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The construction of the vibration-transit theory of liquid dynamics is being presented in three sequential
research reports. The first is on the entire condensed-matter collection of N-atom potential energy valleys and
identification of the random valleys as the liquid domain. The present (second) report defines the vibrational
Hamiltonian and describes its application to statistical mechanics. The following is a brief list of the major
topics treated here. The vibrational Hamiltonian is universal, in that its potential energy is a single 3N-
dimensional harmonic valley. The anharmonic contribution is also treated. The Hamiltonian is calibrated from
first-principles calculations of the structural potential and the vibrational frequencies and eigenvectors. Exact
quantum-statistical-mechanical functions are expressed in universal equations and are evaluated exactly from
vibrational data. Exact classical-statistical-mechanical functions are also expressed in universal equations and are
evaluated exactly from a few moments of the vibrational frequency distribution. The complete condensed-matter
distributions of these moments are graphically displayed, and their use in statistical mechanics is clarified. The
third report will present transit theory, which treats the motion of atoms between the N-atom potential energy
valleys.
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I. INTRODUCTION

Vibration-transit (V-T) theory is about liquid dynam-
ics, the motion of atoms in the liquid state, and primarily
monatomic liquids at this time. The major theoretical devel-
opment reached completion in a tractable description of the
atomic motion, consisting of 3N-dimensional normal-mode
vibrations within a liquid potential energy valley, plus transits,
in which the atoms move across the intervalley intersections.
The vibrational theory is formally reduced to that of a single
representative liquid valley and is presented in Sec. 23 of
[1]. The transit theory was completed with the assignment to
transits of a constant-volume measure of the melting entropy
[2,3]. The corresponding theoretical equations for the thermo-
dynamic functions were shown to provide an accurate account
of experimental data for several elemental liquids [4,5].

Since then, we have carried out two large-scale quench
studies designed to quantitatively organize the entire collec-
tion of valleys that constitute the potential energy surface
(PES) of a monatomic system. This broad study provides
a clearer understanding of the liquid vibrational theory by
seeing it as a part of the whole condensed-matter theory.
The first quench analysis identifies the random and symmetric
distributions and describes the role of the random structures in
V-T theory [6]. The second quench analysis defines and cali-
brates vibrational motion theory in one (any) 3N-dimensional
potential energy valley and is reported here. We are also
in the final stages of a significant upgrade in transit theory.
That research will complete the formal V-T theory of liquid
thermodynamics, and we shall then undertake a comparison
of theory and experiment for elemental liquids.

The present study is about two aspects of a single theo-
retical construct: the potential energy surface and the atomic
motion. We write in terms of either aspect, depending on what

we are trying to say. In constructing a configuration integral,
we think in terms of the PES. On the other hand, a transit is the
motion of an atom across an intervalley intersection. Working
with both aspects provides a more incisive physical picture.

In Sec. II, we define the V-T decomposition, whose key
function is to produce a tractable vibrational Hamiltonian.
First, the low-lying harmonic portion of a 3N-dimensional liq-
uid valley is extended to infinity in all dimensions. A potential
energy correction is then added to the Hamiltonian to account
for the intervalley intersections, or what is equivalent, to
account for the atomic transit motion across the intersections.
Although the transit correction is complicated, it is relatively
small, so that the decomposition makes a viable theory of
liquid dynamics.

In Sec. III, for specific application to equilibrium thermo-
dynamics, the vibrational Hamiltonian is calibrated from the
normal-mode vibrational frequencies ωλ, λ = 1, 2, . . . , 3N .
For thermodynamics, the normal-mode eigenvectors are not
needed, but they are always available for more intricate
statistical-mechanical applications. For a given set of ωλ, the
formally exact character of quantum statistical mechanics is
observed and discussed.

In Sec. IV, we derive the exact statistical-mechanical
equations for vibrational contributions to internal energy
and entropy, valid at temperatures T at or above the melting
temperature Tm. These equations are in the form of exact
classical statistical mechanics plus quantum corrections. The
equations are calibrated by a few characteristic temperatures
θn, related respectively to the nth moment of the ωλ

distribution. Distributions of the key θn for the complete
collection of condensed-matter potential energy valleys are
shown graphically and discussed.

In Sec. V A, a descriptive list of the major theoretical
arguments of the paper is given. In Sec. V B, properties of V-T
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theory possibly useful to the equation of state (EOS) program
are discussed.

II. THE V-T DECOMPOSITION

It has long been considered that the condensed-matter
PES for monatomic systems consists of a great many 3N-
dimensional intersecting potential energy valleys. From ex-
tensive analysis of experimental thermodynamic data for el-
emental liquids and crystals, we have constructed a detailed
description of those potential energy valleys, summarized in
[6]. The valleys are of two classes, random and symmetric.
The random valley manifold overwhelmingly dominates the
PES, and is the domain of the liquid phase. The random
valleys are macroscopically equivalent; that is, they all have
the same macroscopic statistical-mechanical properties, so
that one such valley can be used for statistical-mechanical
calculations. Finally, the random valleys are harmonic to good
approximation. These properties, demonstrated for elemental
liquids having a wide variety of bonding types (Sec. II of
[6]), strongly suggest the following V-T decomposition of the
liquid potential energy surface.

The V-T decomposition is the defining construct of V-T
theory. A single representative random structure is chosen for
the liquid structure, according to the discussion in Sec. IV of
[6]. For small displacements of the atoms from equilibrium
at the liquid structure, the potential energy is, by definition,
positive definite harmonic. This surface is first calibrated, as
we shall describe in Sec. III, and is then extended to infinity
in all 3N directions. This extension is necessary in order to
create a tractable Hamiltonian. This Hamiltonian will provide
the dominant contribution to V-T theory of liquid dynamics.

Next, we add a correction to account for error in the
vibrational Hamiltonian. Formally, this error consists of the
actual liquid potential energy surface minus the single 3N-
dimensional harmonic valley. In terms of the atomic motion
instead of the potential surface, the correction requires us to
account for the transit motion, in which atoms move across the
intervalley intersections. Either way, this is a very complicated
problem. However, the correction is small compared to the
vibrational contribution, so the V-T decomposition actually
qualifies as a net favorable theoretical construction.

We can illustrate the preceding discussion with molecular
dynamics (MD) data for our liquid-Na system at N = 500
and constant volume V . Mean potential energy is denoted
�(T ). The system has two potential contributions, the vibra-
tional �vib(T ), which is known, and the correction, which is
attributed to transits and denoted �tr (T ). Their sum is the
potential �V T (T ) of V-T theory. However, in order to calibrate
the theory from MD, we write

�MD(T ) = �vib(T ) + �tr (T ). (1)

The MD and vibrational curves are graphed in Fig. 1. The
vibrational contribution is 3

2 kBT , and the transit contribution is
obvious as the difference �MD − �vib, from Eq. (1). Figure 1
clearly shows that the magnitude of �tr (T ) is small compared
to that of �vib(T ), to high temperatures. Experimental entropy
data for elemental liquids show the same behavior as the
potential energy shows in Fig. 1 [2,3].
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FIG. 1. The straight line is the vibrational potential energy
�vib = 3

2 kBT , and dots fitted by the dashed line are total potential
energy from MD �MD. �tr is �MD − �vib. The volume of the system
is constant at Vlm = 278a3

0, the volume of the liquid at melt. Tm is the
temperature of the liquid at melt.

It is of interest to describe the physical character of the
transit motion indicated in Fig. 1. First, notice that the actual
MD potential energy at T = 0 is the liquid structure potential
�l

0. Here, however, �l
0 is set to zero since we are interested

only in the thermal energy. As Fig. 1 shows, there are no
transits up to around 150 K, but as T continues to increase,
�tr (T ) increases from zero. This behavior correlates with the
MD data for self-diffusion, which also measures zero up to T
around 150 K, then increases from zero together with �tr (T )
(Fig. 10 of [7]). These MD calculations confirm that transits
cause the diffusion.

With further increasing T , the continuing increase of
�tr (T ) is mainly due to an increasing transit rate. The leveling
of �tr (T ) results from a saturation of the liquid transits. The
ultimate decrease of �tr (T ) is due to the removal of the vibra-
tional potential energy surface at intervalley intersections. The
latter effect, under the name of the “boundary effect,” appears
in the high-T , constant-V specific heat of elemental liquids
and is exemplified by liquid Hg [8]. As T continues to increase
in Fig. 1, �MD(T ) falls increasingly below �vib(T ) due to the
increasing boundary effect, and the system embarks on a very
broad liquid-to-gas transition (see, e.g., [9]).

III. CALIBRATION OF THE VIBRATIONAL
HAMILTONIAN

To begin the vibrational calibration for a liquid, we
carry out a number of quenches for the appropriate MD
system and study several properties of the structures in
order to identify the random structures [6]. We then choose
a representative random structure for the liquid structure
and calibrate the vibrational Hamiltonian as follows. The
information contained in the liquid structure is its potential
energy per atom �l

0 and the set {RK} of atomic equilibrium
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positions for K = 1, 2, . . . , N . The potential energy due to
small displacements uK of the atoms from equilibrium is a
positive-definite quadratic form, i.e., a stable harmonic valley,
in the 3N Cartesian components of the set {uK}. The matrix
of potential energy coefficients, also called force constants,
divided by the atomic mass M is the dynamical matrix.
The eigenvalues of the dynamical matrix are ω2

λ, where
ωλ is the vibrational frequency of mode λ, and ω2

λ > 0 for
λ = 1, 2, . . . , 3N − 3. The three translational modes having
ωλ = 0 are removed for statistical-mechanical applications.
As a matter of principle, the complete calibration must be
done for a single structure.

The set of frequencies is all one needs to calculate vi-
brational contributions to the thermodynamic functions (see
discussion of crystals on pp. 147–149 of [1]). However, the
normal-mode eigenvectors are also valuable because they
extend the coverage of vibrational statistical mechanics far
beyond thermodynamics.

We generally make statistical-mechanical derivations in
quantum formulation because that is the complete theory at all
T . Classical expressions can be extracted from the quantum
formulas, but the reverse is not possible. The formal theory
of vibrational thermodynamics for any 3N-dimensional har-
monic valley is derived in Secs. 16 and 17 of [1], especially in
Eqs. (16.13)–(16.20) and (17.1)–(17.8).

The normal vibrational modes obey Bose-Einstein statis-
tics. The creation and annihilation operators are, respectively,
A+

λ and Aλ for mode λ, and the vibrational Hamiltonian per
atom is Hvib, where

Hvib = 3

3N − 3

∑
λ

h̄ωλ

(
A+

λ Aλ + 1

2

)
. (2)

For mode λ, h̄ωλ is the vibrational-level spacing, A+
λ Aλ mea-

sures the discrete occupation level in a system eigenfunction,
and the term in 1

2 is the zero-point energy. The mean occupa-
tion number is nλ(T ) = 〈A+

λ Aλ〉, where 〈· · · 〉 is the canonical
average and

nλ(T ) = 1

eβ h̄ωλ − 1
, β = 1

kBT
. (3)

The thermodynamic internal energy is Uvib = 〈Hvib〉, so from
Eq. (2),

Uvib(T ) = 3

3N − 3

∑
λ

h̄ ωλ

[
nλ(T ) + 1

2

]
. (4)

The entire volume dependence of these equations is in ωλ(V ).
These few equations are sufficient to illustrate the quantum
formulation and to show in Sec. IV how we transform to the
classical regime without losing information.

By derivation, a statistical-mechanical function is ex-
pressed as a sum over vibrational normal modes, e.g.,

∑
λ fλ

in Eq. (4), where fλ expresses information belonging to mode
λ. The information generally includes both frequency and
eigenvector data. For thermodynamic functions, such a sum
is traditionally replaced by an integral over the normalized
frequency distribution g(ω) in the form

∫
f (ω)g(ω)dω, where

f (ω) expresses information belonging to the increment dω

at ω. The integral formulation does not contain eigenvector
information and therefore is limited to functions having no
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FIG. 2. Histogram of g(ω) from the set of vibrational frequencies
ωλ, calculated from the dynamical matrix. Calculations are based on
the Na pair potential φ(r;V ).

eigenvector dependence (see the discussion of Eq. (5.2) in
[1]). The function g(ω) has become an investigative tool for
comparing vibrational spectra of different systems.

In Sec. IV, we shall test our Na calibration parameters
by comparison with an independent density functional theory
(DFT) calibration. We begin that comparison here. We work
with histograms because that form introduces the minimal
amount of extraneous information required to present the list
of ωλ in graphical form.

Figure 2 shows the liquid g(ω) as calculated from our Na
potential, which has reliably produced excellent agreement
with experimental data for crystal and liquid phases [1].
Figure 3 shows the liquid g(ω) computed from DFT. Both
histograms display three characteristics commonly observed
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FIG. 3. Histogram of g(ω) made as in Fig. 2 from calculations
based on first-principles DFT.

104204-3



DUANE C. WALLACE et al. PHYSICAL REVIEW B 99, 104204 (2019)

in our liquid studies to date: The low-ω edge is an accurate
straight line that intersects zero count at ω > 0; the high-ω
edge is also a good straight line, steeper than the lower edge,
and the top is roughly constant, with a two-step refinement
that is pronounced in Fig. 2 and is weak in Fig. 3. From
the overall similarity of the two graphs, we conclude that the
fundamentally different computational methods will produce
qualitatively similar vibrational thermodynamics for the liq-
uid. A more incisive comparison appears at the end of Sec. IV.

IV. VIBRATIONAL STATISTICAL MECHANICS

Exact classical statistical mechanics is contained in the
high-T expansion of quantum statistical mechanics. Under the
high-T condition (h̄ωλ/kBT ) � 1, Eq. (3) becomes

nλ(T ) + 1

2
= kBT

h̄ωλ

×
[

1 + 1

12

(
h̄ωλ

kBT

)2

− 1

720

(
h̄ωλ

kBT

)4

+ · · ·
]
.

(5)

The first term on the right is classical theory, and the terms
in T −2, T −4, . . . constitute the quantum correction series.
By “classical regime” we mean temperatures at which the
quantum correction is small but not necessarily negligible.
We always keep at least the leading-order quantum correction
because, as we shall see, it can provide an estimate of the
entire series. Keeping the quantum correction also makes our
calculated thermodynamic functions exact in principle in the
classical regime.

From Eqs. (4) and (5), the vibrational internal energy per
atom is

Uvib(T ) = 3kBT

3N − 3

∑
λ

×
[

1 + 1

12

(
h̄ωλ

kBT

)2

− 1

720

(
h̄ωλ

kBT

)4

+ · · ·
]
.

(6)

The sum
∑

λ converts the numerators of the quantum correc-
tion terms into moments of the ωλ distribution. Long ago, a set
of modified moments of g(ω) was defined [10] and has since
been widely applied (see, e.g., the compendium of crystal
phonon data [11]). For application to lattice dynamics theory,
we converted those moments to a set of characteristic temper-
atures θn, the natural dimension for scaling thermodynamics
at high T (pp. 147–152 of [1]). These θn are now applied to
liquid dynamics theory and are defined for n � −3 as follows:

kBθn =
[

n + 3

3

1

3N − 3

∑
λ

(h̄ωλ)n

]1/n

,

n �= 0 and n �= −3, (7)

ln(kBθ0) = 1

3N − 3

∑
λ

ln(h̄ωλ), (8)

θ−3 = lim
n→−3

θn. (9)

Some technical notes are in order. First, the actual moments
of [10], defined in terms of g(ω), are eliminated in the
definitions (7)–(9). Equations (7)–(9) are in the exact
statistical-mechanical formulation, as

∑
λ fλ. Second, the

scaling factor (n + 3)/3 is present in all three equations (7)–
(9). This scaling is not present in the standard definition of
moments of a distribution but was inserted specifically to scale
moments of a Debye distribution to a constant [10]. Simpler
math would be to remove this spurious scaling, but it is by
now a theoretical legacy.

To show the role of θn in vibrational thermodynamics, we
list the equations for the internal energy and the entropy Svib:

Uvib(V, T ) = 3kBT

[
1 + 1

20

(
θ2(V )

T

)2

− 1

1680

(
θ4(V )

T

)4

+ · · ·
]
, (10)

Svib(V, T ) = 3kB

[
ln

(
T

θ0(V )

)
+ 1 + 1

40

(
θ2(V )

T

)2

− · · ·
]
.

(11)

Fvib(V, T ) is constructed from Eqs. (10) and (11) (see Eqs.
(17.5)–(17.7) of [1]). For all such equations, θ2 determines the
first quantum correction. Higher terms can be estimated from
θ2n ≈ θ2, n = 2, 3, . . . . θ2 is also useful in the approximations
θ1 ≈ θ2 ≈ e

1
3 θ0 (p. 152 of [1]). Finally, (kBθ2)2 is proportional

to the dynamical matrix trace, which can be evaluated without
calculating the entire matrix (pp. 132–133 of [1]). Because
θ2 is easy to evaluate, it is often used as a general estimator
for θn, n � −2. θ0, Eq. (8), profoundly controls Svib(V, T ) by
dominating its V dependence and scaling its T dependence
in Eq. (11). The quantum zero-point vibrational energy is
given by the term in 1

2 in Eq. (4) and is expressed by the
characteristic temperature θ1 via the relation

3

3N − 3

∑
λ

1

2
h̄ωλ = 9

8
kBθ1. (12)

Hence, the liquid quantum ground-state energy is �l
0 + 9

8 kBθ1,
while the classical ground-state energy is �l

0. In the classical
regime, the quantum zero-point energy disappears, and the
high-T forms are pure classical plus small quantum correc-
tions going as T −2 + · · · .

θ−3 is the Debye temperature θD and has physical meaning
only at very low temperatures. θD is theoretically given by
sound velocities at T = 0, and θD scales the T dependence of
specific heat at very low T (pp. 136, 162–165 of [1]).

For our well-studied Na MD system at N = 500, we car-
ried out 1000 quenches to structures, calculated and diago-
nalized the dynamical matrix for each structure, and evalu-
ated the sets of θn for n = 2, 1, 0. We refer to these as the
central θn because these n measure most uniformly across
the ωλ distribution. θn for higher and lower n, respectively,
concentrate on higher and lower ωλ. The θn distributions are
graphed against the distributions of the structural potential �0

in Figs. 4–6. Each figure includes data points for 1 crystal and
18 symmetric and 982 random structures.

The dominant characteristic in Figs. 4–6 is the alignment
of the entire θn distribution with the crystal-liquid axis for
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FIG. 4. Distribution of θ2 from 1000 quenches to structures,
graphed against the structure potential �0. Solid dots are the random
distribution, and the revealed cross indicates the liquid structure.
Open circles are the symmetric distribution. The bcc crystal �0 is
set to zero for graphical clarity.

n = 2 and n = 1, with a small departure for n = 0. The slope
of the axis decreases and passes through zero at n between 2
and 1 (Figs. 4 and 5). Where the slope is zero, θ c

n = θ l
n, and

this is a qualitative measure of the most uniform weighting
of ωλ in Eq. (7) for kBθn. The largest scatter belongs to the
symmetric distributions. That scatter is not random but shows
a filamentary order that varies with n and signifies underlying
structural symmetries. The graphs provide an organization of
the entire condensed-matter distribution of central θn, and they
invite us to investigate.

We shall now make specific application of Figs. 4–6 to
the calibration of liquid vibrational theory. This will be done

FIG. 5. Distribution of θ1 (details are as in Fig. 4).

FIG. 6. Distribution of θ0 (details are as in Fig. 4).

by making the same comparison here as in Sec. III for the
same g(ω) shown in Figs. 2 and 3, but comparing the central
θn instead of the g(ω) graphs. The θn are calculated directly
from Eqs. (7) and (8), and they contain much more precise
information than do the g(ω). The results are listed in Table I
and discussed next.

Table I compares the central liquid θ l
n between the Na

potential calculation and the DFT calculation at the same
volume Vlm. The deviation is defined as

�θ l
n = θ l

n(φ(r;V )) − θ l
n(DFT)

θ l
n(DFT)

. (13)

The deviation is systematic in n because the crystal-liquid
axis changes with n. The deviation is sufficiently small that
both computational methods are verified to high accuracy. We
now have the capability to make first-principles calculations
of the liquid vibrational parameters and hence of the liquid
vibrational thermodynamics.

V. CONCLUSION

A. Theoretical concepts

Sections II–IV present a detailed description of the con-
struction and calibration of the liquid vibrational theory. We
shall now present a parallel description of the theoretical con-
cepts that underlie the technical description. This presentation
brings out the logic of V-T theory.

TABLE I. θ l
n from the Na potential φ(r;V ) is compared with θ l

n

from DFT. V is the volume per atom.

Data source θ l
2 (K) θ l

1 (K) θ l
0 (K) N V (a3

0 )

φ(r;V ) 154.1 147.1 98.6 500 278
DFT 148.6 143.3 97.7 500 278
�θ l

n 0.037 0.027 0.009
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(1) Of the vast number of potential energy valleys that
constitute the condensed-matter PES, the random valleys are
macroscopically equivalent and constitute the domain of the
liquid phase. These concepts profoundly shape V-T theory.
Vibrational theory is to be based on a single representative
random valley, while a complex space of intervalley intersec-
tions becomes the research assignment.

(2) The philosophy of many-body theory guides us to
the V-T decomposition in Sec. II. The motivation is to first
construct a tractable Hamiltonian, which is done by extending
the harmonic liquid valley to infinity. The tractable Hvib is
written in Eq. (2). The equally important companion step is
to show that the Hamiltonian correction required to achieve
liquid behavior is relatively small, which is done in Fig. 1.
These two steps alone qualify the formulation as an acceptable
starting point for a liquid dynamics theory.

(3) Vibrational calibration parameters are evaluated at a
liquid structure. For logical clarity, we keep the structural
potential �l

0 separate from the atomic motion. The vibra-
tional parameters are then the equilibrium positions {RK}, the
mode frequencies {ωλ}, and the mode eigenvectors. These
parameters measure a representative potential energy valley
belonging to the liquid domain of the PES. In other words,
the calibration measures the potential surface that drives the
liquid atomic motion. This is the correct physical calibration.

(4) Given the quantum Hamiltonian, Eq. (2), statistical-
mechanical equations are derived by analysis and are formally
exact. These equations are expressed as sums over eigen-
modes λ. Equations (2)–(12) of the present study are formally
exact. They are subject to zero theoretical error, by definition,
and are subject only to numerical error, which includes finite-
N error. We avoid the integral formulation of thermodynamics
(Sec. II), as it can express only a small segment of statistical
mechanics theory.

(5) The high-T expansion of quantum statistical mechanics
is useful because it separates into exact classical statistical
mechanics plus the quantum correction, Eqs. (7)–(12). The
classical theory is easy to work with because its liquid ther-
modynamics is primarily calibrated by just three parameters,
the central θn, and the quantum correction goes to zero as T
increases above Tm.

(6) The deviations between the liquid central θ l
n from two

different computational methods are listed in Table I. These
deviations serve as an estimate of error in the vibrational
calibration for monatomic liquids. The consequent relative
error in the functions Uvib(T ) and Svib(T ) is on the order
of 0.005 at Tm and decreases as T increases from Tm. We
conclude that the liquid vibrational thermodynamics can, in
practice, be evaluated to negligible error.

B. Relations of V-T theory to EOS modeling

Modeling of the thermodynamic properties of the liquid
state has a long history with extensive literature, begin-
ning with van der Waals’s famous two-term equation [12]
and going to contemporary research, which may involve
hundreds of terms and parameters [13]. Improved accuracy
in the measurements of the thermodynamic properties has
led to the continuing development and complexities of the
EOS models [14–16]. Those complex EOSs are capable of

accuracy within a fraction of a percent of the experimentally
measured values. In a more general scope, beyond just fluids,
a standard three-term free-energy construction of the EOS
is often used [17–19] with accuracies of a few percent. The
first contribution of the EOS construction is that of the zero-
temperature compression response curve, which in V-T theory
is the liquid ground-state energy [6]. The second EOS model
contribution is the thermal response related to the atomic
motion, which in V-T theory has vibrational contributions
discussed in this paper plus a transit contribution. Finally,
the third EOS term is that related to the electronic thermal
excitation with temperature, and V-T theory contains the same
term. While these EOSs are constructed as a single phase,
V-T theory is developed within the multiphase EOS program
and represents the liquid. The vibrational contribution is first
principles and can be evaluated at any volume.

The general EOS liquid models often treat the thermal
atomic response as being Debye-like near melt, which is
experimentally motivated for metallic systems [20], and then
interpolate to the extremely high temperature ideal-gas limit
[21]. This interpolation is constrained by shock Hugoniot
data into the liquid regime and increasingly by ab initio
simulation [22,23]. Increases in the quantity and accuracy of
the constraining data have shown deficiencies in these inter-
polative models [24], which leads to the same path of needing
more parameters in increasingly complex models to cover the
regimes of interest. In order to extend our formulation beyond
V-T theory, to the ideal gas, we are developing an appropriate
tractable Hamiltonian to replace the numerical interpolation.

Over many years of development, liquid dynamics theory
has included consideration of many-atom correlated vibra-
tional motion, referred to as “collective modes,” or “phonons.”
In an exemplary study early in the development of collective
motion theory, the liquid dynamics was represented by a set
of propagating periodic density fluctuations in the form of
Fourier transforms of the atomic positions and momenta [25].
The theoretical objective was to modify the transforms to
make the atomic motion consistent with a Hamiltonian based
on interatomic central potentials. This part of the approach
did not survive. Later, longitudinal and transverse phonons
in metallic liquids were described in detail (Secs. 3.14 and
3.15 in [26]). In the spirit of inquiry, Fourier components
of the density operator were treated as phonons (Secs. 8.5
and 8.6 of [27]). In the “phonon theory of liquid dynamics,”
thermodynamic functions are formulated in terms of a Debye
distribution of vibrational modes plus a modification of the
lowest-frequency transverse modes to account for diffusive
motion [28–32]. The modification is calibrated from the vis-
cosity relaxation time, which is T dependent. Experimental
data have been employed to test and develop the theory for
a wide variety of liquid types and wide ranges of V and T
[29,33–35]. These references also provide a thorough compi-
lation of published data supporting the presence of collective
modes in liquid dynamics.

In V-T theory, as described in Secs. II–IV, liquid vibra-
tional motion is attributed to the actual quantum vibrational
modes, as calculated from the actual liquid potential energy
surface. For the necessary companion component of liquid
atomic motion, we shall turn next to a detailed presentation
of transit theory.
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