period qT with q > 2
has been put forward for a system of ultracold atoms bouncing
on an oscillating mirror [37], such a mechanism has never
been discussed in the context of lattice models. In this con-
text, until now essentially all the theoretical activity on time
crystals has focused on period doubling. In this case, time-
translation symmetry is spontaneously broken from a group Z
to 2Z. This is intimately connected to the fact that the system
breaks also a discrete internal symmetry, the Z2 one [7],
leading to the concept of spatiotemporal ordering [10,12,38].
It is natural to expect that a similar model with Zn symmetry
can produce oscillations with a multiple periodicity. Although
mentioned in the literature [7,38–40], this possibility has not
been analyzed so far. The early experimental observation of
period tripling [9] adds further motivations to explore this
issue.

In this paper, we tackle this problem by studying Floquet
time crystals in driven n-states clock models. When n > 2, the
spontaneous breaking of Zn symmetry leads to a wealth of
new phenomena. The appearance of the time-crystal phases,
as well as their properties, depends in a nontrivial way on the
integer n and on the symmetries of the periodic driving. Not
all classes of clock Hamiltonians allow for time-translation
symmetry breaking. In this work, we determine the condi-
tions under which a time-crystal phase is possible and we
provide a classification of the possible different phases for
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a generic n. Furthermore, for n � 4, different phases can
appear depending on the choices of the coupling constants
of the underlying Hamiltonian. We predict a direct transition
between time crystals of different periodicity.

Some of the recent impressive experimental advancements
in the coherent evolution of interacting models show that the
building blocks to realize clock models are already avail-
able [41]. These capabilities, together with the control in
the unitary dynamics of periodically kicked many-body sys-
tems [8,9], make the experimental verification of our theoret-
ical findings feasible.

The paper is organized as follows. In Sec. II, we briefly
review some properties of Floquet time crystals and intro-
duce the observables employed to characterize the crystalline
phase. The clock Hamiltonian, studied throughout the paper,
is introduced in Sec. III. We consider two classes of models,
a disordered short-range model where the time crystal is
stabilized by many-body localization and the opposite limit of
a fully connected model where this stabilization comes from
regular dynamics in an infinite-range interacting system. We
first discuss the results for the short-range case in Sec. IV
and give a complete classification of time crystals for generic
n. In order to study the stability of the crystalline phase,
we consider different types of perturbations. Furthermore, we
provide arguments to support the persistence of the period-
n-tupling oscillations for a time exponentially large with the
system size. We support and complement our findings with
numerical results based on exact diagonalization for the cases
n = 3 and n = 4. In the case n = 3, we are able to fully map
the phase diagram using the spectral multiplet properties of
the Floquet eigenvalues. In the same section, we also discuss
a model with n = 4 clock variables which may lead to a transi-
tion between a time-translation symmetry breaking phase with
4-tupling oscillations to a phase with period-doubling oscilla-
tions. We finally move to the study of the infinite-range clock
models in Sec. V. In addition to exact diagonalization, we also
analyze the scaling to the thermodynamic limit of this model
by employing a mapping onto an n-species bosonic model.
This analysis is feasible because in the thermodynamic limit
this model is described by a classical effective Hamiltonian
whose dynamics can be easily studied numerically. In this
infinite-range case, we are able to construct a model based
on Zn clock variables which undergoes a transition between
a period-n-tupling phase and a period-n/2-tupling case. We
numerically verify the existence of this transition and study
it in detail in the case n = 4. This is an example of a direct
transition between two time-crystal phases. Finally, Sec. VI is
devoted to a summary and our concluding remarks. Various
technical details are summarized in the Appendixes.

II. PROPERTIES OF FLOQUET TIME CRYSTALS

Floquet time crystals have been introduced in Ref. [7]. In
order to keep the presentation self-contained, it is useful to
briefly recap those properties of Floquet time crystals that will
be used in the rest of the paper. The goal of this section is also
to introduce various indicators of discrete time-crystal phases,
skipping the formal aspects of the definitions [7].

Given a periodic Hamiltonian Ĥ (t ) = Ĥ (t + T ), a time
crystal is characterized by a local order parameter Ô j whose

time-evolved expectation value, in the thermodynamic limit
N → ∞,

Oi(t ) = lim
N→∞

〈ψ (t )| Ôi |ψ (t )〉 , (1)

oscillates with a period qT (for some integer q > 1), for
all physical initial states |ψ0〉 (we will better define later
what we mean with the phrase “physical states”). In the
previous definition, i labels a discrete space coordinate and
|ψ (t )〉 = Û (t ) |ψ0〉 (with Û (t ) being the evolution operator).
It is important to stress the importance of the thermodynamic
limit. A time crystal is a collective phenomenon; like any other
(standard) long-range order it can happen only in this limit.

A necessary ingredient to identify a Floquet time crystal is
its robustness. The period q-tupling should not require, for its
existence, any fine-tuning of the parameters of the Hamilto-
nian. This is important in order to distinguish a time crystal
from periodic oscillations occurring at isolated points in the
parameter space that are, however, fragile, in the absence of
interactions, against arbitrarily tiny perturbations.

In the time-crystal phase correlation functions have a pe-
culiar temporal behavior. The correlators will show persistent
oscillations

lim
|i− j|→∞

lim
N→∞

〈Ôi(t1)Ô j (t2)〉 = f (t1 − t2) (2)

when |t1 − t2| → ∞ and the separation between the sites i, j
grows [we define here Ôi(t1,2) = Û †(t1,2)ÔiÛ (t1,2)].

In the rest of the paper, we will restrict to stroboscopic
times (multiples of the period T ). Moreover, we will make ex-
tensive use of the Floquet states |φα〉, which are the eigenstates
of the time-evolution operator over one period (the Floquet
operator)

Û (T ) |φα〉 = e−iμαT |φα〉 .

There are two very important properties which characterize
the Floquet spectrum of a time crystal and that are intimately
connected to its robustness. The first property states that none
of the Floquet eigenstates |φα〉 is a physical state. Indeed,
expectations over any Floquet state are constant in a strobo-
scopic time. Therefore, if a Floquet state was physical, we
would have a violation of Eq. (1). Let us better define what we
mean by “physical states.” A physical state |ψ〉 is a state which
can be prepared in the laboratory and, for any local observable
Ôi, this state must have short-range connected correlations.
This means that it fulfills the cluster property

〈ψ |ÔiÔ j |ψ〉 ∼ 〈ψ |Ôi|ψ〉 〈ψ |Ô j |ψ〉 (3)

for |i − j| larger than some correlation length. If the clus-
ter property is satisfied for a Floquet state (|ψ〉 = |φα〉 for
some α), then we have a physical state |φα〉 for which the
expectation value in Eq. (1) is time independent, and the time
crystal is spoiled. In order to have time-translation symmetry
breaking, all the Floquet states must have quantum correla-
tions extending macroscopically through the whole system
and must therefore violate the cluster property [7]. For this
sake, they have to be superpositions of macroscopic classi-
cal configurations, the so-called cat states. This requirement
stands also behind the robustness of the time-crystal phase
to changes of the system parameters. If the eigenstates of
the stroboscopic dynamics are nonlocal objects, then they do
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not constrain the dynamics of local observables, which can
show in this way a behavior distinct from the time-periodic
symmetry of the Hamiltonian. Particular attention must be
paid to the case where the Floquet spectrum is degenerate. In
this case, the existence of a complete set of Floquet eigenstates
violating cluster property is not sufficient to identify a time
crystal. In general, if the spectrum is degenerate, the choice
of a basis set is not unique: A linear combination of different
Floquet states with the same quasienergy could in principle
satisfy cluster property, even if the original Floquet states
did not. A local perturbation can resolve this degeneracy,
selecting those Floquet states in the manifold which have
small entanglement and obey cluster property. Therefore,
degeneracies break the robustness of the time crystal con-
straining the time-translation symmetry-breaking oscillations
to a fine-tuned point. The undesired effect of degeneracies
will clearly emerge in Secs. IV A and IV B, where a complete
classification of Floquet time crystals for n-state models will
be discussed.

Another important property concerns the Floquet spec-
trum. If the periodicity of period T is broken to a period qT ,
the Floquet spectrum will be structured in multiplets μν

α =
μα + 2πν/q (with ν = 0, 1, . . . , q − 1). This property of the
spectrum can be understood as follows [42]: On expanding
the time-evolving state in the Floquet basis, one gets |ψ (t )〉 =∑

α,ν Rν
αe−iμν

αt/τ |φν
α〉; then, by substituting in Eq. (1), one

obtains

O(t ) = lim
N→∞

∑
α, β

∑
ν, ν ′

(
Rν

α

)∗
Rν ′

β

〈
φν

α

∣∣ Ô ∣∣φν ′
β

〉
ei(μν

α−μν′
β )t . (4)

It is convenient to analyze the various terms in the sum
separately. The diagonal terms (α = β, ν = ν ′) do not depend
on the stroboscopic time and therefore are periodic with the
same period of the driving. The off-diagonal ones (α 	= β)
will vanish in the long-time limit (possibly after a disorder
average) [43] due to the destructive interference between the
phase factors. Finally, the terms (α = β, ν 	= ν ′) are left; they
have a phase factor of the form eit2π (ν−ν ′ )/q. These terms are
those that give rise to the period-q-tupling oscillations and
higher harmonics and hence to the time-crystal behavior.

For the purpose of analyzing the numerical data, in order
to see the persisting period-q-tupling oscillations in the order
parameter of Eq. (1), two quantities will be considered in the
rest of the paper. The time correlator

Z [O]
q (t ) = e−(2iπ/q)t 〈Ôi(t )Ô†

i (0)〉 (5)

is a constant if there are period-q-tupling oscillations. In the
previous definition, the angle brackets indicate the expectation
value over an initial state and the bar · · · refers to the average
performed over disorder and a set of initial states (in some
cases, this average includes also a spatial average over the
chain).

Often it will be convenient also to consider the discrete
Fourier transform of Eq. (1) of the oscillating quantities
(followed over NT periods)

f [O]
ω = T

NT∑
k=0

〈Ô〉kT eiωkT , (6)

FIG. 1. Pictorial representation of a clock model (with n = 6) in
a one-dimensional chain. Each site, labeled by the index i, has an
n-dimensional local Hilbert space, and the blue points on the circle
indicate the possible states of the clocks. The red arrows represent
the action of the τ operators, and hence the action of the kicks, as
discussed in the main text. In the case shown here, the clocks interact
through a nearest-neighbour coupling of amplitude Ji. The coupling
between the sites is indicated by the double black arrow.

where we denote 〈Ô〉t = 〈ψ (t )| Ô |ψ (t )〉. Time-translation
symmetry breaking appears if the position of the dominant
peak in the Fourier transform tends to the period-q-tupling
frequency

ω(q) = 2π

qT
(7)

when the thermodynamic limit N → ∞ is considered.

III. KICKED CLOCK MODELS

The dynamics of the systems we are going to study in this
paper is governed by a time-periodic Hamiltonian Ĥ(t ) of the
form

Ĥ(t ) = Ĥ [·]
[·] +

∑
k∈Z

δ(t − kT )K̂ [·]
[·], (8)

where both Ĥ and K̂ are time-independent operators. The
evolution in one period is defined by the Floquet operator

Û (T ) = e−iT Ĥ e−iK̂ . (9)

It is characterized by a time-independent dynamics, dictated
by Ĥ , spaced out by kicks (at intervals T ) controlled by the
operator K̂ . Both Ĥ and K̂ will depend on many different pa-
rameters (the various coupling constants, n, range of the cou-
plings, . . . ) and several different models will be analyzed. The
symbol [·] in the superscript and subscript of the Hamiltonian
operators in Eq. (8) indicates the set of all these parameters
needed to specify the evolution. The form of Ĥ and of K̂ ,
together with their dependence on these various couplings,
will be specified in the forthcoming paragraphs. In order to
simplify the notation, some of the indices may not always be
indicated, whenever not necessary for the understanding of the
text.

A. Clock variables

As sketched in Fig. 1, clock models [44] are defined on
a lattice with L sites, each site having a local basis of n
states that can be represented as n positions on a circle (the
“hands” of the clock). This generalizes the case n = 2 where
the canonical local basis is |↑〉, |↓〉. The local Hilbert space is
characterized by the operators σ̂ and τ̂ , satisfying the relations

σ̂ τ̂ = ωτ̂ σ̂ , σ̂ n = 1, τ̂ n = 1 (10)
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TABLE I. A summary of the various choices of couplings that we will analyze in the paper. We will consider both short- and long-range
systems (SR and LR, respectively). In the cases n = 3 and n = 4, the coefficients αm, βm, γm will parameterized as specified in the table. For
n = 4, J, J ′, h, h′ � 0 and the parameter 0 � η � 1 will control the transition between time crystals with different symmetries.

n = 3 n = 4

Short-range interaction (SR) Ji j = Jiδi+1, j α1 = α∗
2 = eiϕ α2 = 1, α1 = α∗

3 = (1 − η)eiϕ/2
β1 = β∗

2 = eiϕx β2 = η, β1 = β∗
3 = δ

γ1 = γ ∗
2 = eiϕz γ2 = 1, γ1 = γ ∗

3 = δ

Long-range interaction (LR) Ji j = − J
L α1 = α∗

2 = 1/2 α2 = ηJ ′/J , α1 = α∗
3 = (1 − η)/2

hx,i = −h β1 = β∗
2 = 1 β2 = 2ηh′/h, β1 = β∗

3 = 1 − η

γ1 = γ ∗
2 = 0 γ1 = γ2 = γ3 = 0

with ω = e2π i/n. In the basis, where σ is diagonal

σ̂ |ωk〉 = ωk |ωk〉 , τ̂ |ωk〉 = |ωk+1〉 , (11)

for k = 0, 1, . . . , n − 1, and

σ̂ =

⎛⎜⎝1 0 0 0
0 ω 0 0
0 0 . . . 0
0 0 0 ωn−1

⎞⎟⎠, τ̂ =

⎛⎜⎝0 0 0 1
1 0 0 0
0 . . . 0 0
0 0 1 0

⎞⎟⎠.

(12)
For later purposes, note that (σ̂ †)m = σ̂ n−m and (τ̂ †)m =
τ̂ n−m. Moreover, for n = 2, σ̂ and τ̂ become the Pauli matrices
σ̂ z and σ̂ x. While in the Ising case the parity symmetry is
related to the flipping of all the spins, in a clock model the
Zn symmetry operation is implemented by the operator that
moves all the hands of the clock one step forward.

The operators defined above will be used to construct the
model Hamiltonians Ĥ and K̂ . In the rest of this section,
we will first define the time-independent Hamiltonian Ĥ and
afterward we will discuss the evolution due to the kicks.

B. The model Hamiltonian Ĥ

The evolution between two kicks is governed by the n-state
clock Hamiltonian Ĥn [44,45], see Fig. 1, whose most general
form is

Ĥn =
∑
i 	= j

Ji j

n−1∑
m=1

αm(σ̂ †
i σ̂ j )

m

+
∑

i

hz,i

n−1∑
m=1

γm σ̂ m
i +

∑
i

hx,i

n−1∑
m=1

βm τ̂m
i (13)

with real couplings Ji j, hx,i, hz,i and complex αm, βm, γm . The
site label i runs from 1 to L. While for arbitrary choices of the
coupling the operator in Eq. (13) is not Hermitian, Hermiticity
is guaranteed by the following choice of couplings:

α∗
m = αn−m, β∗

m = βn−m, γ ∗
m = γn−m. (14)

In the case of short-range interaction, we will further assume
periodic boundary condition. While Ji j accounts for the inter-
action between different sites, hx,i (hz,i) represent a transverse
(longitudinal) field. In the absence of longitudinal field (hz,i =
0, ∀i), the Hamiltonian has a Zn symmetry generated by

X̂ =
L∏

i=1

τ̂i.

Together with the analysis for generic n, in the rest of the
paper we will consider several different choices of the cou-
plings, encompassing both a disordered short-range model as
well as an infinite-range case. In these specific cases, we will
perform explicit numerical and analytical calculations. For
future reference, these specific cases are summarized Table I.

More specifically, the first model we will discuss is a
short-range disordered n-state clock model. Both the nearest-
neighbor coupling Ji and hx,i/hz,i will be real random numbers
uniformly distributed in the intervals [Jz/2, 3Jz/2] and [0, hz]
respectively. Only the strength of the interactions and the
fields are allowed to vary over the chain; αm, βm, and γm are
site independent. For the long-range case, we will consider
a generalization of the Lipkin-Meshkov-Glick [46] model.
The Hamiltonian has a Zn symmetry generated by X̂ , as well
as an invariance under subsystem permutations. Despite its
simplicity, the model Hamiltonian contains, as we will show,
the necessary ingredients to realize a time crystal, in particular
an extensive number of symmetry-breaking eigenstates. For
n = 4, the parameters of the Hamiltonian can be adjusted
to favor a phase either with Z4 spontaneously symmetry-
breaking states, or a phase with lower Z2 symmetry-breaking
states.

C. Time evolution during a kick

The kicks are local, acting on each site independently, i.e.,
K̂ = ∑

i K̃i. It is convenient to discuss the evolution due to the
kicks by introducing the operator X̂ (n)

ε as

e−iK̂ (n)
ε ≡ [

X̂ (n)
ε

]p
(15)

(the superscript n and the subscript ε are made explicit as
they are essential in characterizing the type of kick). Indeed,
the generic kick will depend on the parameter ε that will
be varied in order to probe the stability of the time-crystal
phase.

In the ideal case, the kicking is p times the application of
the operator X̂ (n)

ε=0 = ∏L
i=1 τ̂i. Assuming for simplicity p = 1,

if the operator τ̂i acts over an eigenstate of σ̂i its effect is
simply to exchange it with another eigenstate [see Eq. (11)].
The state returns back to itself after the action of n times τ̂ . A
measure of the expectation of σ̂i witnesses naturally the period
n-tupling.
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It is convenient to write the perfect-swapping kicking
operator X̂ (n)

ε=0 as

X̂ (n)
ε=0 ≡ X̂ =

L∏
i=1

τ̂i =
L∏

i=1

ei(π/n)�̂(n)
i , (16)

where �̂
(n)
i is an Hermitian matrix acting in the ith site.

Specifically, for the cases n = 2, 3, or 4, �̂ has the form

�̂(2) =
(−1 1

1 −1

)
, �̂(3) = 2√

3

⎛⎝ 0 i −i
−i 0 i
i −i 0

⎞⎠,

�̂(4) =

⎛⎜⎝ 3 −1 − i −1 −1 + i
1 − i 3 −1 − i −1
−1 −1 + i 3 −1 − i

−1 − i −1 −1 + i 3

⎞⎟⎠ . (17)

Using the previous parametrization, the perturbed kicking
operator is defined as

X̂ (n)
ε =

L∏
i=1

ei( π
n +ε)�̂(n)

i . (18)

In the next sections, we will discuss in details the phase
diagram for the different versions of the clock Hamiltonian.
We first discuss the case of short-range interactions; the
infinite-range interacting limit will be analyzed in Sec. V.

IV. DISORDERED SHORT-RANGE MODEL

In this section, we are going to focus on the short-range
disordered version of the Hamiltonian Eq. (13) (see also
Table I) and we denote it as Ĥ (SR)

n . Disorder is essential for
the time-crystal physics in this context. It leads to many-body
localization, thus preventing heating up to infinite tempera-
ture. In this regime, all the eigenstates in the spectrum of
Ĥ (SR)

n posses a long-range glassy order in the thermodynamic
limit [47]. The absence of heating, starting from a state
with long-range order and driving, guarantees that such order
persists in the dynamics. In passing, we also note that this is
one of the first times the many-body localized state has been
analyzed in a clock model.

Following in spirit the same approach used for the spin-
1/2 case [7], we first consider a set of couplings in Eq. (9) so
that the Floquet eigenstates can be computed exactly. This is
going to form the basis for the classification of possible time-
crystal phases for generic n. We then move to the analysis
of the robustness of such a phase under perturbations in the
evolution. In this case, as already mentioned, the presence of
many-body localization is the key to stabilize the time crystal.
We will conclude this section with a more detailed discussion
of the specific cases n = 3 and n = 4.

A. Classification of time crystals: hx = 0

Let us start by considering the simplest possible situation:
zero transverse field (hx,i = 0, ∀i) and an ideal-swapping kick
operator as defined in Eq. (16). In this case, the operator σ̂i

commutes with Ĥ (SR)
n . It evolves after one period T according

to the Floquet operator Û (T ) as

Û (T )†σ̂iÛ (T ) = ωpσ̂i (19)

and then goes back to itself after a time qT , where q is
the smallest positive integer such that qp is a multiple of n.
Before discussing whether these oscillations at subharmonic
frequency are the manifestation of a period-q time crystal,
it is useful to analyze the properties of Floquet states and
quasienergies. In this case, they can be written out explicitly
and—as we are going to show—they obey the properties
stated in Sec. II for time-translation symmetry breaking to
occur. Detailed calculations for the results shown in this
section are reported in Appendix A.

It is convenient to distinguish two cases: (i) the integers
p and n are coprime, and (ii) the integers p and n have
gcd(p, n) = s > 1:

(i) The integers p and n are coprime: In this case, it is not
hard to see that q = n. We note that Û (T )n = e−inT ˆ̄H where

ˆ̄H =
∑

i

Ji

n−1∑
m=1

αm (σ̂ †
i σ̂i+1)m. (20)

The eigenstates of ˆ̄H can be labeled by the sequence {si}, with
si = 1, ω, . . . , ωn−1, such that

Û n |{si}〉 = e−inT μ+({si}) |{si}〉
and

μ+({si}) =
∑

i

Ji

n−1∑
m=1

αm(s∗
i si+1)m .

Given a configuration {si}, the states |{si}〉, Û |{si}〉, . . . ,
Û (T )n−1 |{si}〉 are degenerate (and inequivalent) eigenstates
of Û (T )n. They are not eigenstates of Û (T ). We denote as
|ψ ({si}, k)〉 (with k = 0, . . . , n − 1) the linear combinations
of these states that diagonalize Û (T ):

|ψ ({si}, k)〉 = 1√
n

n−1∑
m=0

ω−kme+imT μ+({si})Û m |{si}〉 (21)

which satisfy

Û (T ) |ψ ({si}, k)〉 = ωke−iT μ+({si}) |ψ ({si}, k)〉 .

These eigenstates have quasienergies μ+({si}) − 2πk/n,
forming multiplets of states with 2π/n splitting in
quasienergy.

(ii) The integers p and n have gcd(p, n) = s > 1. In this
case, the period of the time crystal is q = n/s. The Floquet
operator satisfies Û (T )q = e−iqT ˆ̄H (see Appendix A), where
now

H̄ =
∑

i

Ji

n−1∑
m=1

αm (σ̂ †
i σ̂i+1)m +

∑
i

hz,i

n/q−1∑
m=1

γmq σ̂
mq
i .

(22)
The states |{si}〉 , Û (T ) |{si}〉 , . . . , Û (T )q−1 |{si}〉 are all de-
generate (and inequivalent) eigenstates of Û (T )q but they
are not eigenstates of Û (T ). One can construct the q linear
combinations (labeled by k = 0, . . . , q − 1) that diagonalize
Û (T ):

|ψ ({si}, k)〉 = 1√
q

q−1∑
m=0

ω−skme+imT μ+({si})Û m |{si}〉 .

(23)
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They satisfy

Û (T ) |ψ ({si}, k)〉 = ωkse−iT μ+({si}) |ψ ({si}, k)〉 ,

forming multiplets of states with 2π/q splitting in
quasienergy.
In both cases discussed above, Floquet states are cat states:
The correlators of the local operator σ̂ for two sites i and j are

〈ψ ({si}, k)|σ̂ †
i σ̂ j |ψ ({si}, k)〉 = s∗

i s j 	= 0, (24)

while 〈σ̂i〉 = 0 for every site i. Correlations show a “glassy”
long-range order, where 〈σ̂ †

i σ̂ j〉 can assume the values
1, ω, . . . , ωn−1 depending on the sites. Therefore, | 〈σ †

i σ j〉 | =
1 and correlations do not vanish in the limit |i − j| → ∞.
Each state |ψ ({si}, k)〉 is a cat state consisting of a super-
position of q product states. The condition of the Floquet
states being long-range correlated in order to have the time-
translation symmetry breaking is fulfilled.

It is important to check whether the Floquet spectrum is
nondegenerate. Floquet states organize in multiplets, each one
separated by 2π/q from the other (see Sec. II).

The cat states |ψ ({si}, k)〉 found above are eigenstates
even for Ji = 0, but their long-range correlations cannot be
the evidence of a truly many-body effect. In this case, the
correlations are a consequence of an unusual choice of ba-
sis set. In the noninteracting case, the Floquet spectrum is
extensively degenerate and many choices of Floquet states
basis are possible. In particular, the Floquet operator can be
diagonalized by tensor products of single-site states which
are clearly not long-range correlated. Even if at a particular
point in the parameter space, the systems shows a time-crystal
dynamics, and any tiny perturbation [for example, by slightly
changing the kicking and taking the one in Eq. (18) with ε �
1] will destroy subharmonic oscillations. The perturbation
splits the degeneracy and selects a basis of Floquet states
which are short-range correlated.

Interactions are needed to remove all the degeneracies and
stabilize the time-crystal phase. Furthermore, the interactions
must be such that there are no degeneracies in the Floquet
spectrum. If there are degeneracies in the spectrum, one
could in principle construct a linear combination of different
Floquet states with the same quasienergy satisfying cluster
property. As we are going to show in the next section, any
local perturbation can resolve this degeneracy: It selects the
Floquet states obeying the cluster property, therefore spoiling
the time-translation symmetry breaking.

In the presence of disordered couplings, degeneracies are
quite unlikely. Nevertheless, as we are going to show, they
can occur and one must choose certain parameters in order
to avoid those cases. As before, we must distinguish two
cases:

(i) The integers p and n are coprime. In this case, the
quasienergies are of the form

μ({si}, k) =
∑

i

Ji

n−1∑
m=1

αm(s∗
i si+1)m − 2πk/n. (25)

For each set of {si}, the quantity s∗
i si+1 assumes one of

the n possible values 1, ω, . . . , ωn−1, corresponding to the n
possible angles between the two hands of the clock. If two
such values yield the same energy

∑n−1
m=1 αm(s∗

i si+1)m, then the

spectrum is degenerate. Therefore, we have degeneracies if
there exist two integers k1 and k2 (with 0 � k1 < k2 � n − 1)
such that

n−1∑
m=1

αmωmk1 =
n−1∑
m=1

αmωmk2 . (26)

On the other hand, if no integers k1 and k2 satisfy this
condition, the spectrum is not degenerate and a time crystal is
possible. The same condition has been found in the context of
parafermionic chains as a criterion for the existence of strong
edge zero modes [45]. Furthermore, in Ref. [48] the same
condition for strong edge modes is discussed, especially for
the case n = 3, for which it coincides with the presence of
chiral interactions (see Sec. IV C).

(ii) The integers p and n have gcd(p, n) = n/q > 1. In this
case, the quasienergies are of the form

μ({si}, k) =
∑

i

Ji

n−1∑
m=1

αm(s∗
i si+1)m

+
∑

i

hz,i

n/q−1∑
m=1

γmq smq
i − 2πk/q . (27)

With respect to the previous case, the condition that

n−1∑
m=1

αmωmk1 	=
n−1∑
m=1

αmωmk2 (28)

for every pair of integers 0 � k1 < k2 � n − 1 is sufficient but
not necessary to have a time crystal. If, for any pair of integers
k1 and k2 violating Eq. (28), and for every si = 1, . . . , ωn−1,
the inequality

n/q−1∑
m=1

γmq(si )
mq 	=

n/q−1∑
m=1

γmq smq
i ωmq(k2−k1 ) (29)

is satisfied, then no degeneracies occur. Note that if k2 − k1

is a multiple of n/q, then Eq. (29) is an equality for every
si = 1, . . . , ωn−1 and the spectrum is still degenerate. Since
the couplings and the local fields are taken from a random
continuous distribution, no degeneracies occur in the spectrum
due to additional symmetries as, e.g., translation invariance.
Other degeneracies would require infinitely fine-tuned cou-
plings.

B. Robustness: hx �= 0, ε �= 0

In the case in which a transverse field is present, hx 	= 0,
and/or for a general form of the kick [see Eq. (18)], it is not
possible to solve the model exactly. It is still possible to study
the system for small perturbations from the solvable case.

Let Ûλ(T ) be the perturbed Floquet operator (Û0(T ) is
the unperturbed case) where λ generically parameterizes the
strength of the perturbation in the kicking and/or in Ĥ .
Following Ref. [49], the time crystal described above is robust
for sufficiently small λ if there is a nonzero local spectral gap.
A naive explanation of what local spectral gap means can be
given using simple perturbation theory. Since the perturbation
is local, it can have nonzero matrix elements only between
pairs of states that differ locally. On the other hand, if two
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states differ globally, they can only be connected at an order
O(L) in perturbation theory, where L is the size of the system,
so they do not mix at any perturbative order in the limit
L → ∞. We define the local spectral gap as the gap between
states which are connected at a finite order in perturbation
theory, not scaling with L. This is an important point because,
in the thermodynamic limit, the relevant parameter in the
perturbative expansion is not the ratio between λ and the
typical gap (which becomes exponentially small) but the ratio
between λ and the local spectral gap. If this ratio is sufficiently
small, a unitary operator connecting unperturbed eigenstates
with perturbed ones can be constructed order by order in
perturbation theory. Moreover, assuming that the Hamiltonian
satisfies a Lieb-Robinson bound [50], it is possible to prove
that the resulting transformation is local [7,49,51]. For trans-
lationally invariant models, one does not expect to find local
spectral gaps, and this unitary transformation is in general
nonlocal. In the presence of disorder, on the other hand, the
system can exhibit many-body localization and local gaps can
exist.

The presence of a nonzero local gap guarantees the exis-
tence of a region of the parameter space where the eigenstates
of the system are connected to the unperturbed ones by a local
unitary V̂λ,

V̂λ |ψ0({si}, k)〉 = |ψλ({si}, k)〉 , (30)

where V̂λ depends continuously on λ. The argument applies
to a generic small perturbation of Û (T ), irrespective of its
specific form [39]. As shown in Appendix B, in our model
the existence of the local mapping V̂λ and its continuity with
respect to λ have the following relevant consequences:

(i) the dressed operators σ̃i,λ = V̂ †
λ σ̂iV̂λ are local oper-

ators exhibiting long-range correlations on the eigenstates
|ψλ({si}, k)〉:

〈ψλ({si}, k)|σ̃ †
i,λσ̃ j,λ|ψλ({si}, k)〉 = s∗

i s j . (31)

Hence, the perturbed system fulfills the definition of time
crystal.

(ii) Up to corrections that are exponentially small in the
system size, the order parameter operator σ̃i,λ evolves by
acquiring a phase ω at each period

Û (T )†σ̃i,λÛ (T ) = ωpσ̃i,λ + O(e−cL ). (32)

After a time mT , corrections are of the order mO(e−cL ), mean-
ing that for sufficiently large m they destroy the oscillations.
Therefore, the timescale at which we expect oscillations to
decay grows exponentially with L. Because of locality, the
undressed operator σ̂i has some finite overlap with σ̃i,λ: It
will also show persistent oscillations (just with a smaller
amplitude).

(iii) The spectrum is made of multiplets of states with
exact 2π/q splitting in the thermodynamic limit. For finite-
size systems, this is only valid up to corrections of the order
O(e−cL ).

The arguments given above apply to generic n and are
in agreement with what has been found numerically for the
specific case of period doubling n = 2 (see Ref. [7]).

If the unperturbed spectrum has no local gap, the argument
proving the stability of the oscillations does not apply: States
that differ only locally can have the same quasienergy. A

FIG. 2. The dots on the circle indicate the possible values of
eiϕs∗

i si+1. In the nonchiral case (for example, ϕ = 0 and ϕ = π/3),
different values of eiϕs∗

i si+1 have the same real part: The spectrum is
degenerate. In the chiral case (for example, ϕ = π/9 and ϕ = π/6),
there is no degeneracy.

local perturbation mixes these states and splits the degeneracy,
such that the new eigenstates correspond to physical states
with no long-range correlations. If the spectrum is (locally)
degenerate, the oscillations in Eq. (19) can become unstable
to some arbitrarily small perturbations, meaning that no time
crystal can be observed in an experiment. This point further
clarifies the need for the absence of degeneracies in the
Floquet spectrum and is in agreement with the fact that many-
body localization induced by disorder is needed in order to
have a nonzero local gap everywhere in the spectrum [34]. In
the next subsections, we are going to corroborate the findings
presented so far with a numerical analysis for the cases with
n = 3 and n = 4.

C. Phase diagram n = 3

In this case, the parameters αm, βm, and γm can be ex-
pressed in terms of three angles ϕ, ϕx, and ϕz as indicated in
the central column of Table I. The parameter ϕ defines the
chirality of the model; when ϕ = 0 (mod π/3), the model
is nonchiral or Potts model and otherwise it is termed the
chiral-clock model [52,53].

It is useful to recap how the general analysis of Sec. IV A
applies to this specific model when the solvable point (hx = 0,
ε = 0) is considered. The Floquet states appear in triplets
given by Eq. (21) with n = 3 whose quasienergies are respec-
tively μ+({si}), μ+({si}) − 2π/3 and μ+({si}) + 2π/3 with
μ+({si}) = ∑

i Ji(eiϕs∗
i si+1 + H. c.) [see Eq. (25)]. For each

pair, s∗
i si+1 can assume three possible values 1, ω, ω2 and the

corresponding interaction energies of the pair are 2JiRe(eiϕ ),
2JiRe(ωeiϕ ), and 2JiRe(ω2eiϕ ). Because of the disorder in Ji

(which makes other degeneracies unlikely), a degeneracy in
the Floquet spectrum is possible only if the model is nonchiral
and ϕ = 0 (mod π/3) (Fig. 2).

We numerically simulate the dynamics of this model with
the kicks defined in Eq. (18) using exact diagonalization of
finite-size systems and then we extrapolate to the thermody-
namic limit utilizing finite-size scaling. We do that by probing
the order parameter Z [σ̂ ]

3 (t ) defined in Eq. (5) (we remember
that t is discrete and is a multiple of the driving period T ).
In the solvable case (hx = 0, ε = 0), it is easy to use the
analysis of Sec. IV A and see that Z [σ̂ ]

3 (t ) = 1 for every t and
therefore period-3 oscillations last forever. The data shown
in the following are typically averaged over 100 disorder
configurations; the variance is small on the scale of the figures.
We start considering the effect of a transverse field hx for
different values of the chirality parameter ϕ.
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FIG. 3. Time evolution of the order parameter Z [σ̂ ]
3 (t ) for n = 3 with distinct transverse fields hx and distinct chiralities ϕ. We notice the

absence of time crystal in the nonchiral case ϕ = 0. Numerical parameters are ε = 0, T = 1, Jz = 1, hz = 0.9, ϕz = 0, and ϕx = 0 and the
results are averaged over 100 disorder realizations. Error bars (not shown in the plots) are of the order 10−2.

For a sufficiently small hx, Z [σ̂ ]
3 (t ) reaches a plateau after a

small time, with ReZ [σ̂ ]
3 < 1 and ImZ [σ̂ ]

3 ∼ 0 [see Fig. 3(a)].
Oscillations with respect to the value of the plateau are
observed for a single configuration of disorder. They tend to
disappear when we take the disorder-averaged values [54].
The order parameter ReZ [σ̂ ]

3 (t ) decays from the constant value
of the plateau to 0 after a time t∗ which increases with the
system size. For increasing values of hx, the time-crystal
behavior is destroyed and the plateau disappears: We can see
an instance of that in Fig. 3(b).

In Figs. 3(c) and 3(d), we consider the effect of the chirality
parameter ϕ. We show the time dependence of Z [σ̂ ]

3 (t ) for
different values of ϕ. When ϕ is close to the nonchiral case,
oscillations are less stable. We compare the cases ϕ = π/36
[Fig. 3(c)] and ϕ = π/6 [Fig. 3(a)] for the same value of
hx: We see that the exponential increase of t∗ with the size
L is slower. As predicted, when ϕ = 0 and the solvable
Hamiltonian is degenerate, no time crystal was observed, even
for small values of hx [see Fig. 3(d)]. Here we have a nu-
merical confirmation of the role of degeneracies is in making
time-translation symmetry oscillations extremely fragile to
perturbations.

A more accurate analysis, where we estimate t∗ as the
time at which ReZ [σ̂ ]

3 (t ) reaches 0.5, indicates that t∗ ex-
ponentially increases with the system size when ϕ 	= 0 [see
Figs. 4(b), 4(c) and 4(d)]. In the thermodynamic limit t∗ →
∞ and the period-tripling oscillations are persistent: The
system is a time crystal as we predicted in Sec. IV B. As
we can see in Fig. 4(a), no exponential growth is found in
the nonchiral case: t∗ is essentially independent of the size of
the system, thus no time crystal in the thermodynamic limit.
Based on these results, we can infer that the critical value
of hx that represents the transition to a normal phase gets
smaller and tends to 0 as ϕ approaches the nonchiral value
ϕ = 0. We will confirm this picture by studying the spectral-
triplet properties and mapping a full phase diagram in hx-ϕ
plane.

As we discussed in Sec. II, the presence of triplets in
the spectrum with 2π/3 quasienergy splitting is necessary in
order to have a period-tripling behavior. We expect to see

finite-size corrections to the splitting of the order O(e−cL ),
as we have discussed in Sec. IV B. In order to probe spectral
triplets, we study the quantities

�α
0 = μα+1 − μα, (33)

�α = |μα+N − μα − 2π/3|, (34)

where the quasienergies μα are sorted from the lowest to the
greatest value in the first Floquet Brillouin zone [0, 2π/T ]
and N = 3L−1. Since the total number of states is 3L, the
quasienergies μα+N and μα are separated by one third of
the levels of the spectrum. If the system is a time crystal,
for a finite (but large) L we expect to find values of �α

much smaller than the level spacing between two subsequent
quasienergies �α

0 ∼ 2π/3L.
In Fig. 5, we plot the dependence of log10 �α − log10 �α

0
as a function of 1/L. The quantity is averaged over all
the Floquet quasienergies 1 � α � 3N and over different
disorder configurations. When the parameters ϕ and hx are
chosen such that the system is a time crystal, we expect to
find by extrapolation that log10 �α − log10 �α

0 → −∞ in the
thermodynamic limit. On the contrary, for a generic spectrum
with Poisson statistics (but no 2π/3 triplets), this quantity
should diverge with increasing L. Figure 5(a) refers to the
nonchiral model. The plot shows that for every value of hx in
the range selected, log10 �α − log10 �α

0 does not converge to
0 as we increase the system size. On the contrary, this quantity
increases with L. This confirms the absence of a time crystal
for the nonchiral clock model.

For the chiral clock model with ϕ = π/36, the results
shown in Fig. 5(b) are consistent with the presence of a
time-crystal phase for hx sufficiently small (hx � 0.1 ÷ 0.2).
A transition from the time-crystal phase to a normal phase
is suggested for larger values of hx: log10 �α − log10 �α

0 is
expected to increase as 1/L goes to 0 for hx � 0.3 and
decrease for hx � 0.1. However, the small size of the systems
that can be analyzed is a serious constraint to the possibility
to make precise predictions.

104303-8



FLOQUET TIME CRYSTALS IN CLOCK MODELS PHYSICAL REVIEW B 99, 104303 (2019)

FIG. 4. Dependence of t∗ as defined in the text on the size of the system for different values of hx and ϕ. In the chiral case, t∗ grows
exponentially for sufficiently small hx and becomes independent of the size for large hx . As we get closer to the nonchiral case, the dependence
gets flatter until at ϕ = 0 we do not see the exponential growth for any value of hx .

In order to systematically analyze the dependence of the
spectral gaps on the strength of the perturbation hx, we study
the quantities log10 �α and log10 �α

0 as functions of log10 hx.
In Fig. 6(a), we consider a chiral case (ϕ = π/18). We first

notice that log10 �0 does not depend on hx, which is consistent
with the fact that �0 ∼ 2π/3L for every value of hx. On the
contrary, log10 � linearly increases with log hx with an angular
coefficient linear in L up to a critical value hc (clearer evidence
of this fact will be given in Fig. 8). These results are consistent
with a dependence of the form � ∝ (hx )L for hx much smaller
than a critical value hc. For large hx, the triplets disappear and
� will tend to a constant value.
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(b)ϕ =π/36

hx =0.1
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hx =0.4

hx =0.5

hx =0.6

FIG. 5. Scaling of the quantity log10(�α/�α
0 ) with the system

size, for different values of the chirality parameter ϕ.

The transition is also revealed by the quasienergy average
spectral ratio defined as

r =
[

min(δα, δα+1)

max(δα, δα+1)

]
(35)

with μα in increasing order and δα = μα+1 − μα . The average
is performed over the whole spectrum and over disorder.
This quantity is a useful signature of the level statistics
and can be used to discriminate ergodic from many-body
localized phases [35,36,55]. For small hx, r is close to the
value of 0.386 expected for a Poisson statistics [Fig. 6(b)].
This is an evidence for many-body localization, because it
shows the absence of level repulsion. When hx approaches
the critical value, significant deviations from the Poisson

−12

−10

−8

−6

−4

−2

0
(a)

(b)

L=2

L=3

L=4

L=5

log10 Δα
0

log10 Δα

−2 −1 0
log10 hx

0.4

0.5

0.6

r

FIG. 6. (a) Averaged value of the logarithms of the spectral gaps
log10 �α

0 , log10 �α as a function of log10 hx . (b) Quasienergy level
statistic ratio r as a function of log10 hx . Dashed lines represent the
value for Poisson statistics (0.386) and for Wigner-Dyson (0.527).
Data were obtained for the chiral case ϕ = π/18.
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FIG. 7. Averaged value of the logarithms of the spectral gaps
log10 �α

0 , log10 �α as a function of log10 hx . Data were obtained for
the nonchiral case ϕ = 0.

limit can be observed, signaling a transition in the level
statistics. Therefore, the melting of the time crystal is ac-
companied by a transition of the dynamics toward an ergodic
behavior.

The nonchiral model, where there is no time crystal,
has substantially different spectral properties from the chiral
model.

In Fig. 7, we show the dependence of log10 �α
0 and

log10 �α on log hx. A comparison with Fig. 6 highlights
some significant differences. The gaps log �α have a weaker
dependence on L than in the chiral case and the quantity
log10 �α

0 is not constant with respect to log hx. The depen-
dence of the gap �0 between two consecutive levels on
hx is due to the fact that some eigenstates are degenerate
in the absence of the perturbation: When hx 	= 0, a gap
that depends on the perturbation strength is opened between
them.

A rough estimate of the critical value of hx can be obtained
in the chiral case from the scaling �/�0 ∝ (hx/hc)L. From
an analysis of the plots, we can assume that this relation
is valid when hx is much smaller than hc. The data in the
linear region (for small hx) of Fig. 6 are fitted with the
expression

log � − log �0 = log c + L log hx − L log hc

with log c and log hc as fitting parameters. In the inset of
Fig. 8, the dashed lines represent the linear relation derived
from the fit. From the fitting parameter log hc (the gray vertical
line in Fig. 8), we obtain hc � 0.48. In Fig. 8, we show
the collapse of the curves in the inset when we rescale the
quantities with the system size: This confirms the validity of
the scaling we assumed for �/�0.

In order to further prove that the time-crystal phase dis-
appears in the nonchiral model, it is possible to use the
same fitting procedure to extrapolate an estimate of the
critical value hc for different values of ϕ. We expect that
stability is lost in the proximity of the nonchiral case, so
hc → 0 as ϕ approaches the value ϕ = 0. An estimate of
the critical value hc is derived as we vary ϕ and it is
shown in Fig. 9 for two different values of hz. The curve
that we get with this procedure represents the transition
from the time-crystal phase to a normal phase. Both plots

FIG. 8. Averaged values of log10 �α − log10 �α
0 as a function of

L(log10 hx − log10 hc ), for different system sizes and ϕ = π/18. In
the inset, the same quantity is plotted vs log10 hx: Dashed lines are the
result of the fitting procedure in the region of small hx . The vertical
gray line corresponds to the critical value hc.

confirm that the time crystal is less stable as ϕ tends
to 0.

In the chiral case, we also checked the stability of the
time crystal to perturbations in the kicking [the case ε 	= 0
in Eq. (18)] and there is no transverse field. Similar to the
case hx 	= 0, numerical simulations show that oscillations of
the order parameter decay after a time that grows exponen-
tially in the system size if the perturbation amplitude ε is
sufficiently small (Fig. 10). For larger values of ε, oscilla-
tions decay much more quickly until time crystal behavior is
lost.

D. Phase diagram n = 4

The n = 4 case is the minimal model where it is possible
to investigate transitions between time crystals of different
periodicity. To this end, we need to consider also terms with
m = 2 in Eq. (13) (see the corresponding entry in the Table I).
The Hamiltonian Ĥ is composed of different competing terms:
a term favoring states breaking spontaneously a Z4 symmetry
and another term favoring states breaking a lower Z2 symme-
try. We write here explicitly for convenience the case δ = 0
(see Table I):

Ĥ (SR)
4,η =

∑
i

Ji

[
σ̂ 2

i σ̂ 2
i+1 + (1 − η)

2
(eiϕσ̂

†
i σ̂i+1 + H. c.)

]
+
∑

i

hz,iσ̂
2
i + η

∑
i

hx,iτ̂
2
i , (36)

where η parameterizes the competing symmetry-broken
phases. The Floquet operator is of the type Ûη(T ) =
e−iT Ĥ (SR)

η X̂ , with n = 4 clock variables and kick operator X̂ as
given by Eq. (16).

In the limit η = 0, the Hamiltonian in Eq. (36) is of the
type discussed in Sec. IV A and is expected to support a time
crystal with period 4. On the other hand, for η = 1, the opera-
tors σ̂ 2

i and τ̂ 2
i commute among themselves and with Ĥ (SR)

η .
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FIG. 9. The curve represents the critical value hc as a function of
the chirality parameter ϕ. It corresponds to the transition from the
time crystal phase to a normal phase.

Given the common eigenstates of these operators |{si, ti}〉,
they satisfy σ̂ 2

i |{si, ti}〉 = si |{si, ti}〉, τ̂ 2
i |{si, ti}〉 = ti |{si, ti}〉.

These states are eigenstates of Ûη=1(T )
2

with eigen-
value [56] (

∏
i ti ) exp [−2iT E ({si, ti})] where we have defined

2 4 6
L

2

4

6

8

10

lo
g

1
0
(t

∗ /
T

)

= 0.05

= 0.10

= 0.15

FIG. 10. Dependence of t∗ (time before period-tripling oscilla-
tions decay) on the system size for distinct kicking perturbations ε.
We consider here the chiral case ϕ = π/6.

E ({si, ti}) = ∑
i Jisisi+1 + ∑

i hx,iti. The Floquet states are

|ψ ({si, ti},±)〉

= 1√
2

⎡⎣1 ±
(∏

i

ti

)1/2

eiT E ({si,ti})Ûη=1

⎤⎦ |{si, ti}〉 (37)

and the corresponding quasienergies E ({si, ti}) + π
2 (
∏

i ti ) ∓
π
2 . Floquet states are indeed long-range correlated and there is
π -spectral pairing. Moreover, due to disorder and the presence
of the τ̂ 2 term, the spectrum is not degenerate. Therefore, we
expect to have a time crystal with period doubling.

Let us consider now the behavior of the system for inter-
mediate values of η. The Hamiltonian Ĥ (SR)

η has the property
that Û †

η σ̂ 2
j Ûη = −σ̂ 2

j for every value of η. This suggests

taking Z [σ 2]
2 (t ) [see Eq. (5)] as the appropriate measure to

study the robustness of the period-doubling oscillations since
Û †

η σ̂ jÛη = iσ̂ j only holds for η = 0.
In order to study a generic situation, we include a small

perturbation V̂ in the Floquet operator e−i(Ĥη+δV̂ )X̂ and study
numerically the robustness of oscillations for different val-
ues of η. We considered as perturbation V̂ = ∑

i hz,i(σ̂i +
σ̂

†
i ) + ∑

i hx,i(τ̂i + τ̂
†
i ). The reason for this choice is due to

[σ̂ 2
j , V̂ ] 	= 0, so that the perturbation will affect the dynamics

of σ̂ 2
j in a nontrivial way.

We show some of the results in Fig. 11. Additional data are
discussed in Appendix C (Fig. 25). As expected, σ̂ j has oscil-
lations (with period 4) only in a region close to η = 0, while
for σ̂ 2

j we find stable oscillations (with period 2), both close to
η = 0 and η = 1. A period-4-tupling time crystal is found in
a finite region of parameter space around η = 0 [Fig. 11(a)],
while a period-doubling time crystal is found close to η = 1
[Fig. 11(b)]. Our numerical analysis does not allow us to draw
reliable conclusions at intermediate values of η, because of
the small system sizes. Although the model could in principle
support a direct transition between period doubling and period
4-tupling, it seems that in the short-range case, defined by
Eq. (36), the two phases appear to be probably separated by an
intermediate normal region. In the next section, we will show
that the situation is dramatically different in the long-range
case where a direct transition between the two time-crystal
phases is indeed found.

V. INFINITE-RANGE MODEL

We now turn to the analysis of the Floquet dynamics with
the infinite-range version of the Hamiltonian in Eq. (13) and
denote it as Ĥ (LR)

n . Here, the physical origin of the time crystal
with period qT lies in the existence of a phase of Ĥ (LR)

n , where
a Zn symmetry of the Hamiltonian is broken to a lower sym-
metry Zn/q (if n/q > 1 is an integer) or fully broken (if q = n)
by an extensive amount of energy eigenstates. On initializing
the system in one of the symmetry-breaking manifolds, the
state is brought cyclically between those manifolds even if
the kick is not perfectly swapping. Consequently, the order
parameter of the symmetry-breaking cycles among q values.
This mechanism was behind the time crystal with q = n = 2
considered in Ref. [11] and applies also to the more general
cases we discuss here.
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FIG. 11. [(a), (b)] Time evolution of the order parameters Z [σ ]
4 (t ) (period-4 time crystal) and Z [σ 2]

2 (t ) (period-doubling time crystal), for
varying η parameters. (c) The upper (lower) plot shows the time of the decay of period-4 (period-2) oscillations. Results are obtained with the
following choice of parameters: Ji from the uniform distribution [1/2, 3/2], hz,i from [0,1], hx,i from [0,1], ϕ = π/3, δ = 0.1

The analysis of the infinite-range case will proceed as
follows. In Sec. V A, we discuss how to use the permutation
symmetry of the Hamiltonian to restrict to the even symmetry
sector and—in that sector—map the Hamiltonian to a n-site
bosonic model. The Zn symmetry is mapped to a discrete
translation symmetry of the boson model. Details of this
mapping will be presented in Appendix D. A detailed analysis
of spontaneous symmetry breaking occurring in Ĥ (LR)

n is
reported in Appendix E. Here, we focus on the time-crystal
behavior. In Sec. V B, we analyze specifically the cases with
n = 3 and 4. As in the previous cases, the time crystal is
detected by analyzing the peak in the Fourier spectrum of
the order parameter at the characteristic q-tupling frequency
[see Eq. (6) and the related discussion]. Because we restrict
ourselves to the even symmetry sector, we can study quite
large system sizes and perform a finite-size scaling of the
height of the peak and of its position showing that there
is a time crystal in cases where the interaction Hamiltonian
shows symmetry breaking. In the same section, we report on
a direct transition between different time-crystal phases by
varying the η parameter in the Hamiltonian (see Table I).
More specifically, we study the transition from a period-
doubling to a period-4-tupling time crystal. In Sec. V C, we
study the dynamics of the local observables of these models
in the semiclassical limit. In this way, we can study the
existence of the period n-tupling directly in the thermody-
namic limit.

A. Mapping to a bosonic Hamiltonian and the semiclassical limit

Due to the infinite-range nature of the interactions in the
model Hamiltonian and the form of the kicking term, the
Floquet operator has a symmetry generated by the invariance
under permutation of its subsystems. We focus our analysis
on the symmetric subspace, where the Hamiltonian can be
represented in terms of boson operators, providing in this
way a description of the system which is simpler and more

manageable for numerical implementation. The main idea is
to associate to each position of the clock variable a bosonic
mode. More precisely, given a set of bosonic operators {b̂ j},
satisfying the usual commutation relations,

[b̂�, b̂†
�′ ] = δ�,�′ , [b̂�, b̂�′ ] = 0, (38)

for � = 1, ..., n, the Hamiltonian operators are described in
this bosonic representation as follows (see Appendix D for
details):

L∑
i=1

σ̂i =
n∑

�=1

n̂�ω
�−1,

L∑
i=1

σ̂ 2
i =

n∑
�=1

n̂�ω
2(�−1), (39)

L∑
i=1

τ̂i =
n∑

�=1

b̂�b̂†
�+1,

L∑
j=1

τ̂ 2
j =

n∑
�=1

b̂�b̂†
�+2, (40)

where n̂� = b̂†
�b̂�. In the bosonic variables, the Hamiltonian

in Eq. (13) is represented as a closed chain of n bosonic
sites, with fixed number of L bosonic particles. Its explicit
expression is

Ĥ (LR)
n = − J

L

n∑
�,�′=1

n−1∑
m=1

αmωm(�−�′ )n̂�n̂�′−h
n∑

�=1

n−1∑
m=1

βmb̂�b̂†
�+m

(41)

(see also Table I).
It is important to emphasize that the Zn symmetry breaking

in the clock representation is mapped to the breaking of
the invariance under translation of the sites in the bosonic
representation. As an illustrative example, the states breaking
the rotational symmetry X̂ with fully aligned clock opera-
tors |s〉⊗L, for s = ω�, are represented in the bosonic lan-
guage by states in which all L bosons occupy a single site
� (“|01 . . . L� . . . 0n〉” in number representation). From now
on, we will consider only the bosonic representation of this
Hamiltonian.
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FIG. 12. Time-crystal behavior for a system with n = 3. (Numerical parameters: J = 1, h = 0.5, and NT = 215). (a) Fourier transform of
the order parameter 〈σ̂ 〉t . The initial state here is given by a symmetry-breaking ground state of the static Hamiltonian Ĥ (LR)

n=3 , the period T = 1,
and there is no perturbation in the kicking operator (ε = 0). [(b), (c)] Finite-size scaling for the position of the dominant frequencies (ωp) and
the height of the corresponding peak ( f [σ ]

ωp
); different initial states and different perturbations to the dynamics are considered.

In this representation, the kicking operator corresponds to
a global translation in the sites of the chain. Indicating with b′
the bosonic operators after the kick, the unperturbed kicking,
Eq. (16), reads ⎛⎜⎜⎜⎝

b̂′
1

b̂′
2
...

b̂′
n

⎞⎟⎟⎟⎠ = τ̂

⎛⎜⎜⎜⎝
b̂1

b̂2
...

b̂n

⎞⎟⎟⎟⎠, (42)

where τ̂ is the n × n matrix defined in Eq. (12). In other words,
the kicking corresponds to a global translation by a single
site (� → � + 1) in the bosonic chain. In the general case, the
kicking acquires a more intricate form,⎛⎜⎜⎜⎝

b̂′
1

b̂′
2
...

b̂′
n

⎞⎟⎟⎟⎠ = exp
[
i
(π

n
+ ε

)
�̂(n)

]⎛⎜⎜⎜⎝
b̂1

b̂2
...

b̂n

⎞⎟⎟⎟⎠ , (43)

where �̂(n) is the n × n matrix defined in Eq. (17).
The limit of L → ∞ is equivalent to the limit where

the bosonic modes are macroscopically occupied and the
dynamics is described by a semiclassical equation like the
Gross-Pitaevski one. In this limit, we can show that the
dynamics of the bosonic model is governed by a classical
effective Hamiltonian, generalizing the analysis done for the
Bose-Hubbard dimer reported in Ref. [57]. To this aim, we use
the transformation b̂� = √

L p̂ �/n eiφ̂� where, in order to pre-
serve the bosonic commutation relations, we have to assume
[φ̂�, p̂ �′ ] = inδ� �′/L. In the limit L → ∞, the commutators
are vanishing and the dynamics is classical. It is induced by
the effective Hamiltonian [58] H(LR)

n

H(LR)
n = −J

n

n∑
�,�′=1

n−1∑
m=1

αmωm(�−�′ ) p� p�′

− h
n∑

�=1

n−1∑
m=1

βm
√

p� p�+mei(φ�−φ�+m ), (44)

where the Poisson brackets between the canonical coordinates
and momenta are {φ�, p �′ } = δ� �′ , {φ�, φ�′ } = 0, {p �, p �′ } =
0. The Hamiltonian (41) conserves the total number of bosons

to the value L; this reflects in the classical Hamiltonian
conserving the sum of the momenta to the value 1. This fact
allows to restrict the dynamics to n − 1 pairs of canonical
coordinates and momenta.

The kicking operator is described in the bosonic language
by Eq. (43). Using the relation b̂� = √

Lp̂ �/n eiφ̂� , this peace-
ful linear transformation becomes a strongly nonlinear object
when expressed in terms of the variables p � and φ�. In
conclusion, we can study if the model shows time-translation
symmetry breaking in the thermodynamic limit by looking at
the classical dynamics of an Hamiltonian system with n − 1
degrees of freedom; we are going to perform this analysis first
in the case n = 3 and n = 4 with η = 0 in the next subsection
and then in the case n = 4 with η 	= 0, studying a transition
between distinct time-crystal phases.

B. Time-crystal phases

We first focus on the analysis of the cases n = 3 and n = 4
with η = 0, and study the existence of a discrete time crystal
fully breaking the Zn symmetry. Later on, we will consider the
case n = 4 with η 	= 0 which can show a transition between
distinct time crystal orders. We consider the Floquet operator
Eq. (9) with p = 1 and infinite-range interactions, expressed
in the bosonic representation. In the rest of this section, we
will study the dynamics of the sets of operators σ̂ = L−1 ∑

i σ̂i

and σ̂ 2 = L−1 ∑
i σ̂

2
i . The expectation values of σ̂i, σ̂ 2

i are
independent of the site index i. They are therefore equivalent
to the site averages which have a simple expression in terms
of the bosonic operators; see Eq. (39).

1. n = 3, n = 4 with η = 0

We considering the dynamics of σ̂ we expect the system
to pass cyclically between different symmetry-breaking sub-
spaces, where the expectation of this operator is markedly
different. As we have explained in Sec. II, we consider
the expectation value at stroboscopic times 〈σ̂ 〉t and per-
form its discrete Fourier transform over NT periods [see
Eq. (6)].

We start with a detailed numerical analysis in the case
n = 3. We first initialize the system in a symmetry-breaking
ground state of the static Hamiltonian [42]. We consider the
perfect-swapping kick given in Eq. (42). In Fig. 12(a), we plot
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FIG. 13. Time evolution for the order parameter Eq. (45) for a system with n = 3, J = 1, h = 0.5, and T = 1. (a) Time evolution for the
absolute value |〈σ̂ 〉t | for different system sizes. (b) Time evolution for the phase φ(t ) across the Rabi oscillation period tb. (c) Scaling of the
Rabi oscillation period tb with the system size.

the power spectrum | f [σ ]
ω | for a finite-size case and see that,

for a coupling h/J smaller than the critical field value, there
are two peaks that tend to ω(3) [Eq. (7)] as the system size is
increased [Fig. 12(b)]. The height of the corresponding peaks
increases with the system size; see Fig. 12(c). The system
breaks the discrete time-translation symmetry Z to 3Z. The
height of the peaks is related to the initial state of the evolution
and its expectation value for the order parameter 〈σ̂ 〉t=0. For
small system sizes, the order parameter shows exponential
corrections with L due to finite-size effects, while for larger
system sizes it scales polynomially to a finite value. We expect
the peaks of the Fourier spectrum to behave in a similar way.
The separation between the two peaks is exponentially small
in the system size [Fig. 12(b)]. This gives rise to oscillations
of period exponentially long in L, which appear in the Fourier
spectrum as a splitting in two of the period-tripling peak. This
behavior can be seen in Fig. 13, where we show the time

evolution of the order parameter

〈σ̂ 〉t = |〈σ̂ 〉t |eiφ(t ) . (45)

In Fig. 13(a), we show its absolute value, where we see a
periodic behavior with period tb(L) related to the oscillations.
The phase φ(kT ) of the order parameter shows period-tripling
oscillations, as seen in Fig. 13(b), suffering a shift after every
period tb(L). In Fig. 13(c), it is evident that the corresponding
periods are exponentially large with the system size and thus
are effectively absent in the thermodynamic limit.

In order to verify that these period-tripling oscillations are
not a fine-tuned behavior, we apply different perturbations
to the dynamics, varying the period T , considering the per-
turbed kicking operator [Eq. (43) with ε 	= 0], and considering
different initial states [taken as symmetry-breaking ground
states of Ĥ (LR)

n=3 − ho
∑

i(τ̂i + τ̂
†
i )]. In Figs. 12(b) and 12(c),

we see that the time-crystal behavior is indeed robust to such

FIG. 14. Distinct time-crystal phases in the model Hamiltonian Ĥ (LR)
n=4,η. [(a), (b)] Fourier transforms for the order parameters σ̂ and σ̂[2],

considering a fixed system size L = 8. [(c)–(d)] Scaling with the system size for (c) the height of the dominant peak in the Fourier transforms
and (d) its corresponding frequencies, for η = 0.1 and 0.9. (Numerical parameters: n = 4, J = J ′ = 1, h = h′ = 0.5, and NT = 215).
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FIG. 15. The value of m1 eq = m2 eq at the minimum point of the
Hamiltonian Eq. (52) vs h. For h < 0.77 it is nonvanishing, marking
a Z3 symmetry-breaking phase (numerical parameters J = 1).

FIG. 16. (a) Evolution of m1(t ) with the Hamiltonian (52) and
the kicking (42), with n = 3. (b) Corresponding Fourier transform
[see Eq. (6)]: We see a marked peak at the period-tripling frequency
ω(3) = 2π/(3T ) (numerical parameters: h = 0.36, J = 1.0, T =
0.1, NT = 2048).

perturbations, whenever h/J is smaller than the critical field.
We see therefore that there is a time-crystal behavior and
it is intimately connected to the symmetry breaking of the
interaction Hamiltonian.

We have also studied the case n = 4, which for η = 0
shows essentially the same behavior as in the previous case
n = 3, but with period 4-tupling. The situation changes dras-
tically when η 	= 0; in this case, at n = 4 a new dynamics
phase transition between period doubling and period 4-tupling
appears. This will be the topic of the next subsection.

2. n = 4, η �= 0: Transition between different time-crystal phases

In this case, the dynamics can generate distinct time-crystal
phases. For η that is not too large, the system can break the
Z4 time translation symmetry, while for larger η it breaks
a lower Z2 symmetry. We set J = J ′ = 1 and h = h′ = 1/2,
initialize the system in a symmetry-breaking ground state of
Ĥ (LR)

n=4,η [59], and perform a time evolution with 215 periods.
In Figs. 14(a) and 14(b), we show the Fourier power

spectrum for the order parameters 〈σ̂ 〉t and 〈σ̂ 2〉t at a fixed
system size L = 8. For small η, we see two dominant peaks in
| f [σ ]

ω | around the period-4-tupling frequency. As we increase
η, the two dominant peaks of | f [σ ]

ω | decrease their magnitude
and become farther apart from each other. On the other hand,
the dominant peaks of | f [σ 2]

ω | increase their magnitude and get
closer to each other, around the period-doubling frequency.
This analysis for finite size suggests that there is at some point
a transition from a period 4-tupling at small η witnessed by σ̂

and a period doubling at large η witnessed by σ̂ 2.
We show the finite-size scaling analysis for the frequency

of the dominant peak [Fig. 14(c)] and its magnitude
[Fig. 14(d)] for the cases η = 0.1 and η = 0.9. For η = 0.1,
we see the behavior of a period-4-tupling time crystal, in
which the magnitude of the dominant peak | f [σ ]

ωp
| increases

with the system size, with the corresponding frequency

FIG. 17. Evolution of m1(t ) with the Hamiltonian (52) without
any kicking, for different initial conditions. Notice the oscillations
around an average value different from 0, proving the existence of
an interval of energies above the minimum where the corresponding
trajectories are Z3 symmetry breaking (numerical parameters: h =
0.36, J = 1.0).
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FIG. 18. (Upper panels) Evolution of m(t ) with the Hamiltonian Eq. (52) and the ε 	= 0-periodic kicking Eq. (42) (numerical parameters:
h = 0.36, J = 1.0, T = 0.1, and m1(0) = m2(0) = meq in the left panel and m1(0) = m2(0) = −0.6 in the right one). (Central panels)
Corresponding Fourier transforms for NT = 2048 periods: For small ε, we see a marked peak at the period-tripling frequency ω(3) = 2π/(3T ).
(Lower panels) Position ωp (left) and height | f [m1]

ωp
|2 (right) of the main peak of the Fourier power spectrum vs ε for different values of

m1(0) = m2(0) = mini. We see persistent period-tripling oscillations (main peak at ωp = ω(3) = 2π/3) for ε small enough (ε � 0.08).

ω[σ ]p approaching the period-4-tupling frequency. The order
parameter σ̂ 2 displays a period-doubling response with a
similar scaling behavior as the dominant peak | f [σ 2]

ωp
| and

its frequency ω[σ 2]p. In this case, therefore, the system is a
period-4-tupling time crystal.

On the opposite limit of η ∼ 1, the behavior is different.
We consider the case η = 0.9. Here the magnitude of the
dominant peak of f [σ ]

ω is rather small and independent of the
system size, marking the absence of a period-4-tupling time-
crystal phase. Furthermore, its frequency does not approach
the period-4-tupling frequency. The Fourier transform f [σ 2]

ω ,
however, shows the expected behavior for a time crystal, with
the dominant frequencies approaching the period-doubling
frequency in the thermodynamic limit and the magnitude of

the corresponding peak increasing with L. In this case, the
system shows period doubling.

The system supports distinct nontrivial time-crystal phases,
breaking for η ∼ 0 a discrete time-translation symmetry Z to
4Z, while for η ∼ 1 it breaks Z to 2Z. The exact position
of the transition between these two phases is difficult to
locate using exact diagonalization due to the limitations in
the system sizes. For this goal, we will use a semiclassical
approach, which allows us to study the thermodynamic limit
in a easier way. It is important to note that although the
semiclassical approach allows us to obtain the exact behavior
in the thermodynamic limit, the finite-size scaling we have
done until now was a crucial point in order to show that these
symmetries are spontaneously broken only in the thermody-
namic limit, as appropriate for a time crystal.
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C. Results for the semiclassical limit

1. Case n = 3

In this case, exploiting the conservation of p1 + p2 + p3 =
1, it is convenient to apply a linear canonical transformation
in the following way:

p1 = N + m1, (46)

p2 = N + m2, (47)

p3 = N − m1 − m2, (48)

φ1 = 1
3 (2θ2 − θ1 + �), (49)

φ2 = 1
3 (−θ2 + 2θ1 + �), (50)

φ3 = 1
3 (−θ2 − θ1 + �), (51)

where {θ�, m�′ } = δ� �′ , {�, N } = 1 and all the other Poisson
brackets are vanishing. It is easy to see that the Hamiltonian
written in the new variables does not depend on � and
therefore N is conserved to 1/3. The Hamiltonian in the new
variables acquires the form

H(LR)
3 = − J

(
m2

2 + m1
2 + m1m2

)
− 2h[

√
(1 + m2)(1 + m1) cos(θ1 − θ2)

+
√

(1 + m1)(1 − m1 − m2) cos θ1

+
√

(1 − m1 − m2)(1 + m2) cos θ2] . (52)

The order parameter for the static and the time-translation
symmetry breaking can be written in terms of m1(t ) and m2(t )
using Eq. (39) and has the form

σ = lim
L→∞

〈σ̂ 〉 = 1

6
(1 + 3m2) + i

√
3

6
(m2 + 2m1). (53)

It is possible to find the state of minimum energy imposing
θ1 = θ2 = 0 and minimizing the energy along the line m1 =
m2. There is an interval of parameters where this state has
m1 eq = m2 eq 	= 0 (see Fig. 15) and therefore is triple degener-
ate [this can be easily seen by repeating the same argument on
the Hamiltonians which are obtained permuting cyclically the
indices 1,2,3 on the left side of the transformations Eqs. (46)–
(51)]. This fact marks the existence of a phase where there is a
spontaneous breaking of the Z3 symmetry of the Hamiltonian
Eq. (44) for n = 3; indeed, in this phase the order parameter
Eq. (53) is different from zero. The critical field here is hc =
0.77 and lies within the estimate predicted using a finite-size
scaling analysis (see Appendix E).

After the necessary introduction to the properties of the
Hamiltonian, we now focus on the kicked dynamics and the
period-tripling oscillations. We apply the kicking Eq. (42) to
this Hamiltonian, solve the Hamilton differential equations,
and see if there are period-tripling oscillations. Because m1(t )
and m2(t ) have very similar behaviors, we will discuss in
detail the behavior of m1(t ) [our conclusions hold for m2(t )
and then for the order parameter σ (t ) exactly in the same
way]. Let us focus on a case where the Z3 symmetry is
broken in the static part of the Hamiltonian (h = 0.36J) and

FIG. 19. The values of mj eq and |σeq| at the minimum point of the
Hamiltonian Eq. (54) vs h. For h < 1 they are nonvanishing, marking
a Z4 symmetry-breaking phase (numerical parameters: J = 1).

let us look for the period-tripling oscillations. If present, these
oscillations appear as a marked peak at the period-tripling
frequency in the power spectrum of the Fourier transform
of m1(t ) [see Eq. (6)]. Remarkably, we see those oscilla-
tions both in time domain (upper panel of Fig. 16) and in
frequency (lower panel of Fig. 16) if we initialize the sys-
tem in one of the symmetry-breaking ground states [θ1(0) =
θ2(0) = 0 and m1(0) = m2(0) = meq] or if we initialize it
with θ1(0) = θ2(0) = 0 and a value of m1(0) = m2(0) = mini

near to meq. This robustness with respect to the initial state
is due to the existence of an interval of energies where all
the trajectories break the Z3 symmetry, as it occurs in the
period doubling case (see Ref. [11]). We have checked this
fact studying the dynamics of Hamiltonian (52) without a
kicking: For the values of m1(0) = m2(0) = mini considered
in Fig. 16, we can see oscillations of m1(t ) around a nonva-

FIG. 20. Evolution of m1(t ) with the Hamiltonian Eq. (54) and
no kicking. Initial conditions θ1(0) = θ2(0) = θ3(0) = 0, m2(0) =
m2 eq, m1(0) = m3(0) = m1 eq + δm. J = 1, h = 0.36.
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FIG. 21. Dynamics of m1(t ) with the Hamiltonian [Eq. (54)] and perturbed kicking [Eq. (43)]. Time domain (left panels) and frequency
domain (right panels). For ε = 0.01, we see the period-4-tupling oscillations (appearing as a peak at ω(4) = π/(2T ) which disappear for larger
ε). Initial conditions: θ1(0) = θ2(0) = θ3(0) = 0, m2(0) = m2 eq, m1(0) = m3(0) = m1 eq + δm; we consider two different initial conditions,
δm = 0 in the upper panels and δm = 0.08 in the lower ones. Numerical parameters: J = 1, h = 0.36, T = 0.1.

nishing value (see Fig. 17). This interval of energies where
the trajectories break the Z3 symmetry directly corresponds
to the extensive amount of eigenstates below an energy
threshold which break the symmetry in the finite-size case
(see Appendix E).

The dynamics is robust also against perturbations in the
kicking: If we apply Eq. (43) with n = 3, we see a full
interval of ε where the time crystal persists. We can see
this fact by studying the Fourier transform of m1(t ): We find
a marked peak at the period-tripling frequency for a full
interval of ε around zero. The symmetry-breaking oscilla-
tions of m1(t ) in the time domain are shown in the upper
panels of Fig. 18. In the central panels, the corresponding
Fourier transforms: When ε is small enough, there is a marked
peak at the period-tripling frequency. In the lower panels,
it is shown how the frequency ωp and the height | f [m1]

ωp
|2

of the peak in the Fourier transform depend on ε. For all
the considered initial conditions, the peak frequency devi-
ates from ω(3) (and then the time crystal disappears) when
ε > 0.08.

2. n = 4, η = 0

The approach is analogous to the case n = 3. Using
that p1 + p2 + p3 + p4 = 1, we can write the effective
Hamiltonian in the form

H(LR)
4,η=0 = − J

4
[(m1 − m3)2 + (2m2 + m1 + m3)2]

− 2h
√

(1 + m1)(1 + m2) cos(θ1 − θ2)

− 2h
√

(1 + m2)(1 + m3) cos(θ2 − θ3)

− 2h
√

(1 + m3)(1 − m1 − m2 − m3) cos(θ3)

− 2h
√

(1 − m1 − m2 − m3)(1 + m1) cos(θ1) ,

(54)

where θ j are canonical coordinates and mj are canonical mo-
menta and obey the standard canonical commutation relations.
Using Eq. (39), we can write the order parameter σ in terms
of mj in the form

σ = 1
4 [(m1 − m3) + i(2m2 + m1 + m3)] . (55)
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FIG. 22. Order parameters vs η in the minimum-energy state of
the Hamiltonian Eq. (57) (numerical parameters h = h′ = 0.5, J =
J ′ = 1.0).

We can find the minimum of the Hamiltonian Eq. (54) fixing
θ j = 0 and then using a steepest descent algorithm. For h < 1
there is a Z4 broken-symmetry phase where mj eq and σeq are
nonvanishing (see Fig. 19). There is a full interval of energies
where the trajectories break the Z4 symmetry; we can see this
fact in Fig. 20, where we simulate the dynamics of H(LR)

4,η=0
without any kicking. We choose initial conditions different
from the equilibrium ones and we observe that m1(t ) oscillates
around a nonvanishing average. These are the perfect condi-
tions for the manifestation of a period-4-tupling time crystal.
Indeed, if we apply to this system the kicking in Eq. (43) with
n = 4, we see period-4-tupling oscillations which are stable
if we consider initial conditions different from the lowest en-
ergy ones, m2(0) = m2 eq, m1(0) = m3(0) = m1 eq + δm [see
Fig. 21; here we show only m1(t ) for clarity, the situation is
the same for all the mj (t ) and for σ (t )].

3. n = 4, η �= 0: Transition between two different
time-crystal phases

We finally analyze the behavior as a function of η. The
order parameter σ for the breaking of the Z4 symmetry is the
one in Eq. (55), while the Z2-order parameter is expressed by
the quantity

σ[2] ≡ lim
L→∞

〈σ̂ 2〉 = (1/2)(m1 + m3) (56)

[see Eq. (39)]. The effective Hamiltonian has the form

H(LR)
4,η = (1 − η)H(LR)

4,0 + η[−J ′(m1 + m3)2

− 2h′√(1 + m1)(1 + m3) cos(θ1 − θ3)

− 2h′√(1 + m2)(1 − m1 − m2 − m3) cos θ2], (57)

where H(LR)
4,0 is the effective Hamiltonian shown in Eq. (54).

As before, we start from considering the properties of the
minimum-energy point of the static part of this model (we find
this point through a steepest descent algorithm). The results
are reported in Fig. 22: σ[2] eq is always nonvanishing, while

FIG. 23. Evolution of m1(t ) with the Hamiltonian Eq. (57) and
the kicking Eq. (43). Both period 4-tupling for η = 0.36 (upper
panel) and period doubling are present for η = 0.82 (central panel;
the factor (−1)k makes the period-doubling oscillations appear as
an almost constant object). No time crystal whatsoever for η = 0.96
and ε = 0.01 (lower panel). (Numerical parameters h = h′ = 0.5,
J = J ′ = 1.0.)

σeq is nonvanishing only if η is smaller than an ηc which
for this choice of parameters equals 0.8. This means that the
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FIG. 24. (Upper left panel) Peak in the Fourier transform at the period-4-tupling frequency (| f [m1]
ωp n=4|) vs η; we notice that it disappears at a

value ηc ∼ 0.8 where the period-4-tupling time-crystal phase ends up. (Upper right panel) Peak in the Fourier transform at the period doubling
frequency (| f [m1]

ωp n=2|) vs η; we notice that it disappears at a value ηc 1 > ηc when ε 	= 0. For ηc < η < ηc 1, there is a period-doubling time-crystal
phase; for η > ηc 1, there is no time crystal. (Bottom left panel) In the period-4-tupling phase, the peak at the period-4-tupling frequency sticks at
ω(4) = π/(2T ). (Bottom right panel) Peak at the period-doubling frequency ω(2) = π/T (numerical parameters: h = h′ = 0.5, J = J ′ = 1.0).

model breaks the Z4 symmetry for η < ηc while it breaks only
the Z2 symmetry otherwise.

The dynamics of m1(t ) (the other mj behave exactly in the
same way) in the presence of the kicking is shown in Fig. 23,
where we consider different initial conditions, m2(0) = m2 eq,
m1(0) = m3(0) = m1 eq + δm. There are values of η for which
there is period 4-tupling (upper panel) and others for which
there is period doubling (central panel). Taking a perturbed
kicking with ε 	= 0, there are values of η where there is no
time crystal (bottom panel).

By looking at the properties of the Fourier transform, we
see a value ηc of η where there is a direct transition from
period 4-tupling to period doubling. For ε = 0, this point
coincides with the value of η where σeq at equilibrium disap-
pears (see Fig. 22). For ε 	= 0, another value ηc 1 > ηc appears
such that, for η > ηc 1, there is no time-crystal behavior. Three
phases appear, a period-4-tupling one, a period-doubling one,
and a normal one.

The first transition point at ηc is marked by the disappear-
ing of the peak in the Fourier transform at the period-4-tupling
frequency (| f [m1]

ωp, n=4|2) (see the upper left panel of Fig. 24). The

peak at the period-doubling frequency (| f [m1]
1 ωp, n=2|2) persists

until ηc 1 (upper right panel of Fig. 24). The first peak, in all
the period-4-tupling phase, is locked at the period-4-tupling
frequency ω(4) (lower left panel of Fig. 24), while the second
exists in both the time-crystal phases and is at frequency
ω(2) (lower right panel of Fig. 24). (This peak is not exactly
at ω(2) because of the finite number of periods over which
we analyze the dynamics; we have checked that it tends to
the correct value if we perform the Fourier transform over
a number of periods NT larger). In the phase without time
crystal, the position of the peak around the period-doubling
frequency slightly moves. It is not, however, relevant for
the dynamics, since its height is vanishingly small (see up-
per right panel of Fig. 24). It is not surprising that in the
case of period 4-tupling there is a peak also at the period-
doubling frequency, with ω(2) being one of the harmonics
of ω(4). The remarkable thing is that the peak at ω(4) will
disappear.

This picture is stable if we slightly perturb the kicking
with ε 	= 0 and if we take an initial state different from the
symmetry-breaking ground state (δm 	= 0). As we said before,
when ε 	= 0 a trivial phase appears for η > ηc 1. We empha-
size that in this analysis the initial conditions we consider
depend on η, because these initial conditions correspond to
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the minimum-energy point for that value of η or some point
around that minimum.

VI. CONCLUSIONS

We have studied a class of period-n-tupling discrete time
crystals based on interacting models of n-clock variables. We
have considered two different limits: a disordered short-range
model and a clean infinite-range clock model.

In the case of disordered short-range models, the stability
of the time crystal is provided by many-body localization,
which prevents the system from heating up to infinite tempera-
ture and makes possible the persistence of long-range order in
the dynamics. We have analyzed the features of these models
combining analytical results and perturbative arguments and
showed that the model supports a time crystal when there
are no degeneracies in its Floquet spectrum. In this case, the
main characterizing properties of a time crystal are robust
to perturbations, namely, (i) the presence of Floquet states
with long-range correlations, (ii) Floquet quasienergies orga-
nized in n-tuplets, which are shifted from each other by the
period-n-tupling frequency, and (iii) an order parameter clock
operator oscillating with the period-n-tupling frequency. We
have found that these properties are robust up to corrections
exponentially small in the system size. This implies that they
become exact in the thermodynamic limit where the time-
translation symmetry breaking occurs. We have corroborated
our theory with a numerical analysis for the case n = 3, which
shows a period-tripling time crystal, and for n = 4, where we
constructed a model showing period 4-tupling in one regime
and period doubling in another one.

In the infinite-range case, we have found that the inter-
action Hamiltonian has a phase where an extensive number
of eigenstates breaks the Zn symmetry in the thermody-
namic limit, and this was the basis for the stability of the
period-n-tupling time crystal in such models. Because of its
symmetry, generated by the invariance under permutation of
its subsystems, the infinite-range model can be studied for
larger system sizes, allowing us to perform a precise finite-size
scaling analysis. In fact, using its symmetries we have shown
that the model could be mapped over a bosonic model with
n sites whose occupation depends on the system size. Within
this picture, we have numerically studied the cases n = 3 and
4, showing in both cases the existence of a time-translation
symmetry-breaking phase only in the thermodynamic limit,
as appropriate for a time crystal.

In the thermodynamic limit, we have also shown that
the infinite-range model is described by a classical effective
Hamiltonian, where we have studied its dynamics in more
detail. We have showed exactly the existence of the time
crystal for n = 3 and n = 4. Moreover, similar to the short-
range case, we have also constructed a model whose static
part could show a transition between period n-tupling and
period n/2-tupling. We studied its properties in detail for
the case with n = 4. After showing the existence of the two
time crystal phases by means of a finite-size scaling analysis,
we used the effective classical model in the thermodynamic
limit to properly study their transition. We have then verified
that the model gives rise to a direct transition between the
time-crystal phase with period n-tupling to the one with period

n/2-tupling. This is one of the first examples in the literature
of a direct transition between different time-crystal phases.
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APPENDIX A: CLASSIFICATION OF TIME CRYSTALS:
HX = 0: PROOFS

We provide here the proofs of the results reported in
Sec. IV A.

1. Case 1: p and n are coprime: Proof of Eq. (20)

Let us define for clarity Ĥ = Ĥ (SR)
n By inserting a certain

number of identities, we can rewrite Û n as follows:

Û n = e−iT Ĥ X̂ pe−iT Ĥ X̂ −pX̂ 2pe−iT Ĥ X̂ −2pX̂ 3p . . .

X̂ npe−iT Ĥ X̂ −npX̂ np

= e−iT Ĥ e−iT X̂ pĤ X̂ −p
e−iT X̂ 2pĤ X̂ −2p

. . . e−iT X̂ npĤX̂ −np
, (A1)

where we also used X̂ np = 1. Since all the exponentiated
operators commute, we can write Û n = e−inT H̄ with

H̄ = 1

n

n−1∑
j=0

X̂ j pĤ X̂ − j p.

We note that Ĥ (SR)
n contains the interaction terms, which are

invariant under the transformation induced by X − j p, and a
longitudinal field containing operators σ̂ m

i (with 1 < m < n −
1), which satisfy

n−1∑
j=0

X̂ j pσ̂ mX̂ − j p =
⎛⎝n−1∑

j=0

ω− j pm

⎞⎠σ̂ m.

If n and p are coprime, the sum in parentheses contains all the
nth roots of 1, so it vanishes. We obtain

H̄ =
∑

i

Ji

n−1∑
m=1

αm (σ̂ †
i σ̂i+1)m.

2. Case 2: p and n have gcd(p, n) = s > 1: Proof of Eq. (22)

Similar to the previous case, we can use the fact that X̂ qp =
1 (with q = n/s) to rewrite Û q as

Û q = e−iT Ĥ e−iT X̂ pĤ X̂ −p
e−iT X̂ 2pĤX̂ −2p

. . . e−iT X qpĤX̂ −qp
. (A2)

We obtain that Û q = e−iqT H̄ with

H̄ = 1

q

q−1∑
j=0

X̂ j pĤ (SR)
n X̂ − j p.

As before, the interaction terms are not affected by the action
of X − j p, but the longitudinal field is. We see that

q−1∑
j=0

X̂ j pσ̂ mX̂ − j p =
⎛⎝q−1∑

j=0

ω− j pm

⎞⎠σ̂ m.
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The sum in parentheses is equal to q when mp = 0 (mod n)
(i.e., when m is a multiple of q); it vanishes otherwise. Hence,
we get

H̄ =
∑

i

Ji

n−1∑
m=1

αm (σ̂ †
i σ̂i+1)m +

∑
i

hz,i

n/q−1∑
m=1

γmq σ̂
mq
i .

3. Eigenstates of Û (T )

We now prove that the states |ψ ({si}, k)〉 defined in
Eq. (23) are eigenstates of Û (T ) and that they satisfy 〈σ̂i〉 = 0
and 〈σ̂ †

i σ̂ j〉 = s∗
i s j . The proof applies for both cases s = 1 and

s > 1. From Eq. (23), we get

Û (T ) |ψ ({si}, k)〉

= 1√
q
ω−sk(q−1)ei(q−1)T μ+({si})Û q |{si}〉

+ 1√
q

q−2∑
m=0

ω−skmeimT μ+({si})Û m+1 |{si}〉 , (A3)

where we isolated the term m = q − 1 of the sum. Shifting the
sum and using ω−qs = 1 and Û q |{si}〉 = e−iqT μ+({si}) |{si}〉, we
obtain

Û (T ) |ψ ({si}, k)〉

= 1√
q
ωske−iT μ+({si}) |{si}〉

+ 1√
q

q−1∑
m=1

ω−sk(m−1)ei(m−1)T μ+({si})Û m |{si}〉

= ωske−iT μ+({si}) |ψ ({si}, k)〉 . (A4)

This proves that for each k = 0, . . . , q − 1, the state
|ψ ({si}, k)〉 is an eigenstate with quasienergy μ+({si}) −
2πk/q.

Expectation values of a generic operator Ô on these states
are evaluated as follows:

〈ψ ({si}, k)|Ô|ψ ({si}, k)〉

= 1

q

q−1∑
m=0

q−1∑
j=0

ω−sk(m− j)ei(m− j)T μ+({si})

× 〈{si}|Û jÔÛ m|{si}〉 . (A5)

We are interested in the operators Ô = σ̂i and Ô = σ̂
†
i σ̂ j . For

the first case, we have

〈{si}|Û j σ̂iÛ
m|{si}〉 = 〈{si}|Û jωmpÛ mσ̂i|{si}〉 = ωmpsiδ j,m,

(A6)

which implies

〈ψ ({si}, k)|σ̂i|ψ ({si}, k)〉 = 1

q

q−1∑
m=0

ωmpsi = 0. (A7)

In the second case, we find

〈{si}|Û j σ̂
†
i σ̂ jÛ

m|{si}〉 = 〈{si}|Û jÛ mσ̂
†
i σ̂ j |{si}〉 = s∗

i s jδ j,m

(A8)

and hence 〈ψ ({si}, k)|σ̂ †
i σ̂ j |ψ ({si}, k)〉 = s∗

i s j .

APPENDIX B: CONSEQUENCES OF THE
QUASIADIABATIC CONTINUATION

1. Long-range order

In this section, we will generalize some results proven
in Ref. [39] for the Ising model to the case of the clock
model. In addition, we will use these generalized results
to prove some important properties concerning time-crystal
order (persistence of oscillations, spectral properties), which
were hinted to but not explicitly proven in Ref. [39].

The assumption that there exists a family of local unitaries
V̂λ (depending continuously on the perturbation strength λ)
that connects perturbed and unperturbed eigenstates has many
important consequences. First, as we now prove, it implies the
stability of the long-range order. Consider the perturbed eigen-
states |ψλ({si}, p)〉 = Vλ |ψ0({si}, p)〉. We define the dressed
operators

σ̃i,λ = V̂λσiV̂
†
λ , τ̃i,λ = V̂λτiV̂

†
λ .

It follows that

σ̃
†
i,λσ̃i+1,λ |ψλ({si}, p)〉 = V̂λσ

†
i σi+1 |ψ0({si}, p)〉

= s∗
i si+1 |ψλ({si}, p)〉 . (B1)

The unitary V̂λ is equivalent to the time evolution operator
of a local Hamiltonian, and as a consequence of the Lieb-
Robinson bound the dressed operators σ̃i,λ are exponentially
localized. Therefore, Eq. (B1) shows the existence of long-
range order.

2. Persistent oscillations

We proved that the eigenstates of Ûλ are also eigenstates of
σ̃

†
i,λσ̃i+1,λ, and hence

[Ûλ, σ̃
†
i,λσ̃i+1,λ] = 0. (B2)

Using the same argument as in Ref. ([39]), we now prove
that

Û †
λ σ̃i,λÛλ � ωpσ̃i,λ, (B3)

where Eq. (B3) is valid up to a correction that is exponentially
small in the system size.

Let us consider the operator σ̃
†
i,λσ̃ j,λ with j > i. This can

be written as a product of “l-wall” operators between neigh-
boring sites:

σ̃
†
i,λσ̃ j,λ = (σ̃ †

i,λσ̃i+1,λ)(σ̃ †
i+1,λσ̃i+2,λ) · · · (σ̃ †

j−1,λσ̃ j,λ).

Since each l-wall operator commutes with Ûλ, we have

[Ûλ, σ̃
†
i,λσ̃ j,λ] = 0.

We can rewrite this equation as

Û †
λ σ̃

†
i,λσ̃ j,λÛλ = (Û †

λ σ̃
†
i,λÛλ)(Û †

λ σ̃ j,λÛλ) = σ̃
†
i,λσ̃ j,λ. (B4)

We can further manipulate this last equation by taking to the
left side the operators localized in i and on the right side the
operators localized in j. We obtain

σ̃i(Û
†
λ σ̃

†
i,λÛλ) = σ̃ j,λ(Û †

λ σ̃
†
j,λÛλ). (B5)

We already argued that σ̃i,λ is exponentially localized around
the site i. The operator Û †

λ σ̃
†
i,λÛλ is also localized because it
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can be obtained from the localized operator σ̃i,λ by evolving
it for a time T with a local time-dependent Hamiltonian.
Therefore, we still expect that Û †

λ σ̃
†
i,λÛλ decays exponentially

with the distance from the site i.
From Eq. (B5), we deduce that the two unitary operators

σ̃i(Û
†
λ σ̃

†
i Ûλ) and σ̃ j (Û

†
λ σ̃

†
j Ûλ) are equal, even though they are

localized possibly far apart on the chain. The distance between
i and j can be of order L. In the thermodynamic limit, the
only possibility is that these two operators are c-numbers.
More precisely, they are unitary so they must be phases. If the
system has a finite size L, the exponential localization of the
two operators implies that a correction of order O(e−cL ) can be
present (where c is a constant that depends on the localization
length of the operators). It follows that

Û †
λ σ̃iÛλ = eiθ σ̃i + O(e−cL ). (B6)

Taking the qth power of Eq. (B6) in the thermodynamic
limit, we have

Û †
λ σ̃ n

i,λÛλ = einθ σ̃ n
i,λ.

From σ̃ n
i,λ = 1, it follows that einθ = 1, so eiθ can only assume

one of the n values 1, ω, . . . , ωn−1.
To determine the value of θ , we consider a special case:

When the perturbation is absent (λ = 0), σ̃i,λ reduces to σi

and Ûλ reduces to Û0. In this case, Eq. (B6) is satisfied by
eiθ = ωp:

Û †
0 σiÛ0 = ωpσi.

We assumed that V̂λ depends continuously on the parameter
λ. Hence, all the dressed quantities also depend continuously
on λ. As a consequence, the phase eiθ cannot change abruptly
from ωp to the other possible values 1, ω, . . . , ωn−1 as λ is
turned on. We must conclude that for every λ we find eiθ =
ωp. We get

Û †
λ σ̃iÛλ = ωpσ̃i + O(e−cL ).

This implies that σ̃i(mT ) = Û −m
λ σ̃iÛ m

λ = ωmpσ̃i +
mO(e−cL ), meaning that oscillations persist at least up to
a time that is exponentially large in L.

We can further argue that the undressed operator σi has an
expansion in terms of the dressed operators of the form

σi = ciσ̃i,λ + · · · ,

where ci � O(1) and the other terms are exponentially local-
ized around the position i. It follows that

σi(mT )σ †
i (0) = |ci|2σ̃i.λ(mT )σ̃ †

i (0) + · · · .

As a consequence, while σ̃iλ oscillates with amplitude 1,
the oscillations of σi will have an amplitude |ci|2 < 1 for
times that are not too large. The additional oscillations given
by the other terms of the sum will average to 0 when we
consider different disorder realizations. Hence, we expect 〈σi〉
to have finite amplitude oscillations, decaying to 0 after a time
t∗ ∼ O(ecL ).

3. Spectral properties

In the exactly solvable case, we showed that Floquet eigen-
states are found in multiplets with 2π/q quasienergy splitting.

We are now going to show that this also happens for the
perturbed system in the thermodynamic limit as long as we
are in the time-crystal regime.

Equation (B3) implies that [Û q
λ , σ̃i,λ] = O(e−cL ), which

means that the σ̃i,λ are approximate constants of motion in the
stroboscopic evolution with period qT for finite-size systems.
Only in the limit L → ∞ do they become exact constants
of motion. Since all the σ̃i,λ commute among themselves
and (approximately) commute with Û q

λ , it follows that the
transformed states V̂λ |{si}〉, being eigenstates of all the σ̃i,λ,
are (approximate) eigenstates of Û q

λ . The q states V̂λ |{si}〉,
V̂λ |{ωpsi}〉 , . . . , V̂λ |{ωp(q−1)si}〉 are linear combinations of
the q Floquet eigenstates |ψλ({si}, k)〉 with k = 0, 1, . . . , q −
1 defined in Sec. IV A. But Floquet eigenstates are, by defini-
tion, also eigenstates of Û q

λ : a linear combination of them can
be an eigenstate of Û q

λ only if they are degenerate (with respect
to Û q

λ ). This means that, in thermodynamic limit, the q Floquet
eigenstates |ψλ({si}, k)〉 must have the same eigenvalue that
we denote exp [−qiẼ+({si})]:

Û q
λ |ψ̃ ({si}, k)〉 = e−qiẼ+({si}) |ψ̃ ({si}, k)〉 .

Therefore, they can have as eigenvalues of Uf ,λ

one of the qth roots of exp (−qiẼ+): exp (−iẼ+), ωp

exp(−iẼ+), . . . , ωp(q−1) exp (−iẼ+). Hence, the possible val-
ues of the quasienergy gaps are 0, 2π/q, . . . , 2π (q − 1)/q.
Using the continuity of the unitary Vλ, we can deduce that
the gaps can only change continuously: Since they can only
assume one of the q discrete values, they cannot change at all.
This proves that the exact 2π/q splitting is preserved in the
thermodynamic limit. For finite-size systems, this fact is only
valid up to corrections of the order O(e−cL ).

APPENDIX C: DISORDERED Z4 CLOCK MODEL:
FROM PERIOD 2 TO PERIOD 4

Supplementary numerical results for Sec. IV D are shown
in Fig. 25.

APPENDIX D: MAPPING TO A BOSONIC
REPRESENTATION

We start defining the symmetrization operator P̂ for our
system with L subsystems, each one composed by a clock
variable of order n, as

P̂ =
∑
{�̂}

�̂ j1,..., jL , (D1)

where ji = 1, . . . , L and �̂ j1,..., jL permute the subsystems
according to the ji indexes. As an illustrative example,
�̂1,3,2|σ1σ2σ3〉 = |σ1σ3σ2〉, where σ j = 1, ω, . . . , n − 1 rep-
resents the direction of the jth clock spin.

We know that symmetric subspace for a Hilbert space
with L subsystems can always be represented, in second
quantization, in terms of bosonic operators {b̂ j} [Eq. (38)].
We then define a basis {|n1, n2, . . . , nn〉} for this subspace as
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(a) (b)

(c)

(e) (f)

(d)

FIG. 25. Time evolution of the order parameters Z (t ) (period-4 time crystal) and Z[2](t ) (period-doubling time crystal), for varying λ

parameters. Results are obtained with the following choice of parameters: Ji from the uniform distribution [1/2, 3/2], hz,i from [0,1], gi from
[0,1], α1 = eiπ/3

2 , ε = 0.1.
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follows:

|n1n2...nn〉
≡ 1√

N!
∏n

k=1 nk!
P̂
∣∣(1 . . . 1)n1 (ω . . . ω)n2 . . . (ω∗ . . . ω∗)nn

〉
(D2)

= 1√
N!

∏n
k=1 nk!

(b̂†
1)n1 (b̂†

2)n2 . . . (b̂†
p)nn |vac〉, (D3)

where the index n j represents the number of clock operators
in the σ j direction, or alternatively, the number of bosons in
the jth bosonic mode, and N = ∑n

j=1 n j is the total number
of bosons.

Since the Hamiltonian is invariant under permutation, and
therefore commuting with P̂, the study of its representation
in bosonic language becomes significantly simpler: We must
simply analyze how it acts in a single representative clock spin
configuration [right side of Eq. (D2)].

The bosonic representation for the operator σ̂ =
(1/L)

∑
j σ̂ j is obtained by

σ̂ |n1n2 . . . nn〉
= P̂

1√
N!

∏n
k=1 nk!

σ̂
∣∣(1 . . . 1)n1 (ω. . .ω)n2 . . .(ω

∗ . . . ω∗)nn

〉
(D4)

= (1/L)

⎛⎝ n∑
j=1

n jω
j−1

⎞⎠|n1n2 . . . nn〉, (D5)

where in the first line we used commutativity between P̂ and
σ̂ . Thus, we clearly see that

σ̂ = (1/L)
∑

j

n̂ jω
j−1, (D6)

where n̂ j = b̂†
j b̂ j . The operator R̂ = ∑

j τ̂ j follows analo-
gously:

R̂|n1n2...np〉 = P̂
1√

N!
∏n

k=1 nk!
R̂
∣∣(1 . . . 1)n1 (ω . . . ω)n2 . . . (ω∗ . . . ω∗)nn

〉
(D7)

= P̂√
N!

∏n
k=1 nk!

(
n1

∣∣(1 . . . 1)n1−1(ω . . . ω)n2+1 . . . (ω∗ . . . ω∗)nn

〉
(D8)

+ n2|(1 . . . 1)n1 (ω . . . ω)n2−1(ω2 . . . ω2)n3+1 . . . (ω∗ . . . ω∗)np〉 + · · · ) (D9)

=
∑

j

√
n j

√
n j+1 + 1

∣∣ . . . (ω j . . . ω j )(n j−1)(ω
j+1 . . . ω j+1)(n j+1+1) . . .

〉
. (D10)

Thus,

R̂ =
∑

j

b̂ j b̂
†
j+1. (D11)

Exactly the same reasoning follows for the operators σ̂[2] =
(1/L)

∑
j σ̂

2
j and R̂[2] = ∑

j τ̂
2
j . We see in this case that

σ̂[2] = 1

L

n∑
j=1

n̂ jω
2( j−1), (D12)

R̂[2] =
n∑

j=1

b̂ j b̂
†
j+2. (D13)

The unperturbed kicking operator X̂ε=0 = ∏
j τ̂ j acts as

X̂ε=0|n1n2 . . . nn〉 = |npn1 . . . nn−1〉 (D14)

and is thus described as a global translation of a single mode
( j → j + 1) in the bosonic system.

Global Hamiltonian terms which are invariant under per-
mutation, such as the kicking operator with perturbations,
can also be easily described in bosonic language. Consider
a general unitary operator V̂ [sp] acting in all of the L clock
operators, as follows:

Ôglobal = V̂ [sp]⊗L
. (D15)

This operator is translated to a single-particle bosonic trans-
formation in the bosonic language,

b̂′
j =

∑
�

V̂ [sp]
�, j b̂�. (D16)

APPENDIX E: SPONTANEOUS SYMMETRY BREAKING
IN THE INFINITE-RANGE CASE

We focus here on the infinite-range version of the Hamil-
tonian Eq. (13), which we denote as Ĥ (LR)

n,η in Sec. V. As we
have remarked in Sec. V, the presence of a period q-tupling
time-crystal phase is intimately related to the existence of
an extensive amount of states that spontaneously break a Zq

symmetry, and this will be the subject of this Appendix. In
the bosonic representation, this maps to the breaking of the
translation symmetry of the model Hamiltonian.

a. Cases n = 3 and n = 4 with η = 0

In this case, the Zn symmetry is clearly broken when
h = 0 and, for fields h that are not too large, we should
expect that this symmetry breaking persists. The symmetry
breaking manifests in the thermodynamic limit as an n-fold
degeneracy in the ground-state subspace. All the states of
the system below a threshold energy, extensive in the size
L (broken symmetry edge Le∗), break the symmetry and the
corresponding eigenenergies organize in n-tuplets. The order
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FIG. 26. [(a) and (b)] Scaling of the n-fold gap En−1 − E0 with the system size, for η = 0 and n = 3 and 4, respectively. (c) Under a small
perturbation Ŵ explicitly breaking the symmetry of the Hamiltonian, the (nondegenerated) ground state acquires a macroscopic value for the
order parameter 〈σ̂i〉GS ∼ 1 in the region where the n-fold gap is roughly smaller than the perturbation. System sizes: L = 50 and 30 for n = 3
and 4, respectively; J = 1 in all the plots.

parameter characterizing the symmetry breaking (in ground
and excited states) is σ̂i.

We start considering the properties of the ground state. In
Figs. 26(a)–26(c), we analyze the properties of the ground
state for n = 3 and 4 for finite sizes. In order to probe the
existence of the Zn-symmetry-breaking ground states, we
study the n-fold gap En−1 − E0 of the Hamiltonian, where
{Eμ (μ = 0, 1, 2, . . .)} are the eigenvalues of the Hamil-
tonian in increasing order Eμ � Eμ+1, with E0 being the
ground-state energy. In Figs. 26(a)–26(c), we show the n-fold
gap for different values of the system size and the coupling.
For n = 3 and h � 0.7, the n-fold gap closes exponentially
quickly with the system size, while for larger h � 0.8 the
system is n-fold gapped [Fig. 26(a)]. A similar behavior
occurs for n = 4 [Fig. 26(b)], where for h < 1 the n-fold gap
closes exponentially with the system size, while for h = 1 the
closing is polynomial (E3 − E0) ∼ L−1/3, and for larger h > 1
the system is n-fold gapped.

In order to show that this n-fold degeneracy is actually
related to a spontaneous symmetry breaking of the interac-
tion Hamiltonian, we add a vanishingly small perturbation
Ŵ = −δ

∑L
i=1(σ̂i + σ̂

†
i ) to the Hamiltonian Eq. (41) (we use

δ = 10−8), breaking explicitly its symmetry. In Fig. 26(c),
the (nondegenerate) ground state acquires then a macroscopic
value for the order parameter 〈σ̂i〉GS ∼ 1 in the region where
the n-fold gap is roughly smaller than the perturbation, show-
ing the existence of the symmetry breaking. It is interesting to
understand how the order parameter signaling the symmetry-
breaking phase depends on the perturbation δ and the size
of the system. For a small perturbation δ � (En − E0), i.e.,
small compared to the gap of the system, we expect from first
order in perturbation theory corrections which scale with the
inverse of the gap. Thus, in a symmetry-broken phase, these
corrections due to finite-size effects should scale exponen-
tially with the system size, see Fig. 27 (left panel). For larger
perturbations δ � (En − E0), this picture is not valid anymore,
and we find [Fig. 27 (right panel)] that the order parameter
scales polynomially with the system size to a finite value in
the thermodynamic limit.

Now we move to the excited states. In order to see if
the Hamiltonian supports an extensive fraction of Zn spon-
taneously symmetry-breaking (SSB) states, we study if the
spectrum is organized in n-tuplets [see Fig. 28(a)]. In general,
in order to quantify the existence of an extensive amount of

FIG. 27. Finite-size effects and scaling with the size of the system for the order parameter 〈σi〉 in the ground state of the Hamiltonian
Ĥ (LR)

n + Ŵ , with Ŵ = −δ
∑L

i=1(σ̂i + σ̂ †
i ), a small perturbation breaking explicitly the symmetry of the model. We show here results for the

case with n = 3. In the left panel, we set h/J = 0.5 and see the exponential corrections to the order parameter when δ � (En − E0), while in
the opposed case it scales to a finite value. In the right panel, we set h/J = 0.01, where we clearly see the polynomial scaling of the order
parameter to a finite value in the thermodynamic limit.
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FIG. 28. (a) Low-energy spectrum (shifted by the ground-state energy) of the Hamiltonian Ĥ (LR)
n,η=0 for n = 3 and n = 4: The spectrum is

organized in n-tuplets. In panels (b) and (c), we show the scaling of the n-tuplets’ energy splittings [�q=n,α as defined in Eq. (E1)] with the
system size. In panel (b), we show the case n = 3 with h = 0.5, and in panel (c) n = 4 with h = 0.1. In the panels (d) and (e), we show
the scaling of the order parameter averaged over such n-tuplets, i.e., the averaged order parameter over the nα lowest eigenstates [σav(nα) as
defined in Eq. (E2)]. In panel (d), we show the case n = 3 with h = 0.5, and in panel (e) n = 4 with h = 0.1. J = 1 in all the plots.

q-tuplets, we define the quantity �q,α

�q,α =
μα∑

μ=1

(Eqμ−1 − Eqμ−q) , (E1)

where μα = αL (α a finite positive number). In Figs. 28(b)
and 28(c), we fix the coupling h so that the ground states
show spontaneous symmetry breaking, and we study the
dependence of �q=n,α on the system size: We observe that
there is an extensive fraction of the spectrum (α > 0) which
is organized in n-tuplets, where �n,α decays exponentially
quickly with the system size.

In order to show that these q-tuply (with q = n) degenerate
subspaces are actually related to symmetry-breaking states,

we apply the vanishingly small perturbation Ŵ defined above
and compute the order parameter averaged over all the states
up to μα:

σav(α) = 1

μα

μα∑
μ=1

|〈σ̂i〉μ| . (E2)

In Figs. 28(d) and 28(e), we notice that in the case where
the extensive gap �q=n,α decays exponentially quickly with
system size [Figs. 28(b) and 28(c)], the n-tuple eigenstates are
indeed related to a SSB, showing a finite value for σav(α). The
last case corresponds to the existence of a size-independent
broken-symmetry edge; we can actually see it by plotting
|〈σ̂i〉μ| versus Eμ/L (Fig. 29).

FIG. 29. |〈σ̂i〉μ| vs Eμ/L for (a) n = 3 with h = 0.5 and (b) n = 4 with h = 0.1 in a symmetry-breaking phase. J = 1 in both cases. We
see an extensive number of symmetry-breaking states below the broken-symmetry edge.
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FIG. 30. Different symmetry breakings in Ĥ (LR)
4,η . (a) Scaling of the fourfold gap E3 − E0 and the twofold gap E1 − E0 with the size of

the system, for parameters η = 0.1 and 0.9. (b) Under a small perturbation Ŵ[2] breaking explicitly the symmetry of the Hamiltonian, the
(nondegenerated) ground state acquires a macroscopic value for the order parameters 〈σ̂i〉GS ∼ 1 or 〈σ̂ 2

i 〉GS ∼ 1, in the region where its
corresponding q-fold gap is roughly smaller than the perturbation strength δ ∼ 10−8. Here the system size is L = 30 and the twofold gap
is negligible (<10−10) and omitted from the figure. (c) Scaling of �4,α and �2,α [Eq. (E1)] with the system size. (d) Scaling of σav(α) and
(σ 2)av(α) [Eq. (E2)] with the system size. σav(α) is null in the case of η = 0.9, and we thus omit it from the figure.

b. Different symmetry-breaking phases for n = 4, η �= 0

In this section, we focus on the case n = 4. The Hamil-
tonian [Eq. (41)] for η = 0 breaks the Zn symmetry (as we
have demonstrated above), while for η = 1 it breaks a lower
Zn/2 symmetry (being the bosonic representation of the well-
known Lipkin-Meshkov-Glick model [60]). The natural order
parameters for these two phases are σ̂i and σ̂ 2

i , respectively.
It is interesting to understand if there is a sharp transition
between these two phases at a finite value of η. In order to
make this analysis, we fix J = J ′ = 1 and h = h′ = 1/2 and
study the existence of an extensive number of SSB states for
different values of η. We find the persistence of the Zn SSB
phase for η close to zero (η = 0.1) and the persistence of the
Zn/2 SSB phase for η close to one (η = 0.9). We find clues for
a transition between the two phases at η ∼ 0.5.

Let us start focusing on the case η = 0.1. Concerning the
ground-state properties, we can see in Fig. 30(a) that both
the fourfold and twofold gap decay to zero exponentially
quickly with the system size, marking the existence of a
fourfold degeneracy in the ground state. This corresponds to
a breaking of the Z4 symmetry of an extensive part of the
spectrum: We can see this fact in Fig. 30(c), where both the
extensive doubling gap �2,α and the 4-tupling gap �4,α decay
to zero exponentially fast with L. In agreement with this,

we find that, adding a vanishingly small perturbation Ŵ[2] =
−δ

∑L
i=1(σ̂i + σ̂ 2

i /2 + H. c.), there is an extensive amount of
states with a macroscopic expectation of both σ̂i and σ̂ 2

i . This
means that both σav(α) and (σ 2)av(α) scale to a finite value
for L → ∞—the definition for (σ 2)av(α) is the same as in
Eq. (E2). We can see this fact in Fig. 30(d), where for η = 0.1,
both σav(α) and (σ 2)av(α) tend to a finite value when L → ∞.
We conclude that for η = 0.1 the system breaks the Z4 and
also the Z2 symmetry (which is a subgroup of Z4). Different
is the case η = 0.9. Here there is only the breaking of the Z2

symmetry. We can see this in the ground-state properties [only
E1 − E0 scales to zero when L → ∞—see Fig. 30(a)] and
in the properties of the excited states [only �2,α scales to 0
for L → ∞—Fig. 30(c)—and only (σ 2)av(α) tends to a finite
value—Fig. 30(d)]. The value of σav(α) is always null in this
case. There is a transition between these two phases when η is
changed and we can see this fact in Fig. 30(b). The symmetry-
breaking ground state acquires a macroscopic value for the
order parameter 〈σ̂i〉GS in the region η � 0.5. Here there is Z4

symmetry breaking and the fourfold gap is roughly smaller
than the perturbation Ŵ[2]. On the opposite, 〈σ̂ 2〉GS ∼ 1 for all
η, both for Z2 and Z4 symmetry breaking. The model indeed
provides a transition between different symmetry-breaking
phases.
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Û 2
η =

(∏
i

τ 2
i

)
exp

⎡⎢⎣−2iT

⎛⎜⎝∑
i

Ji

[
σ̂ 2

i σ̂ 2
i+1

+ (1 − η)(α1σ̂
†
i σ̂i+1 + H.c.)

] + η
∑

i

gi τ̂
2
i

⎞⎟⎠
⎤⎥⎦.

[57] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997).

[58] We notice that h(LR)
n,η coincides with 〈Ĥ (LR)
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