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We present a computationally efficient and general first-principles based method for spin-lattice simulations
for solids and clusters. The method is based on a coupling of atomistic spin dynamics and molecular dynamics
simulations, expressed through a spin-lattice Hamiltonian, where the bilinear magnetic term is expanded up to
second order in displacement. The effect of first-order spin-lattice coupling on the magnon and phonon dispersion
in bcc Fe is reported as an example, and we observe good agreement with previous simulations. We also illustrate
the coupled spin-lattice dynamics method on a more conceptual level, by exploring dissipation-free spin and
lattice motion of small magnetic clusters (a dimer, trimer, and tetramer). The method discussed here opens the
door for a quantitative description and understanding of the microscopic origin of many fundamental phenomena
of contemporary interest, such as ultrafast demagnetization, magnetocalorics, and spincaloritronics.
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I. INTRODUCTION

The way in which atoms vibrate around their equilibrium
positions as a function of temperature is of fundamental
importance for a range of physical properties of solids, for
example, thermal expansion, specific heat, thermal conduc-
tivity, and superconductivity. These vibrations can be studied
computationally using molecular dynamics (MD) simulations,
today a mature and widely used technique in computational
materials science. Phonon spectra and other properties related
to the atomic vibrations are presently routinely computed. To
address systems with millions of atoms with MD, empirical
potentials are usually necessary. Only for relatively small sys-
tems are MD simulations at the first-principles level feasible
[1,2].

In systems with magnetic order, there also exist collective
motion of the spins, in addition to the above-mentioned lattice
vibrations. The standard approach to simulate the time evolu-
tion of the spin texture is to propagate the Landau-Lifshitz-
Gilbert (LLG) equation. Both continuum models (usually
called “micromagnetics”) [3] and atomistic models, so-called
atomistic spin dynamics (ASD) [4–8], have been developed.
In principle, spin motion can also be addressed directly at
the first-principles level [4,9–11]. This can be achieved in
the framework of time-dependent density functional theory,
[12] although this normally requires too much computing
resources and time to be realistic. Also, in order to take
dissipation and fluctuations into account in spin-dynamic sim-
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ulations, a phenomenological stochastic approach is typically
employed, for details see, e.g., Ref. [8]. A full microscopic
description of dissipation would require explicit descriptions
of all the spin-electron couplings as well as all spin-lattice
couplings.

In reality, the atomic magnetic moment and lattice degrees
of freedom are always more or less coupled, a coupling that
is mediated by the electronic subsystem. These couplings
determine, for instance, how fast it is possible to change the
magnetic state of a material and how the relaxation of phonon
and electronic subsystems proceed after excitation with ultra-
short laser pulses [13]. In addition, the couplings may shine
light on the angular momentum and energy transfer between
the spin and lattice subsystems in pump-probe experiments.

A formalism allowing coupled spin-lattice simulations
was already provided in the original work on the equations
of motion of atomic moments [4]. Recently, such coupling
was derived from a different ansatz, where the role of the
underlying electronic structure in mediating the coupling is
explicitly considered [11]. However, the application to real
materials remains a challenge for any formulation of spin-
lattice simulations.

As already pointed out, dissipation is one of the conse-
quences of the spin-lattice coupling. Since the electron motion
is several orders of magnitude faster than both spin and
lattice motion, it can, for some purposes, be integrated out
[4,6,8]. The spin and lattice degrees of freedom, however,
occur at a much slower and roughly equivalent time scale
and need to be addressed in a unified way, self-consistently
[4,14,15]. Figure 1 shows a schematic picture of coupled spin-
lattice dynamics. The exchange interactions between atoms in
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FIG. 1. Conceptual figure of the breathing mode in a trimer of
magnetic moments. The spins and atoms are represented as green
arrows and gray spheres, respectively.

several magnetic materials can depend strongly on the local
atomic environment and vice versa; the chemical interaction
may depend on magnetic configuration [16–19]. Hence, both
the magnon and phonon spectrum and lifetimes in a material
may depend on the configuration of the magnetic state or the
displacement of atoms [20,21].

Several studies point at the importance of phonon-
magnon coupling in a number of dynamical processes such
as demagnetization processes [22–24], thermal conductivity
[25,26], magnetoacoustics [27–29], and the spin-Seebeck ef-
fect [30–32]. The interaction between spin and lattice motion
is also central for phenomena observed in magnetoelectric
and in multiferroic materials [33–41], magnetocaloric mate-
rials [42], skutterudites [43], and antiferromagnetic insulator
materials for spintronic devices [44]. Recent developments on
methods for modelling of phonon-magnon coupling include
(i) a novel combination of atomistic spin dynamics and ab
initio molecular dynamics, applied to the paramagnetic phase
of the magnetic semiconductor CrN [45], (ii) a scheme for
massively parallel symplectic integration of spin-lattice dy-
namics equations of motion [46], and (iii) the interplay of
nonlinear phononics and exchange striction that opens up for
ultrafast control of magnetic ordering through the excitation
of the lattice [47].

In the present work, we describe a general method for
the simulation of coupled spin-lattice dynamics, where all
information needed for the effective spin-lattice dynamics
Hamiltonian can be obtained from first-principles theory. We
demonstrate the accuracy of the method by applying it to bcc
Fe, as well as a selection of smaller clusters. The developed
method is based on an atomistic approach and draws its
strengths from the atomistic spin dynamics framework. In phi-
losophy, the method proposed here is similar to the early for-
mulation of Ref. [4], but the practical details are naturally dif-
ferent. The interactions are described using a general Hamil-
tonian, with parameters computed using density functional
theory. This hopefully provides a tool for analysis and even
prediction of complex collective modes of magnetic materials
that is a complement to experimental activities addressing
these questions, for instance inelastic neutron scattering (INS)
[48] and resonant inelastic x-ray scattering (RIXS) [49–51].
We note that the instrumentation and capabilities of these
spectroscopies undergo a rapid development, for instance in

form of prismatic analysers for neutron spectrometers [52]
for use in the CAMEA instrument [53] at the Paul-Scherrer
Institute and in the BIFROST instrument1 commissioned for
the European Spallation Source (ESS), and furthermore that
INS and RIXS are complementary techniques that enable
characterization of excitations throughout large parts of the
Brillouin zone [54].

Using an empirical potential approach [55,56], spin-lattice
dynamics simulations of bcc Fe have been published by sev-
eral groups [15,57–59]. To put our method in perspective and
on firm quantitative ground, we therefore specifically address
the spin-lattice interaction in bcc Fe as a test case.

The paper is organized as follows. In Sec. II, we describe
the Hamiltonian for coupled spin-lattice dynamics and the
associated coupled equations of motion, techniques for cal-
culation of the adiabatic magnon and phonon spectra, and a
scheme for numerical integration of the coupled equations of
motion. Section III begins with a discussion of the dynamics
of magnetic dimers, trimers, and tetramers, and continues with
the results for bcc Fe. Finally, in Sec. IV, we discuss the
applicability of our method and give an outlook.

II. MODEL AND METHODS

This section is split into five parts. First (Sec. II A), we
discuss the underlying Hamiltonian, which includes couplings
within the spin and lattice reservoirs, respectively, and inter-
actions between the spins and the lattice. Then, the couplings
between the spin and lattice degrees of freedom are discussed
in more detail in Sec. II B. We motivate the equations-of-
motion and the corresponding observables in Secs. II C and
II D, respectively. In Sec. II E, we describe how the coupling
constants are obtained from density functional theory calcu-
lations, and finally we conclude this method section with a
brief summary in Sec. II F. We apply the Einstein notation for
double occurring Greek indices.

A. The spin-lattice Hamiltonian

We consider the parametrized Hamiltonian

HSLD = HS + HL + HLS, (1)

formulated in terms of atomic magnetic moments {mi}, ionic
displacements {uk} and velocities {vk}. The first term is a
Hamiltonian describing purely magnetic interactions. The
second term contains energies associated with pure lattice dis-
placements, and the third term couples the spin and lattice de-
grees of freedom. Indices i and j run over atoms 1, . . . , Nmag

with a finite magnetic moment, whereas indices k and l run
over all the atoms in the simulation cell 1, . . . , Nall, i.e., non-
magnetic as well as magnetic ions. Note that in the examples
considered, all ions are magnetic. Atomic magnetic moments
mi are in units of Bohr magnetons μB, displacements uk in
units of Ångström, and velocities vk in units of Å/s. Further-
more, α, β ∈ {x, y, z} denote the Cartesian components in spin

1BIFROST: https://europeanspallationsource.se/article/bifrost-
prismatic-approach-neutron-spectroscopy.
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space, and μ, ν ∈ {x, y, z} denote the Cartesian components in
real space.

In the following, we consider contributions up to a com-
bined order of four. The summations over each Latin index
i, j, k, l run from 1 to N , wherefore factors 1/2 are preceding
the coupling constants to account for the double counting. The
harmonic approximation to lattice dynamics is described by

HLL = 1

2

∑
kl

�
μν

kl uμ

k uν
l + 1

2

∑
k

Mkv
μ

k v
μ

k , (2)

where the force constant tensor �
μν

kl is a rank 2 tensor in real
space and Mk is the mass of atom k. Since �

μν

kl depends also
on the magnetic configuration one can extend the expression
above to

HLL = 1

2

∑
kl

�
μν

kl uμ

k uν
l + 1

2

∑
ikl

∂�
μν

kl

∂mα
i

mα
i uμ

k uν
l

+ 1

4

∑
i jkl

∂2�
μν

kl

∂mα
i ∂mβ

j

mα
i mβ

j uμ

k uν
l + 1

2

∑
k

Mkv
μ

k v
μ

k . (3)

For some materials, the force constants depend significantly
on the spin configuration as well as the configuration of
nuclei. As an example we note that the traditional explanation
for Invar alloys relies on the coupling between the force
constants and the spin configuration [60], as well as materials
where many-body terms of the description of nuclear motion
are needed. The main purpose of this paper is to outline a
general formalism of coupled spin-lattice dynamics and to
give examples of how the coupling modifies the dynamical
properties in a few selected cases. In the illustration of the
method, we have for simplicity neglected the second and third
terms on the right-hand side of Eq. (3), and instead kept a
coupling term that originates from the Taylor expansion of
exchange parameters (see below). The importance of various
contributions to the coupling is materials dependent, but one
may note that higher order contributions in the Taylor expan-
sion are expected to be smaller.

The bilinear spin Hamiltonian HSS contains Heisenberg
exchange, Dzyaloshinskii-Moriya interaction and symmetric,
anisotropic interactions that in a compact form can be ex-
pressed as

HSS = −1

2

∑
i j

J αβ
i j

({
uμ

k

})
mα

i mβ
j . (4)

The exchange tensor J αβ
i j is a rank 2 tensor in spin space,

with elements that in general have a dependence on the atomic
displacements {uμ

k } as well as the magnetic configuration.
For clarity, we specify in Eq. (4) the explicit dependence of
tensor J αβ

i j on {uμ

k }. The contributions to the mixed spin-
lattice Hamiltonian HLS can then be obtained by expanding
the bilinear magnetic Hamiltonian HSS up to second order in
displacement, i.e.,

HSS = −1

2

∑
i j

J αβ
i j mα

i mβ
j − 1

2

∑
i jk

∂J αβ
i j

∂uμ

k

uμ

k mα
i mβ

j

− 1

4

∑
i jkl

∂2J αβ
i j

∂uμ

k ∂uν
l

uμ

k uν
l mα

i mβ
j . (5)

Note that both in Eqs. (5) and (3) a term enters that contains
bilinear couplings in both spin and lattice displacement. In
one case, it appears due to Taylor expansion of the Heisen-
berg exchange parameter in lattice displacement, and in the
other, it appears due to a Taylor expansion of the force
constant in magnetic moments. In general, both contributions
are additive, as they have similar mathematical form. The
relative importance of these two contributions is materials
dependent and should preferably be calculated for the material
one wants to investigate. The four-body interaction accounts
for the renormalization of the phonon dispersion due to the
spin configuration [36]. It also results in the renormalization
of the magnon dispersion due to atomic displacements and
enables photon absorption by phonon-assisted multimagnon
excitation [61–63].

Introducing the coupling constant �
αβμ

i jk = ∂J αβ
i j /∂uμ

k we may
write the three-body interaction as

HSSL = −1

2

∑
i jk

�
αβμ

i jk mα
i mβ

j uμ

k . (6)

This represents a spin-lattice coupling which is bilinear in spin
and linear in displacement, i.e., �

αβμ

i jk is a rank 3 tensor given
by the direct product of a rank 2 tensor in spin space and a
rank 1 tensor in orbital space.

Defining �
αβμν

i jkl = ∂2J αβ
i j /∂uμ

k ∂uν
l the four-body interaction

reads

HSSLL = −1

4

∑
i jkl

�
αβμν

i jkl mα
i mβ

j uμ

k uν
l , (7)

where the factor 1/4 is due to that this interaction is bilinear
both in spin and in displacements.

Taken together, the combined spin-lattice Hamiltonian
reads

HSLD = −1

2

∑
i j

J αβ
i j mα

i mβ
j − 1

2

∑
i jk

�
αβμ

i jk uμ

k mα
i mβ

j

− 1

4

∑
i jkl

�
αβμν

i jkl uμ

k uν
l mα

i mβ
j + 1

2

∑
kl

�
μν

kl uμ

k uν
l

+ 1

2

∑
k

Mkv
μ

k v
μ

k . (8)

We note that in order to be even more general, higher coupling
such as biquadratic exchange [63–65], four-ring exchange
[66], as well as third- and fourth-order [67] interatomic lattice
potential can be added, which is relatively straight-forward to
do, and that for a very accurate description of the magnetic ex-
change dependence on the magnetic configuration needs to be
considered [68]. Electrostatic contributions to the interatomic
force field is also a relevant generalization to consider, since
they can be important in polar materials, especially for excita-
tions close to the zone center [69]. Likewise, magnetostatic
interactions are sometimes of relevance. We also note here
that in many practical simulations the expression in Eq. (8)
becomes simplified. In the results section we will provide
simulations for, e.g., bcc Fe, and in this case only a simplified
version of Eq. (8) is needed. We describe the Hamiltonian for
this case in the Results section III B where simulations for bcc
Fe are described.
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B. Exchange striction

The third-order spin-lattice coupling is considered usually
in insulating magnets where the spin texture simultaneously
breaks time and spatial reversion. This occurs, for instance,
when describing ferroelectric polarization and multiferroic
phases [40], and it drives the magnetoelectric response in the
electromagnetic field driven dynamics in the GHz and THz
regime [33–35,37,38].

The isotropic (with regard to spin space) part of the �
αβμ

i jk
tensor is the exchange striction where the Heisenberg cou-
pling between magnetic moments at i and j is modulated
by the displacement of ion k. The antisymmetric anisotropic
(with regard to spin space) part of the tensor represents the
Dzyaloshinskii-Moriya interaction. This coupling will not be
further discussed, although the demonstrated implementation
in principle allows for it.

In this paper, we focus on the nonrelativistic correction
term to Heisenberg exchange

HSSL = −1

2

∑
i jk

Ai jk · uk (mi · m j ), (9)

in Eq. (6) and for the simulations presented in Sec. III, where
atom k could either coincide with one of the atoms i and j or
be a distinct atom. The components of the exchange striction
vector Ai jk relate to �

αβμ

i jk according to Aμ

i jk = �
xxμ
i jk = �

yyμ
i jk =

�
zzμ
i jk .

The exchange striction coupling parameters are governed
by certain symmetry rules. From the symmetry of Heisenberg
exchange interaction,

Ai jk = A jik . (10)

Furthermore, the sum rule

Ai jl = −
∑
k �=l

Ai jk (11)

must necessarily hold in order to conserve the position of the
center of mass. This sum rule is derived by enforcing that the
forces emerging from exchange striction sum up to zero, i.e.,

F l = −
∑
k �=l

Fk (12)

and then using the definition of the exchange striction force

F l =
∑

i j

Ai jl (mi · m j ). (13)

In different model approximations for the Heisenberg ex-
change, for instance, the Ruderman–Kittel–Kasuya–Yosida
(RKKY) type interaction [70] or the effective model used
by Ma et al. [71], the exchange interaction depends only on
the distance ri j between site i and j, Ji j (ri j ) = Ji j (|R j + u j −
Ri − ui|), and, consequently, Ai ji = |Ai ji|ri j , where ri j is the
vector connecting site i and j of the length ri j . Only in this
case, it reflects the symmetry rule Ai ji = −Ai j j . In general,
the exchange interaction does not need to depend only on
the distance ri j between the two sites i and j. Consequently,
this symmetry relation must not necessarily be true in gen-
eral. However, the relation Ai ji = −Ai j j guarantees that the
exchange striction force on atom i and j will cancel each other.

The direction of the force caused by the exchange striction
coupling is contained in Ai jk and the directions of different
Ai jk are related by the point group symmetry of the crystal.

C. The SLD equations of motion

The coupled equations of motion for the spin-lattice system
reads [15]

dmi

dt
= − γ

(1 + α2)
mi × (

Bi + Bfl
i

)

− γ

(1 + α2)

α

mi
mi × (

mi × [
Bi + Bfl

i

])
, (14)

duk

dt
= vk, (15)

dvk

dt
= Fk

Mk
+ Ffl

k

Mk
− νvk, (16)

when expressed in the form of Langevin equations. Here, the
effective magnetic field is obtained from the SLD Hamiltonian
in Eq. (1) as Bi = −∂HSLD/∂mi and the effective inter-
atomic force field is determined from Fk = −∂HSLD/∂uk .
Mk is the mass of the atom at site k, m is the saturation
magnetization, γ is the gyromagnetic ratio, while α and
ν are scalar (isotropic) damping constants. The stochastic
fields Bfl

i and Ffl
k are modelled as white noise with properties

〈Bfl
i,μ(t )Bfl

j,ν (t ′)〉 = 2DMδi jδμνδ(t − t ′) and 〈F fl
i,μ(t )F fl

j,ν (t ′)〉 =
2DLδklδμνδ(t − t ′). From the fluctuation-dissipation theorem
it follows that DM = αkBT/γ m and DL = νMkBT [15], where
T is the temperature and kB is the Boltzmann constant.

The coupled partial differential equations are numerically
solved using the semi-implicit SIB method by Mentink et al.
[72] combined with the Grønbech-Jensen-Farago Verlet-type
method [73], or with a fixed-point scheme for implicit mid-
point method. The methods require numerical step width of
the order 10−15 down to 10−16 s. Details about the algorithms
are provided in Appendix A.

D. Observables

The primary output of a spin-lattice dynamics simulation
are trajectories in time of the system variables {mi}, {uk}, and
{vk}. In order to sample spatial and temporal fluctuations of
the spins and the ions, we define the space- and time-displaced
pair correlation functions

Cαβ

(m)(r, t − t0) = 1

Nmag

∑
i, j where
ri − r j = r

〈
mα

i (t )mβ
j (t0)

〉
, (17)

Cμν
(u) (r, t − t0) = 1

Nall

∑
k, l where
rk − rl = r

〈
uμ

k (t )uν
l (t0)

〉
, (18)

Cμν
(v) (r, t − t0) = 1

Nall

∑
k, l where
rk − rl = r

〈
v

μ

k (t )vν
l (t0)

〉
. (19)

Equations (17)–(19) can thus describe how the magnetic, dis-
placement, and velocity correlations evolve both in space and
over time. It would of course be natural to investigate coupled
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modes, via coupled correlations, e.g., between moment and
displacement in a similar way as outlined in Eqs. (17)–(19). In
the context of the simulations of bcc Fe in the present paper,
the more relevant property is however obtained by a Fourier
transform over space and time to give the dynamic structure
factor for spin, displacement, and velocities. Defining relative
time τ = t − t0, we obtain

Sαβ

(m)(Q, ω) = 1

Nmag

√
2π

∑
r

eiQ·r
∫ ∞

−∞
eiωτCαβ

(m)(r, τ ) dτ,

(20)

Sμν
(u)(Q, ω) = 1

Nall

√
2π

∑
r

eiQ·r
∫ ∞

−∞
eiωτCμν

(u) (r, τ ) dτ,

(21)

Sμν
(v) (Q, ω) = 1

Nall

√
2π

∑
r

eiQ·r
∫ ∞

−∞
eiωτCμν

(v) (r, τ ) dτ,

(22)

which are closely related to what is measured by inelastic neu-
tron or electron scattering experiments. The dynamic structure
factors are naturally analyzed in terms of the differential cross
section [48], which for many materials is proportional to the
dynamical structure function. This means that by simulating
the dynamical structure factor, the relation between momen-
tum transfer Q and frequency ω for magnons and phonons in
the material can be obtained.

For systems lacking periodicity, such as the small dimer,
trimer, and tetramer clusters also considered in this work, the
Q dependence of the structure factor is in principle undefined.
Instead, the spatially dependent excitation spectra of these
finite systems can be obtained by performing the Fourier
transform over time only. Summing the resulting correlation
function over all sites results in the total excitation spectra of
the system.

For the finite clusters, we only consider the components
of the magnetic correlation functions that are perpendicular to
the starting state of the magnetization. This is done to increase
numerical stability.

The spin dynamical structure factor accurately describe
magnon dispersions, especially in thin films [74], since it
properly takes into account magnon-magnon scattering prop-
erties and damping at finite temperatures. On the other hand,
in the limit of very low temperatures and damping, the
magnon dispersion is more easily obtained through adiabatic
linear spin wave theory [75].

Let us first focus on the spin degrees of freedom and the
adiabatic magnon spectra for the collinear magnetic case with
a system consisting of 1 atom/cell such as bcc Fe. Then the
spatial Fourier transform of the exchange interactions reads

J (Q) =
∑
j �=0

J0 je
iQ·(R j−R0 ), (23)

where J0 j is the isotropic exchange interaction between mag-
netic atoms at site 0 and j, respectively. Note that here the
index j runs over all magnetic sites with the origin at R0. The
spin wave energies ω(Q) will then be given by the following

expression [76–78]:

ω(Q) = γ m(J (0) − J (Q)). (24)

Generalization can be done towards multisublattice systems,
see, e.g., Ref. [8], and using Bogoliubov transformation [79]
towards general noncollinear formulation [80,81].

For the lattice degrees of freedom, the reciprocal space
dynamical matrix Dμν

st (Q) is related to the force constant
matrix in real space by the mass normalised Fourier transform

Dμν
st (Q) = 1√

MsMt

∑
l

�
μν

0s,lt e
[iQ·(Rl −R0 )] (25)

where Ms is the mass of atom s in the unit cell. Given the
translational symmetry of the crystal, it is enough to sum only
over l in all the NP primitive cells in the supercell. For the �

point, the Fourier transform is a plain sum over all repetitions
of the primitive cell, both the ones contained in the Wigner-
Seitz cell of the simulation supercell and, due to the periodic
boundary conditions, the ones outside it [82,83]. Solving the
eigenvalue problem [83]

det[D(Q) − ω2(Q)I] = 0, (26)

the 3N phonon modes (eigenvectors) and frequencies (the
square roots of the occasionally degenerate eigenvalues ω2)
are obtained for a given Q vector. Here, I is the unit matrix. In
contrast to the dynamic structure factor [Eqs. (20)–(22)], the
adiabatic spectra described above do not directly account for
the coupling between the spin and lattice reservoir. A possible
way forward in this regard is to replace the exchange inter-
action and force constant matrix in Eqs. (23) and (25), with
corresponding Taylor expanded entities defined in Eqs. (5)
and (3), respectively. Analytical methods for investigations
of the excitation spectra of spin-lattice coupled Hamiltonians
have been used, e.g., in Refs. [54,84–86], but they are beyond
the scope of the present paper.

E. DFT calculations

Aiming for a first-principles description of the coupled
spin-lattice dynamics in bcc Fe, we calculated the coupling
constants that occur in Eq. (8) through density functional
theory (DFT) calculations.

The harmonic force constants �
μν

kl were calculated with
the finite displacement method using the Vienna ab initio
Vienna simulation package (VASP) [87,88] and the PHONOPY

[89] software. The VASP calculations were performed using
the projector augmented wave method [90,91] and the local
density approximation as exchange-correlation functional. A
6 × 6 × 6 supercell was used for bcc Fe. We employed a
plane-wave energy cutoff of 600 eV and a �-centered k-point
mesh of size 4 × 4 × 4.

In order to achieve a complete first-principles spin-lattice
model, we also extract the Heisenberg interaction and the
exchange striction from DFT. To this end, we applied the
full-potential linear muffin-tin orbitals (FP-LMTO) method
as implemented in the RSPt software [92]. The maximum
value of the angular momentum used for the angular (l)
decomposition of the charge density and the potential inside
the muffin-tin spheres was taken equal to lmax = 12. Three
kinetic energy tails were used for the description of the
states in the interstitial region: −0.3, −2.3, and −1.5 Ry.
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Within this setup, we calculated the Heisenberg exchange cou-
pling Ji j via the Liechtenstein-Katsnelson-Antropov-Gubanov
(LKAG) formalism [93,94]. For the actual implementation
into the RSPT code, we refer the reader to Ref. [95]. Recently,
this method has been successfully applied to strongly corre-
lated systems such as NiO [95] and BiFeO3 [96].

The magnetic exchange interactions Ji j have been calcu-
lated with RSPt for a primitive cell and for a 2 × 2 × 2 super-
cell for which identical Ji j were obtained. In order to calculate
first-order exchange striction, Ji j have been calculated for the
same 2 × 2 × 2 cell but with one atom displaced with a finite
displacement � along e�. A k-point mesh of 30 × 30 × 30
was employed for the supercell calculations. The so obtained
set of exchange couplings have a lower symmetry than the
exchange couplings obtained for the undistorted supercell.
For instance, the set of eight equivalent nearest-neighbor
couplings in the bcc structure are broken up to sets of 1, 3,
3, 1 degenerate couplings for a distortion along the [100] axis
(in bcc lattice vectors, i.e., along the [111] for Cartesian axis),
and sets of 4, 4 couplings for a distortion along the [110] axis
(Cartesian [100]). For the bcc structure, we have compared
carefully that for different distortion directions, the symmetry
lowering for the Ji j up to the fourth coordination shell is
identical to the symmetry lowering of the crystal itself.

Since anisotropic exchange parts are not considered, the
tensor Γi jk reduces to a vector Ai jk . Similar to the force
constants and magnetic exchange, Ai jk fulfill point group sym-
metries, in particular for bcc Fe the 48 symmetry operations of
space group number 229 (Im3̄m). Furthermore, the exchange
striction energy Ei jk related to the sites i, j, and k is isotropic.
Consequently, we obtain Ai jk = A jik from Ei jk = Ejik , which
is caused by the isotropic properties of the magnetic exchange.
In our spin-lattice dynamics simulations, we enforce that the
center of mass is not drifting, which can be achieved by
applying the appropriate sum rule, see Eq. (11).

Using a finite difference method involving the nondis-
placed set {J0} and a displaced set {Je�}, we obtain the direc-
tional derivative ��

i jk . The gradient ∇kJi j is finally constructed
from the directional derivative definition and out of three
different sets {Jeν

�} of independent directions eν
�, where ν =

1, 2, 3, but the same displacement strength �. We have chosen
� to be 0.003a0, 0.002a0, 0.001a0, and 0.00001a0, where a0
is the Bohr radius. In order to fulfill the finite displacement
criteria, � is interpolated to zero by Hermite interpolation.
Numerical noise in ��

i jk is reduced by enforcing the fulfillment
of the correct group symmetries, as discussed above. We
iteratively apply the above mentioned symmetry operations
until we reach convergence. In the last step, conservation of
the position of the center of mass is enforced through the use
of Eq. (11).

F. Summary of the methods

Summarizing Sec. II, we present a parametrized Hamilto-
nian that describes a material in which the spin and lattice
dynamics are coupled. We also provide the necessary equa-
tions of motion that are to be solved for coupled spin-lattice
dynamics simulations and we outline how coupling terms may
be evaluated from first principles theory. We also provide a de-
scription on how to extract observables from such simulations,
which one may compare with experimentally measured data.

We emphasize the difference between the method pre-
sented here and the one proposed by Ma et al. [15,57] and
Perera et al. [59]. (i) All sets of parameters {J}, {�}, and {�}
are determined from first principles and are not obtained from
the effective potential or exchange model. (ii) We consider
an established parametrization of the lattice potential as pre-
sented in Eq. (2), which is directly available from standard
first-principles tools (see Sec. II E). (iii) the exchange striction
term contains also couplings for k �= i, j and, consequently,
will be highly applicable for magnets showing super- and
double exchange mechanism for the magnetic coupling.

III. RESULTS

This section is divided into two parts. In Sec. III A, we
discuss the application of our method to low-dimensional
model systems and discuss symmetry-related issues of the
three-body exchange coupling. (Note that we have selected,
for simplicity, to neglect four-body interactions in the present
work.) Section III B deals with applications to real materials,
in particular to bcc Fe. All required parameters for the bcc Fe
Hamiltonian are calculated from first principles. We present
quasiparticle dispersion relations and discuss the role of the
three-body interactions in the spectra at various temperatures.

A. Exchange striction in two-, three-, and four-site systems

As conceptual examples for our method, we perform cou-
pled spin-lattice dynamics simulations for systems consisting
of two (dimer), three (trimer), and four (tetramer) atoms.
Unless explicitly mentioned, we neglect energy dissipation
in our model and, consequently, the total energy has to be
conserved. Furthermore, we account only for the isotropic
part of the magnetic exchange tensor, namely, the Heisenberg
exchange, but note that anisotropy in general is of significant
importance in low-dimensional systems [74,97–101].

1. Dimer

In this model system, we consider a dimer where the two
sites are denoted by 1 and 2 (see the inset of Fig. 2) and we
have set M1 = M2 = 10 atomic mass units and m1 = m2 =
1 μB. The simplicity of this system allows to provide ex-
plicit expressions for the Hamiltonian, the effective magnetic
fields and the interatomic forces. The four parts of the dimer
Hamiltonian

Hdimer = Hdimer
LL + Hdimer

SS + Hdimer
SSL + Hdimer

KIN (27)

read

Hdimer
LL = 1

2�
μν
11 uμ

1 uν
1 + 1

2�
μν
12 uμ

1 uν
2 + 1

2�
μν
21 uμ

2 uν
1

+ 1
2�

μν
22 uμ

2 uν
2, (28)

Hdimer
SS = − 1

2 J12m1 · m2 − 1
2 J21m2 · m1, (29)

Hdimer
SSL = − 1

2 Aμ
121(m1 · m2)uμ

1 + 1
2 Aμ

122(m1 · m2)uμ
2

+ 1
2 Aμ

211(m2 · m1)uμ
1 + 1

2 Aμ
212(m2 · m1)uμ

2 , (30)

Hdimer
KIN = 1

2 M1v
μ
1 v

μ
1 + 1

2 M2v
μ
2 v

μ
2 . (31)
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FIG. 2. Energy trajectories at T = 0 K of a dimer oriented along
the x direction with Hamiltonian according to Eqs. (27)–(31). The
inset shows a conceptual figure of the exchange striction coupling
constants A12k , k = 1, 2 (black arrows) in a dimer. The atoms are
represented by red spheres, where the initial magnetic moment
configuration in the dimer is given by blue arrows.

In particular for the dimer, we choose the magnetic in-
teraction to be J12 = 1 mRy μ−2

B and the harmonic atomic
force constants uniaxial with �xx

11 = −�xx
12 = −�xx

21 = �xx
22 =

1 mRy Å
−2

. The three-body interaction is introduced along

the bond and is set to 1 mRy μ−2
B Å

−1
. The scalar product of

the two moments in the dimer is, when damping is ignored, a
constant of motion and hence also the exchange energy will
be constant (see Fig. 2 blue line). In the absence of exchange
striction we let the atom have ideal molecular positions r1 =
(0, 0, 0) and r2 = (a, 0, 0), where the constant a in an actual
molecular system can take a value of a few Ångström. Due
to the exchange striction, the atoms are shifted from the ideal
positions to new equilibrium positions s1 = (−�u, 0, 0) and
s2 = (a + �u, 0, 0) around which they oscillate harmonically.
By completing the square for the displacements u1 and u2 in
Eq. (27), we obtain �u = A121m1 · m2/(2�11) = 0.47 Å for
a starting magnetic configuration with m1 · m2 = 0.94. The
value of �u is here large, partially due to our choice of A121

and partially due to that the dimer is an open system.
The evolution of the lattice degrees of freedom is dictated

by the corresponding harmonic interatomic forces

F dimer,μ
LL,1 = −�

μν
11 uν

1 − �
μν
12 uν

2, (32)

and interatomic forces from the three-body exchange

F dimer,μ
SLL,1 = Aμ

121(m1 · m2), (33)

where we used the symmetry relations of the force constants
�

μν

kl = �
νμ

lk and of the exchange striction terms Aμ
121 = Aμ

211.
Likewise, the magnetic degrees of freedom are driven by

the magnetic exchange field

BSS,1 = J12m2 (34)

and exchange striction field

BSSL,1 = Aμ
121m2uμ

1 + Aμ
122m2uμ

2 . (35)

0

0.5

1

m
1 

 

 

X
Y
Z

0 0.5 1 1.5 2
−1

0

1

t (ps)

u
(Å

)

 

 

U1
U2
U1+U2

FIG. 3. Trajectories at T = 0 K of a dimer oriented along the x
direction. The slow ionic motion couples over the exchange striction
to the spin system and induces a modulation of the frequencies of
spin precession. (Top) The Cartesian components of m1, labeled in
the figure with X , Y , and Z . (Bottom) The displacement of ion 1 and
2 along the dimer bond axis.

Here, we applied the isotropy property of the magnetic ex-
change J12 = J21. Equations (32)–(35) show that the direction
of Fdimer

SLL,1 is only dictated by the coupling constant, where
the amplitude is also related to the relative angle between the
magnetic moments. Hence, in the absence of Gilbert damping
that strives to align the spins, Fdimer

SLL,1 will be also a constant
of motion in the case of a dimer. For the effective magnetic
field, the three-body term only scales the field strength. The
exchange striction term conserves the center of mass and, con-
sequently, u1 = −u2 and A121 = −A122. Thus the case J12 <

2A121 · u1 is of high interest, since the effective exchange
switches from a ferromagnetically to an antiferromagnetically
coupled system. For the dimer, however, this will only change
the direction of precession locally in time.

Thus the fields and forces in Eqs. (32)–(35) lead to the
time evolution of the spin and lattice degrees of freedom. The
different contributions to the energy are shown in Fig. 2, while
the time evolution of the displacement and the projections of
the magnetic moment are shown in Fig. 3. The simulations
reproduce the conservation of the center of mass (Fig. 3 lower
panel), as well as the relative angle between the magnetic
moments. The initial conditions for the displacement in the
dimer are set to be 0.02Å(2% of the lattice constant a = 1Å).
It should be noted that the oscillation is not around the molec-
ular positions that are obtained with no exchange striction, r1

and r2, but around the equilibrium positions obtained when
exchange striction is considered, i.e. s1 and s2. It should also
be noted that the magnetic moments move only in the yz plane
as a result of the initial conditions (see Fig. 2, inset, purple
arrows). The precession frequency of the magnetic moment is
seen to vary in time and to be largest when the displacement u1

is significant. This is a natural consequence of the exchange
striction field, defined in Eq. (35). A movie that shows the
dynamics of spin and nuclear motion of the dimer is shown in
Ref. [102].
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−0.01

−0.005

0

0.005

0.01

0.015
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t (ps)

u
(Å

)

 

 

U1
U2
Analytical

FIG. 4. Trajectories at T = 0 K of the damped lattice motion of a
dimer oriented along the x direction. The analytical solution for atom
1 (black symbols) lies on top of the simulated trajectory (red line).

To further analyze the reliability of our method we also
simulate the dynamics in the presence of a viscous damp-
ing ν = 10−14s−1, and for a weaker exchange striction of

1 μRyμ−2
B Å

−1
. The analytical solution of the damped 1D-

harmonic oscillator (see, e.g., Ref. [103]) is compared with
the numerical one and we obtain perfect agreement, as shown
in Fig. 4. The ions oscillate around the center of mass and the
envelope of the trajectories decays exponentially in time.

2. Trimer

The three sites of a trimer are mutually nearest neighbors,
which enables for a total of 18 possible Ai jk couplings. Re-
specting the symmetry constraints of the exchange coupling
parameters [Eq. (10)] dictated by the point group symmetry
D3h and the fact that the sum rule [Eq. (11)] should al-
ways hold, we consider the following case for the exchange
striction, as illustrated in Fig. 5. Exchange striction vectors
tilt away from the bond by angle θ1: Ai ji ∦ ri j and, conse-
quently, Ai jk(k �=i, j) �= 0. Furthermore, Ai j1 = −∑

l �=1 Ai jl =
−∑

l �=1 A jil = A ji1. Please note that the equality |Ai ji| =

A121 A122

A123

θ1 θ11 2

3

FIG. 5. Conceptual figure of the exchange striction coupling
constants A12k , k = 1, 2, 3 (black arrows), in a trimer. By the sum
rule Eq. (11), we have A123 = −A121 − A122 and one free angle θ1

as a parameter. The atoms are represented by red spheres, where
the initial magnetic moment configuration in the trimer is given by
blue arrows. The initial condition of the displacement are chosen
arbitrarily.

FIG. 6. Excitation spectra for lattice displacements (red/thick
lines) and magnetic oscillations (green/thin lines), for the trimer
configurations. The top three panels corresponds to SLD simulations
with θ1 = 0◦, 30◦, and 70◦, as described in the text. The bottom
panel corresponds to decoupled lattice-dynamics and spin-dynamics
simulations.

|Ai jk(k �=i, j)| is only fulfilled for θ1 = π/6. Also, we here refer
to the amplitude of Ai ji as A.

Just as for the dimer case, we assume nearest-neighbor
coupling of J = 1 mRy μ−2

B . The irreducible part of the
atomic force constants � for D3h symmetry are in the nota-

tion of Refs. [54,104], i.e., �xx
12 = −0.25 mRy Å

−2
, �

xy
12 =

−0.43 mRy Å
−2

, and �
yy
12 = −0.25 mRy Å

−2
. The mass of

each atom is put to 1 atomic mass unit.
A movie in Ref. [105] shows the dynamics of spin-

and nuclear motion of the trimer. For clarity we have in
the illustration (but not in the actual simulation) exagger-
ated the amplitude of the nuclear vibrations. Note that due
to the exchange striction term, the effective field that governs
the spin-dynamics, is coupled to the nuclear motion. This
is the main cause why the magnetic moment changes rather
abruptly at certain times.

In order to see direct effects of the A coupling, we plot
in Fig. 6, the measured excitation spectra given by Eqs. (20)
and (21) with Q = 0, obtained from simulations for three
choices of θ1 (defined in Fig. 5) with 0.1 mRy μ−2

B Å
−1

For the
magnetic correlation function only the parts perpendicular to
the starting state of the magnetization are considered, whereas
for the displacement correlation function all the Cartesian
components are used. Note that Q = 0 is the only relevant
choice since there is no translation symmetry of the cluster.
For comparison, the excitation spectra for a reference system
with A = 0, i.e., without any coupling between the spin and
lattice systems is also included in the figure. For the decoupled
trimer, two significant peaks are present. The peak that is
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FIG. 7. Spin-lattice dynamics of trimer. (Top) Envelope fre-
quency of spin oscillations as a function of |A|. The inset shows the
z component of the trajectory of one magnetic moment in the trimer,
and the definition of the envelope frequency (thick line). (Bottom)
Total energy as a function of tilt angle of A.

lower in energy, at 3.2 THz, represents the lattice vibrations
while magnetic fluctuations are responsible for the peak at
8.2 THz. In the case of a finite spin-lattice coupling, we
find that for two of the considered angles (θ1 = 0◦ and θ1 =
70◦), a very fine splitting of the magnetic energy level is
noticeable while a low-energy peak at 2.2 THz occurs for the
lattice vibrations. Interestingly, for the third choice of angle,
θ1 = 30◦, the difference compared to the decoupled system
is found to be minimal. Frequencies such as the ones shown
in Fig. 6 are available through Raman spectroscopy, and an
experimental detection of a spin-lattice coupling, via the split
peaks in Fig. 6 would be interesting.

In our simulation, we varied both the strength A and the
angle θ1 of the exchange striction coupling. The strength A
affects the frequency ωA of an enveloping oscillation on top of
the spin precession frequency ωp (see Fig. 7 upper panel and
inset in upper panel): ωA scales quadratically with the strength

FIG. 8. Conceptual figure of the exchange striction coupling
constants A23k , k = 1, 2, 3, 4 (black arrows) in a tetramer. By mirror
symmetry and to conserve the center of mass, A232 = −A233 and
A′

234 = −A′
231 are allowed. The initial, random magnetic moment

configuration in the tetramer is given by blue arrows, where the
length and orientation is related to the in-plane component, and the
color to the z component of the moment (see color code on the bottom
of the figure). The dotted line indicates the bond axis.

A and is related to the difference between the frequencies
caused by the exchange interaction term and the exchange
striction term (see Fig. 6 green lines). Without energy dissi-
pation, the magnetic energy is conserved, just as for the dimer
case. The variations of the various energy contributions will be
similar to the one in Fig. 2. The total energy increases linearly
with the strength A, but oscillates with θ1, which is related to
the fixed initial spin configuration (see Fig. 7 lower panel).

3. Tetramer

Although the trimer offers already rich phenomena, it ad-
dresses only nearest-neighbor couplings, which are symmetry
related and not independent. Contrary to the trimer, the sites
of a four-site system with periodic boundary condition [chain
of atoms, see Fig. 8(a)], has both nearest neighbor (NN) and
next-nearest neighbors (NNN). Consequently, it is possible to
have finite couplings A132 = A312 = −A134 = A314 also when
Ai ji ‖ ri j .

Here, we consider three different cases for the three-body
interaction in the chain of four atoms. (1) Exchange striction
vectors parallel to bonds between spin i and j [Fig. 8(a)]:
Ai ji ‖ ri j, Ai jk(k �=i, j) = 0. (2) Exchange striction vectors par-
allel to bonds between spin i and j, but the second-nearest-
neighbor coupling is different from zero [Fig. 8(b)]: Ai ji ‖
ri j, Ai jk(k �=i, j) �= 0. Thus the sum over the second-nearest-
neighbor couplings has to cancel:

∑
k∈NNN Ai jk = 0. Further-

more, we enforce the mirror symmetry by setting Ai ji =
−Ai j j . (3) Exchange striction vectors not parallel to bonds for
all indices [Fig. 8(c)]: Ai ji ∦ ri j, Ai jk(k �=i, j) �= 0. We enforce
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FIG. 9. Excitation spectra for lattice displacements (red/left
lines) and magnetic oscillations (green/right lines) for the considered
tetramer clusters. The top three panels show the excitations for the
SLD simulations corresponding to the three different cases discussed
in the text. The bottom panel corresponds to decoupled LD and SD
excitations.

the sum rule [Eq. (11)] and also the mirror symmetry Ai ji =
−Ai j j .

For the Heisenberg exchange Ji j and force constants �
μν
i j ,

we include only nearest neighbor interactions of JNN =
1 mRy μ−2

B and �xx
12 = −0.07 Ry Å

−2
. The atomic mass is

put to 10 atomic mass units. To obtain the excitation spectra
for these sets of tetramers, we perform microcanonical simu-
lations for pre-equilibrated systems at a temperature of 10 K.
In Fig. 9, we show selected parts of the simulated excitation
spectra for the three sets of tetramer configurations discussed
above, together with results from a decoupled simulation
where all Ai jk = 0. Starting with the decoupled results in the
lower panel of Fig. 9 it is found that the lattice excitations are
about one order of magnitude lower in energy compared to
the magnetic excitations. For the magnetic excitations we find
clear peaks at 26.2 and 52.5 THz (data not shown for the high-
energy peak), which correspond well with the eigenvalues
of the decoupled spin Hamiltonian at zero temperature. The
effect of finite spin-lattice couplings, shown in the top three
panels in Fig. 9, is directly visible for the lattice vibrations
where the spectral weight is shifted from the high energy
peak. An effect of the spin-lattice coupling is also noticeable
for the magnetic excitations, where the peak structure for the
decoupled excitations changes. Here it is instead the lower
energy peak that seems to shift towards lower energies. For
set 3, this shift is also accompanied with a broadening of the
excitation peaks. For this set, we also notice what appears to
be side bands of the excitations and we attribute these to the
reduced symmetry of the Hamiltonian, to be discussed below.

In effective pair-interaction models, as used for instance in
Refs. [106,107], only interactions between sites i and j are
possible. This situation corresponds to the system depicted
in Fig. 8(a) with its excitation spectra displayed in the top
panel of Fig. 9, as well as the decoupled case with excitation
spectra in the lowest panel of Fig. 9. Allowing for three-body
interactions, as in the system shown in Figs. 8(b) and 8(c),
lowers the symmetry of the interaction Hamiltonian, which in
general allows for breaking of degenerate frequencies. For the
results displayed in Fig. 9 (the two central panels) we have,
for simplicity, set the NN and NNN three-body exchange

striction to have the same strength, 1 mRy μ−2
B Å

−1
. The

resulting excitations do indeed show an increased number of
modes, in particular for the magnetic modes. This is clear both
concerning the position of the peaks, the number of peaks and
the spectral weights that change significantly when including
NNN three-body exchange couplings.

B. Spin-lattice dynamics of bcc Fe

In this section, we describe the Hamiltonian needed for
coupled spin-lattice dynamics of bcc Fe. Not all terms de-
scribed in Eq. (8) are needed for this case, and a simplified
Hamiltonian appropriate for this system can be written as
follows:

HSLD = −1

2

∑
i j

Ji jmi · m j − 1

2

∑
i jk

Ai jk · uk (mi · m j )

+ 1

2

∑
kl

�
μν

kl uμ

k uν
l + 1

2

∑
k

Mkv
μ

k v
μ

k . (36)

Here, the first term is the Heisenberg term with scalar ex-
change parameters Ji j , and the second term describes the ex-
change striction, Eq. (9), with strength given by the exchange-
striction vectors Ai jk . The two terms on the second line are the
terms describing the lattice dynamics, Eq. (2).

1. Coupling constants for bcc Fe

In this section. we discuss the coupling parameters that
we obtain from DFT, namely, Heisenberg exchange Ji j , force
constants �i j , and exchange striction Ai jk .

The force constants are obtained from supercell calcula-
tions and are related by point-group symmetry [108–111].
Hence, we list only the irreducible values in Table I. In the
table, k = 1 denotes the nearest-neighbor shell, k = 2 the
next-nearest-neighbor shell, and so forth. The indices μ and
ν stand for Cartesian coordinates.

The Heisenberg exchange for bcc Fe is well studied and our
calculations agree well with previous work [78,95,112–114].
The J’s are isotropic, long ranged, oscillating with decay typ-
ically as r−3. The calculations reveal that J ≈ 0 at 10 nm. In
Fig. 10(a), the exchange energy is plotted against distance ri j .
The nearest-neighbor interaction is about JNN μ2

Fe = 1 mRy
where we use a magnetic moment of mFe = 2.23μB. With
also the second nearest neighbor-interaction positive, bcc Fe
is ferromagnetic.
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TABLE I. The elements �
μν

0k of the force-constant matrix in bcc Fe.

k μν μν �
μν

0k ( mRy Å
−2

)
irreducible reducible

1 xx xx, yy, zz −4360
xy xy, xz, zx, yz, zx, zy −2670

2 xx xx −4850
2 yy yy, zz −2230

xy xy, xz, zx, yz, zx, zy 0

3 xx xx, yy −459
xy xy, yx −209
zz zz 403
xy xz, zx, yz, zy 0

4 xx xx 55
xy xy, xz, yx, xy −48
yy yy, zz −126
yz yz, zy −251

5 xx xx, yy, zz 122
xy xy, xz, zx, yz, zx, zy −169

From our first-principles calculations, we obtained magni-
tudes |A| = A and directions eA of the spin-lattice coupling.
We distinguish between the set of couplings {A} in a subset
where (i) the site k is equal to site i or j, e.g., Ai ji, and where
(ii) k �= i, j. Case (i) refers to the couplings between two
magnetic moments, where the lattice displacement occurs on
one of these two magnetic sites. This kind of couplings were
used in Refs. [54,71,85]. Our calculations based on density
functional theory demonstrate that couplings at k where k �=
i, j are also important. This will be discussed in more detail
below, in connection to Fig. 10(b).

We note that the general notation of the exchange striction
coupling is Ai jk . This coupling indicates the modification of
the exchange interaction between site i to j (of distance ri j)
with respect to a displacement of an atom k (separated with
distance rik from site i). For simplicity, in the discussion below
we focus on the couplings where the distances rik are between
nearest neighbors (NN) and next-nearest neighbors (NNN)
only, while values for ri j can be longer ranged.

We start our discussion with case (i) and present DFT
calculations in Fig. 10(b). We show in the figure values of
A for five values of ri j . Note from the figure that the value
of A decays slowly with distance between spins, starting at a

value of A μ2
Fe = 0.64 mRyÅ

−1
and ending at a value close to

zero for the longest distance. In general, the magnitude of Ai ji

does not decay as quickly with distance ri j , as the exchange
interactions do [in Fig. 10(a)]. Further, an outcome of our
density functional theory simulations is that the direction of
Ai ji align along the distance vector ri j . This implies that for
this set of couplings the Heisenberg exchange Ji j can be
assumed to be a function only of the distance ri j , because
∇iJi j (ri j ) = ∂Ji j/∂ri jer

i j . It also implies that the magnitude of
the Ai ji coupling is isotropic, and that the sum rule in Eq. (11)
simplifies to Ai ji = −Ai j j .

In case of (ii) (k �= i, j), the strength of the exchange
striction coupling depends on two vectors ri j and rik . Note
that for a fixed value of ri j there could be several values
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FIG. 10. (a) The Heisenberg exchange coupling Ji j as a function
of the distance ri j . (b) Absolute value of the exchange striction Ai jk

as a function of the distance ri j , for on-site contribution (rik = 0; red
cross). (c) Absolute value of the exchange striction Ai jk as a function
of the distance ri j , for rik = NN contribution (green plus in lower
panel) and rik = NNN contribution (blue circle in lower panel).

of rik , which means that in Fig. 10(c) there are in general
several values of A for the same ri j value. For the cases when
ri j is parallel/antiparallel to rik , we find that the values of
A differ from the exchange striction couplings for which ri j

and rik are not collinear. We emphasize that the degeneracy
of certain points in Fig. 10(c) mirrors the symmetry property
Ai jk = Ajik . We further note from Fig. 10(c) that for fixed
value of rik the general trend for A is to decay as a function
of increasing value of ri j . Both for nearest-neighbor and next-
nearest-neighbor distances rik , these (k �= i, j) couplings give
significant contributions to the exchange striction. The decay
of A with distance ri j is rather similar in Figs. 10(b) and 10(c).
Note also that for general Ai jk the orientation eA must not
necessarily be along the distance vector rik .

2. Thermodynamic properties of bcc Fe

In order to investigate how the presence of exchange
striction affects the magnetization order parameter at finite
temperature, we have performed Langevin dynamics, spin-
lattice dynamics (SLD), uncoupled spin dynamics (SD), and
lattice dynamics (LD) simulations in the temperature range
0 to 1500 K for simulation cells with size N × N × N and
periodic boundary conditions. Nt = 1 × 106 time steps of
dt = 10−16 s were used in combination with the damp-
ing parameters α = 1.00 and ν = 10−14 s−1. For low and
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FIG. 11. (a) The magnetic order parameter M(T )/M(T =0) sampled
in SLD and in SD simulation for a N = 20 simulation cell. The inset
shows the crossing of the U4 Binder cumulant for cell sizes N = 16,
20, and 24 SLD simulations. (b) Energies of the spin-lattice dynamics
Hamiltonian as a function of temperature.

high temperatures, the magnetic order parameters deviate
negligibly when comparing SLD and SD data, but, as shown
in Fig. 11(a), in the vicinity of the phase transition temperature
the order parameter takes a lower value in the SLD simulation
than in the SD simulation. The inset shows the crossing of the
U4 Binder cumulant for cell sizes N = 16, 20, and 24 SLD
simulations from which a critical temperature Tc = 850 K can
be read out. The energies of the different terms in the spin-
lattice Hamiltonian are shown as a function of temperature in
Fig. 11(b). We can observe that the difference in the energies
for SLD simulation compared to energies for the uncoupled
LD and SD simulation are smaller than the line-size in the
graph, apart from, naturally, the exchange striction energy
(SSL), which is identically zero in the uncoupled simulation
and finite for the coupled system. The SLL energy change
is small compared to the total energy (E). The harmonic
lattice potential (LL) and the kinetic energy (KIN) coincide
as expected given the equipartition theorem and are linear in
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FIG. 12. Exchange-striction mediated relaxation of the temper-
ature and energy of spin and lattice subsystem in microcanonical
evolution for two sets of initial temperatures of the subsystems. In
(a) and (b), the initial spin temperature was 700 K and the initial
lattice temperature was 300 K. In (c) and (d), the initial spin temper-
ature was 2000 K and the initial lattice temperature was 700 K. At
t = 0, the spin and lattice systems are each in thermal equilibrium
with these heat baths. At t > 0, the system evolves with Hamiltonian
dynamics, with the total energy conserved but redistributed between
the available degrees of freedom.

temperature. Unlike the lattice energies, the magnetic energy
(SS) has an upper bound and flattens out above the phase
transition temperature and is taking a concave shape with
values smaller than the lattice energy at lower temperature.

Figure 12 shows exchange striction mediated relaxation
of the temperature and energy of spin and lattice subsystem
in microcanonical evolution of the Natoms = 8000 cell with
edge length N = 20, for undamped simulations. We calculate
the temperature of the lattice subsystem from the kinetic
energy, while for the spin system, the temperature is obtained
using the method by Ma et al. [115], At t = 0 ps, the spin
system and lattice system are in thermal equilibrium with
heat baths at different temperatures. At t > 0, the system
evolves in Hamiltonian dynamics simulated with the fixed-
point scheme for implicit mid-point method (see Appendix)
using a time step dt = 10−16 s. The total energy is conserved
but it is redistributed between the degrees of freedom. For
initial conditions TS = 700 K and TL = 300 K are shown the
time trajectories of temperature in Fig. 12(a) and energies in
Fig. 12(b). As expected from the equipartition theorem, the
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lattice harmonic potential energy and kinetic energy take the
same values. Complete equilibration of the spin and lattice
subsystem to the same temperature does not happen during the
displayed time interval of 400 ps. We attribute this incomplete
relaxation to a kinematic constraint due to not only total
energy, but also the total spin angular momentum, being
constants of motion in these microcanonical simulations. At
t = 0, the average magnetization is M ≈ 1.3 μB and as no
net torque act on the spin system, energy can be transferred
from the spin system to the lattice only in dynamics in which
the magnetization is preserved. The relaxation of spin and
lattice exponential temperatures towards an almost common
temperature is exponential decay. Fitting to single exponential
functions T = a exp (−t/τ ) + b, we obtain a relaxation time
of τL ≈ τS ≈ 15 ps. The situation is different in Figs. 12(c)
and 12(d) where the initial condition is TS = 2000 K and TL =
700 K, and relaxation to a common temperature TS = TL ≈
800 K occur, a process which is possible given that the system
is paramagnetic at TS = 2000 K, and that the net equilibrium
magnetization is very small at TS = 800 K. The relaxation to
this temperature proceeds with a relaxation time τL ≈ τS ≈ 2
ps, faster than for Figs. 12(a) and 12(b). We note that at
this temperature the harmonic potential, kinetic energy, and
Heisenberg exchange coincide, in agreement with the thermal
equilibrium data in Fig. 11. Finally, we note that in contrast
to the presently discussed results for a ferromagnetic system,
antiferromagnetic dynamics allow for relaxation without an
angular momentum bottleneck, see, e.g., the relaxation in
Hamiltonian dynamics reported in Ref. [63].

3. bcc Fe magnon and phonon dispersions

The simulations we have performed to sample the dy-
namic structure factor for bcc Fe were divided into two parts
or stages: (i) equilibration stage with Langevin dynamics
simulated with the combined velocity-Verlet and SIB solver
algorithm, as described in Appendix, subdivided into phases
with first a longer time step (dt = 10−15 s) and high damping,
followed by gradually shorter time steps and lower damping.
In the fourth and final phase, we used Nt = 104 time steps
of dt = 10−16 s and the damping parameters α = 0.01 and
ν = 10−14 s−1. (ii) Measurement stage consisting of Hamil-
tonian evolution of the system over Nt = 2 × 105 time steps
of dt = 5 × 10−16 s with the fixed-point iteration implicit
midpoint method, see Appendix. The sampling step tsamp =
5 × 10−15 s for the correlation functions defined in Eqs. (17)–
(19) is used for a sampling window of twin = 5 × 10−11 s
and combined with averaging of the correlations by moving
the time window over t0 = (0, 5, 10, . . . , 5 × 104) × 10−15 s.
The corresponding frequency range for the dynamic structure
factors in Eqs. (20)–(22) is ω/(2π ) = [0.02, 0.04, . . . , 200]
THz (0.0827 to 827 meV).

In order to investigate the impact of the exchange stric-
tion on the magnon and phonon spectra at finite tempera-
ture, we pursued both spin-lattice dynamics simulations and
uncoupled spin dynamics and lattice dynamics simulations.
In the very detailed investigations by Perera et al. [59] of
magnon and phonon spectra of the Dudarev-Derlet potential
[55,56] for bcc Fe, the ratio (ωSLD(Q) − ωSD(Q))/ωSD(Q)
was used to analyze the temperature-dependent influence
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FIG. 13. The T = 0 K adiabatic phonon dispersion ω(Q) (black
curve) calculated using Eq. (26), and the peaks of the displacement-
displacement dynamic structure factor Sxx

(u)(Q, ω) + Syy
(u)(Q, ω) +

Szz
(u)(Q, ω) (red symbols) sampled in SLD simulations of bcc Fe at

T = 300 K using a 20 × 20 × 20 supercell with periodic boundary
conditions. The T = 300 K dispersions from SLD simulations in
Ref. [59] (green diamonds) are shown for comparison.

of exchange striction on magnon dispersion, and similarly,
the ratio (ωSLD(Q) − ωLD(Q))/ωLD(Q) was defined for the
phonon dispersions. We will make use of the same ratios in
analyzing the results of the present work.

In Fig. 13, we show the sum of diagonal components
of the displacement-displacement dynamic structure factor,
Sxx

(u)(Q, ω) + Syy
(u)(Q, ω) + Szz

(u)(Q, ω), sampled in SLD sim-
ulation at T = 300 K (red circles), as well as the T = 0
K adiabatic phonon dispersion ω(Q) obtained from use of
Eq. (26) (black curve). As seen by comparing the dispersion
at T = 0 and 300 K, our simulations do not predict any
significant softening of the phonon dispersion with temper-
ature. In the same figure, we also show the corresonding SLD
phonon spectrum data taken from Ref. [59] (green diamonds),
for comparison. Overall, the spectra are quite similar. Along
�-H, the simulation results from Ref. [59] and our simulation
agree quantitatively. Along the other paths, however, there
are visible discrepancies, with the phonon frequencies in the
simulation results from Ref. [59] displaying an overall higher
dependence on the Q wave vector. In addition, along the H-P
path in the BZ the simulation results from Ref. [59] show
an additional structure compared to our simulations. In our
modeling we use five coordination shells for the atomic force
constants (see Table I), the same number of shells as was
used for analyzing phonon dispersions measured in inelastic
neutron scattering experiments by Minkiewicz et al. [116] and
by Klotz and Braden [117], and we note that the shape of
our phonon dispersion is similar to Minkiewicz’ et al. and
to Klotz and Braden’s results. The Hamiltonian in Eq. (36)
does not include any anharmonic lattice potential contribu-
tions, and we did in the pure lattice dynamics (LD) simula-
tions not observe any change in the phonon dispersion with
temperature.
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FIG. 14. The peaks of the displacement-displacement dynamic
structure factor Sxx

(u)(Q, ω) + Syy
(u)(Q, ω) + Szz

(u)(Q, ω) for selected
points in the Brillouin zone, sampled in SLD and LD simulations
of bcc Fe at T = 300, 500, and 700 K. For Q = (0.25,−0.25, 0.25),
i.e., halfway between � and H are shown the peaks for the transverse
acoustic (a) and longitudinal acoustic mode (b). For the N point,
Q = (0, 0, 0.5), the peak of the transverse acoustic modes are shown
in (c), and the peak of the longitudinal acoustic mode in (d).

In Fig. 14, we show the dynamic structure factor as a func-
tion of frequency for selected Q points, and for different tem-
perature. Considering first the point Q = (0.25,−0.25, 0.25),
i.e., halfway between � and H, we observe that, within the res-
olution of the present Fourier mesh, there is no visible soften-
ing or broadening of the phonon dispersions with temperature,
neither for the transverse acoustic peak [Fig. 14(a)], or for
the longitudinal acoustic mode [Fig. 14(b)], however a slight
increase of the peak intensity of Sxx

(u)(Q, ω) + Syy
(u)(Q, ω) +

Szz
(u)(Q, ω) with temperature, in agreement with the expecta-

tion that more phonons are excited at higher temperatures. In
addition, the graphs from the SLD and the LD simulations
are very close to each other. Also the peaks of two transverse
acoustic modes at the N point displayed in Fig. 14(c) increase
with temperature, but do not change seemingly with with
exchange striction. More intriguing is the situation for the N
point peak of the longitudinal acoustic branch shown in (d).
Here the influence of exchange striction can be seen to be
twofold, it leads both to a change of the dispersion, and to
a broadening of the resonance.

In order to analyze how much exchange striction influ-
ences, the phonon dispersions along high-symmetry direc-
tions in the Brillouin zone, we calculate the relative change us-
ing the expression (ωSLD(Q) − ωLD(Q))/ωLD(Q), which we
display for temperatures T = 300, 500, and 700 K in Fig. 15.
For both the longitudinal and the transversal branches, the
largest relative change of the dispersion occur at the H point,
but there is a minimum of the change half way between �-H,
at Q = (0.25,−0.25, 0.25). The modulation of the dispersion
is small along the P-� path and is of maximum −0.5%. For the
�-N path, there is a minimum for the modulation occurring
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FIG. 15. The dispersions fitted from the displacement-
displacement dynamic structure factor Sxx

(u)(Q, ω) + Syy
(u)(Q, ω) +

Szz
(u)(Q, ω) sampled in SLD simulations and in LD simulations of

bcc Fe at different temperatures using a 20 × 20 × 20 supercell
with periodic boundary conditions. The panels show the ratio
(ω(Q)SLD − ω(Q)LD)/ω(Q)LD, at T = 300 (red), 500 (green), and
700 K (blue) for the (a) longitudinal acoustic (LA), (b) transversal
acoustic (TA), and for the �-N path, (c) second transversal acoustic
branch (TA2). Note that different vertical scales are used in (a), (b),
and (c).

in the vicinity of the Q = (0.00, 0.00, 0.25) point. At the
N point, the softening of the dispersion can be seen to be
larger for the one transverse acoustic branch with the higher
frequency [panel (c)] than for the other transverse branch
[panel (b)] for which the modulation of the frequency is less
than 0.2% (cf. Fig 14). We note that both for the longitudinal
and the transversal branches, and at all temperatures, can we
observe a softening in the phonon dispersions when exchange
striction is present, but no tendency to hardening to higher
frequencies. This trend is consistent with the results shown
in Fig. 3 in Körmann et al. in Ref. [21], but in contrast with
Perera et al. in Ref. [59] who reported softening or hardening
of the phonons for different paths of the Brillouin zone due to
exchange striction.

Similarly, in Fig. 16, we display the xx component of the
spin-spin dynamic structure factor S(m)(Q, ω) (blue dashed
line for the SLD simulation and red line for the SD simula-
tion). The T = 0 K adiabatic magnon dispersion ω(Q) (black
line) calculated using Eq. (24) is also shown. As a conse-
quence of the RKKY type oscillation of the exchange interac-
tion, Kohn anomalies [118] can be seen in the dispersions, as
discussed in earlier DFT calculations for bcc Fe [78,112]. The
insets of Fig. 16 show the shape of the Lorentzian functions at
the H and N points for SLD and SD simulations, respectively.
Comparing the shapes of these Lorentzian functions reveals
that the presence of exchange striction in the SLD simulation
causes a broadening of the resonance peaks as compared to
the SD simulation. Also here, we can compare our results
with data from Ref. [59], (shown as green diamonds in the
figure). Along some of the paths in Q space, the agreement
is excellent, for instance along P-� and �-N . However, due to
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FIG. 16. The T = 0 K adiabatic magnon dispersion ω(Q)
(black) calculated using Eq. (24), and the peak of the xx component
of the spin-spin dynamic structure factor S(m)(Q, ω) sampled in SLD
(blue) and SD (red) simulations of bcc Fe at T = 300 K using
a 20 × 20 × 20 supercell with periodic boundary conditions. The
T = 300 K dispersions from SLD simulations in Ref. [59] (green
diamonds) are shown for comparison. The insets show the shape of
the Lorentzian functions at the H and N points for SLD and SD
simulations, respectively.

the Kohn anomaly associated with the RKKY type oscillations
of the exchange, along the paths �-H and H-P our spectra
show a number of small peaks, that do not show up in the
simulation results from Ref. [59] where there is instead a
smoother, broader structure in this region. Also, in this part
of the dispersion the two calculations differ significantly as
regards the computed magnon energy. The discrepancy is
largest around the H point, where our computed magnon
energy is around 380 meV, whereas in Ref. [59], it is about
480 meV, which is due to weaker exchange interactions in our
calculations compared to those of Ref. [59].

It is interesting to investigate in more detail how the
magnon spectrum depends on temperature. In Fig. 17(a),
we show the dispersion fitted from the spin-spin dynamic
structure factor at several different temperature. The decrease
in the Heisenberg exchange field with increasing temperature,
associated with the thermal fluctuations and the reduction of
the magnetic order parameter, exert a much stronger handle
on the magnon dispersion than the presence of exchange
striction do. At each temperature T = 300, 500, and 700 K
the dispersions obtained from SLD and SD simulations dif-
fer only slightly, however the softening with temperature
is pronounced. In our present model for bcc Fe increasing
temperature always leads to lower dispersion. In analog with
how we analyzed the influence of exchange striction on the
phonon dispersions, we do in Fig. 17(b) show results for
the ratio (ωSLD(Q) − ωSD(Q))/ωSD(Q). The statistics of the
data obtained in our current finite temperature simulations
is limited, in particular for the T = 700 K data, and in the
following we concentrate on the T = 300 and 500 K data. For
the �-H path, a softening of the magnon dispersion can be
seen for small wave vectors, with the relative change being the
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FIG. 17. The dispersions fitted from the spin-spin dynamic struc-
ture factor S(m)(Q, ω) sampled in SLD simulations and in SD simu-
lations of bcc Fe at different temperatures using a 20 × 20 × 20 su-
percell with periodic boundary conditions. (a) The finite temperature
dispersion ω(Q) fitted with a Lorentzian function from S(m)(Q, ω)
SLD (full lines) and SD (dashed lines) simulations at T = 300
(red), 500 (green), and 700 K (blue). (b) The ratio (ω(Q)SLD −
ω(Q)SD)/ω(Q)SD, at T = 300 (red), 500 (green), and 700 K (blue).

largest for intermediate wave vector, and decreasing towards
the H point. For the H-P path, there is a slight increase of
the dispersion. For both the P-� and �-N paths, the magnon
soften with up to 2% for the T = 500 K simulation.

In concluding this discussion of our simulations for bcc
Fe, we note that our results compare overall well with exper-
imental [21,116,117,119] and theoretical [21,120] studies of
phonon dispersions at finite temperature, and with reported
experimental [121] and theoretical [59,78,95,112] magnon
dispersions. Exchange striction was seen to have an impact
both on the phonon and the magnon dispersions. When,
including Heisenberg exchange interactions up to six lattice
constants, we obtained a fine structure for high wave vectors
in the magnon dispersions as observed also in earlier ab initio
modeling of bcc Fe [112,122].
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IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated a computationally
efficient and general method for performing coupled spin-
lattice simulations. The method is, in short, based on a Taylor
expansion of the bilinear exchange interaction term of the
spin-Hamiltonian with respect to nuclear positions, and a
Taylor expansion of the force constant tensor with respect to
magnetic moment directions. We indicate how the expansion
can be carried out in general, to desired order, and that it
leads to a coupling term of an effective Hamiltonian for spin-
lattice dynamics. The methodology presented here has been
implemented in the UppASD code [123].

In general, the interaction between the spin and lattice
degrees of freedom can be expected to lead to significant
changes in both the magnon and phonon spectra of solids, as
well as for magnetization dynamics and atomic vibrations of
clusters and molecular systems. In our conceptual simulations
for small magnetic clusters, we observe new modes emerging
as a result of strong interaction between atomic and spin
motion. We propose that these coupled modes should be
detectable in Raman spectroscopy. In particular, classes of
clusters with similar chemical interactions but different mag-
netic configurations could be compared, and possible different
behavior of the vibration frequencies can be identified with
spin-lattice coupling. Examples of systems to investigate in
this regard would be rare-earth based clusters, either in ele-
mental form or as oxides [124,125]. As examples of suitable
systems to investigate we note that Lu and La are trivalent
elements without a magnetic moment, while, e.g., Gd and Tb
are trivalent, magnetic materials.

In this work, we also performed simulations of bulk
bcc Fe, obtaining good agreement with results of previous
modeling of this system. For bcc Fe, the effect of spin-lattice
coupling is not dramatic, and it may be difficult to detect
experimentally the influence of spin-lattice coupling. In
general, both Raman and neutron scattering can be used
to detect frequencies of collective modes of materials, but
traditionally neutron scattering is a more appropriate tool for
these measurements, since it offers the possibility to map
out dispersion. To highlight spin-lattice coupling and the
influence on collective modes of solids, it would be useful to
investigate a material that can be stabilized in a nonmagnetic
and a magnetic configuration, where again differences of
frequencies of the two phases can be assigned to spin-lattice
effects. A possible compound here is the cubic Laves phase
of YCo2 that has a well-established metamagnetic phase
transition. We also suggest that large effects of spin-lattice
coupling may be found in, e.g., Invar (Fe-Ni) alloys, fcc Fe
and materials close to a structural phase transition, where the
magnetic moment and/or exchange interaction also changes
drastically. This may be found in several compounds that are
relevant for magnetocaloric applications.

In simulations that allow for spin-lattice coupling, as pre-
sented here, one needs to address if additional mechanisms
need to be considered as regards the damping. The reason is
that dissipation of energy and angular momentum is allowed
directly from the magnetic sub-system into the lattice, for
coupled spin-lattice dynamical simulations. This is not the
case for pure spin-dynamics simulations. In principle, one

would then expect the damping parameter to be lower in
coupled spin-lattice dynamics. To bring the mechanism for
angular momentum transfer and angular momentum loss onto
the same footing, (i) a spin-lattice damping αml needs to
be considered such as in Ref. [11], (ii) striction effects for
the magnetic damping, as motivated in Ref. [126], require
profound investigation, and (iii) those dissipation quantities
needs to be determined from first principles by the Kubo-
Greenwood perturbation methods, as it is done for the Gilbert
damping, e.g., in Ref. [127]. Work along the directions out-
lined in the above outlook is currently being pursued.
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APPENDIX: NUMERICAL INTEGRATION OF THE
SPIN-LATTICE DYNAMICS EQUATIONS OF MOTION

In this Appendix, the schemes we use for numerical in-
tegration of the coupled equation of motions expressed in
Eqs. (14)–(16) are described. Explicit methods for integrating
the stochastic LLG equation are commonly two-step numer-
ical integration as is the case for the Heun method [128],
the Depondt-Merten’s method [129], and the semi-implicit
SIB method by Mentink et al. [72]. A description of these
methods, including benchmarks, can be found in Ref. [8]. The
Depondt-Merten’s method and the semi-implicit SIB method
can be extended with a suitable explicit or semi-implicit solver
for the lattice degrees of freedom, such as the velocity-Verlet
method. Note that integration with Heun or other explicit
Runge-Kutta schemes is well known to have poor stability for
molecular dynamics.

For the Hamiltonian simulations, we use a fixed-point
iteration of the implicit midpoint scheme [130]. This scheme
preserves spin strengths and energy. For the simulations in the
canonical ensemble, we use a combination of the Grønbech-
Jensen and Farago (G-JF) [73] Verlet-type methods for simu-
lation of Langevin molecular dynamics and the Mentink et al.
semi-implicit SIB method for the stochastic LLG equation
[72]. This scheme is computationally efficient and preserves
spin strengths but not energy. Due to the latter, it was seen
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to not be stable enough for the Hamiltonian simulations. The
combined algorithm for the canonical simulation is written out
in pseudocode below.
for k � K do � Loop over time step

for i ∈ Nmag do � The first step
calculate Bi

k (uk, mk )
end for
for i ∈ Nall do

calculate Fi
k (uk, mk )

end for
for i ∈ Nmag do

calculate m̃i
k+1(mi

k, m̃i
k+1, Bi

k ) � Implicit in m̃i
k+1

end for
for i ∈ Nall do

calculate ui
k+1(ui

k, vi
k, Fi

k ) � One-shot
end for

for i ∈ Nmag do � The second step
calculate Bi

k+1(uk+1, m̃k+1)
end for
for i ∈ Nmag do

calculate mi
k+1(mi

k, Bi
k, mi

k+1, Bi
k+1) � Implicit in mi

k+1

end for
for i ∈ Nall do

calculate Fi
k+1(uk+1, mk+1)

end for
for i ∈ Nall do

calculate vi
k+1(vi

k, Fi
k, Fi

k+1) � One-shot
end for

end for
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