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A new paradigm of Anderson localization caused by correlations in the long-range hopping along with
uncorrelated on-site disorder is considered which requires a more precise formulation of the basic localization-
delocalization principles. A new class of random Hamiltonians with translation-invariant hopping integrals is
suggested and the localization properties of such models are established both in the coordinate and in the
momentum spaces alongside with the corresponding level statistics. Duality of translation-invariant models
in the momentum and coordinate space is uncovered and exploited to find a full localization-delocalization
phase diagram for such models. The crucial role of the spectral properties of hopping matrix is established
and a new matrix inversion trick is suggested to generate a one-parameter family of equivalent localization-
delocalization problems. Optimization over the free parameter in such a transformation together with the
localization-delocalization principles allows us to establish exact bounds for the localized and ergodic states in
long-range hopping models. When applied to the random matrix models with deterministic power-law hopping
this transformation allows to confirm localization of states at all values of the exponent in power-law hopping
and to prove analytically the symmetry of the exponent in the power-law localized wave functions.
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I. INTRODUCTION

The standard picture of Anderson localization in a three-
dimensional single-particle system with short-range hopping
[1] is represented by the phase transition between extended
ergodic and localized phases at a certain critical disorder
strength or energy with a sharp mobility edge separating
ergodic and localized states. Exactly at the Anderson lo-
calization transition (AT) nonergodic (multifractal) extended
states have been proven to appear [2,3]. It is well-known that
in low dimensions d = 1, 2 for any tight-binding (or short-
range) Hamiltonian with uncorrelated disorder all states are
localized.

However, delocalized states may appear even in one-
dimensional systems if the hopping is long-ranged [4–7].
An archetypical example of such nominally one-dimensional
systems is suggested in Ref. [6]. In this power-law random
banded matrix (PLRBM) model the long-ranged hopping
terms are completely uncorrelated and Gaussian distributed
with a power-law decay of the variance 〈|Hnm|2〉 ∝ (b/|n −
m|)2a with the distance |m − n| that saturates 〈|Hnm|2〉 ∼ 1
at |m − n| < b. The parameter that drives the localization
transition in this system is the exponent a. For a > 1 the states
are power-law localized, while at a < 1 they are extended.
At the critical point a = 1 multifractal states with variable
(depending on the parameter b) strength of multifractality are
formed [6–8].

*To whom correspondence should be addressed.

FIG. 1. Effect of correlations in long-range hopping on the An-
derson localization. These correlations result in the sequence Eq. (1)
of phase transitions with degrading ergodicity. The effective disorder
on the horizontal axis is determined by the ratio of on-site disorder to
the hopping integrals at large distances (controlled by the exponents
a or γ ). The phase diagram is shown for the Rosenzweig-Porter (RP)
family of ensembles, where all phases (fully and weakly ergodic,
fractal, and localized) are present. The fractal phase separated by
the localization (AT) and the ergodic (ET) transitions from the
localized and the ergodic phases is present in these models even in the
absence of correlations. Increasing the correlations (upwards along
the vertical axis) sends the AT and ET to smaller disorder values and
stretches the ET critical point into a whole weakly ergodic phase.
Three-dimensional plots show cartoons of spatial distributions of
wave-function intensities in the corresponding phases. For a family
of the power-law random banded matrices (PLRBM) considered in
this work (not shown) the fractal phase is replaced by the weakly
ergodic one.
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FIG. 2. Matrix Hamiltonians (in the order of increasing correlations) with fully random, random translation-invariant, and deterministic
hopping. Squares of different color and at different heights represent the value of matrix elements for different m, n = 1, ..., 15.

At the first glance this delocalization at long-range hopping
is natural and independent of the uncorrelated nature of the
hopping integrals, as at one hop the particle can reach any
point of the system. Yet, as we show in this paper, localization
effects get stronger if the long-range hopping integrals are
fully or partially correlated (see Fig. 1).

It is commonly believed that correlated disorder in the
on-site energies (“diagonal disorder”) tends to delocalize sys-
tems. An important example is the Aubry-Andre lattice model
[9] with an incommensurate periodic potential that possesses
delocalized states and exhibits AT. This type of quasidisorder
was widely used in recent experiments on localization of
matter waves of cold atoms [10]. Our findings show that
correlations in the long-range hopping produce an opposite
effect. This effect is not restricted to the one-dimensional
systems: the tendency towards localization at correlated long-
range hopping is present in higher dimensional systems thus
showing the universality of this phenomenon which we call
“correlation-induced localization.”

The physics of long-range interacting systems is now an
emerging field. Initially it was motivated by experiments
on trapped cold atoms with dipole moments (see, e.g.,
Refs. [11–13]). However, now the interest is being shifted
towards many-body localization in systems with long-range
(e.g., Coulomb) interaction [14]. Several models with such
interactions have been suggested in the past [15] and re-
cently [16–27] in the problem of entanglement dynamics at
many-body localization. The models with fully correlated
hopping and interaction terms [15,16,18,21–24,26] show sig-
nificantly different behavior as compared to the ones with
uncorrelated hopping and interactions [16,17,19,25,27]. Some
of the former works (see, e.g., Ref. [23]) even demonstrate
explicitly that many-body properties are formed as superpo-
sitions of short-range and power-law decaying contributions
in the complete agreement with the single-particle picture
developed in this work.

Moreover in physics of classical dynamical systems long-
range interactions also play a significant role leading to the
formation of inhomogeneous spatial temperature distribution
anti-correlated with the density profile after a global spatially
homogeneous quench [28–30]. The relaxation times from
these emergent inhomogeneous states to the equilibrium are
very long and diverge with the system size [31–33]. This
physics is relevant, in particular, to the explanation of the
heating of the solar corona. Thus, we believe that the results

of this paper are relevant for all the above-mentioned types of
many-body problems as well.

The correlations in long-range hopping are barely studied.
The earlier study of a single-particle system with deterministic
(or fully correlated) power-law decay of long-range hopping
[34], has been nearly unnoticed until recently. Several recent
works [35–39] reported about localization in such systems
with fully correlated long-range hopping, confirming (mostly
numerically) the conclusion of the renormalization group
(RG) analysis done in Ref. [34]. Neither of the models
[35–39] demonstrates a truly delocalized behavior of wave
functions in the bulk of the spectrum for all strengths of
disorder and all values of the exponent a.

Furthermore, very recently a striking duality μ(a) =
μ(2 − a) in the spatial decay rate μ � 2 of the power-law lo-
calized wave functions |ψ |2 ∝ |r − r0|−μ was discovered [39]
in the models with algebraically decaying correlated hopping
[34,38,39]. This implies enhancement of localization upon
making hopping more long-ranged. In this work we prove this
duality and analytically show the absence of delocalized phase
in these models.

Despite all these facts spread in the literature, the system-
atic study of correlations at long-range hopping has not been
done so far and importance and generality of the phenomenon
of enhancement of localization by correlations have not been
appreciated. This paper is aimed to fill in this gap in the theory
of Anderson localization.

In all the above-mentioned models the long-range hopping
integrals are either uncorrelated or fully correlated (determin-
istic). The systematic study of the role of correlations requires
a gradual increase of correlations. In this work we suggest
a new class of models that bridge between the models with
uncorrelated hopping and those with fully correlated hopping
(see Fig. 2). These are the models with random long-ranged
hopping integrals which are translation-invariant (TI). In a
given realization the hopping integrals Hnm = H|n−m| in TI
models are fully correlated along a diagonal (see Fig. 2)
but they are uncorrelated and sign-alternating for different
diagonals [40]. Such models emerge naturally, e.g., in the
case when hopping is caused by the RKKY interaction which
oscillates with the period incommensurate with the lattice
constant.

In addition to the models with the typical long-range
hopping integrals decreasing algebraically with the distance
which physical realization is more or less obvious, the

104203-2



CORRELATION-INDUCED LOCALIZATION PHYSICAL REVIEW B 99, 104203 (2019)

FIG. 3. Localization-delocalization phase diagrams for (left) RP
and (right) PLBM families of ensembles. Additional to coordinate-
space diagrams (above horizontal lines) and level-statistic diagrams
(in the middle) for TI models the momentum-space diagrams are
shown below the lines. The phases in TI-RP model are symmetric
with respect to duality point γ = 1. The type of spectral statistics
(Wigner-Dyson, Poisson, and hybrid) is indicated for each phase.
Notice Poisson level statistics in delocalized phases of TI models
in accordance with general principles formulated in Sec. IV. The
increase of correlations in the hopping (from bottom to top) first
destroys the fully ergodic phase in all models, making TI systems
weakly ergodic (WE), and then (in YS and BM models) localizes
wave functions in the coordinate space.

models with the typical hopping integrals being distance-
independent but dependent on the system size (as N−γ /2)
have recently come under the spotlight. The interest to such
models emerged because of the discovery [41] of the new
nonergodic extended (multifractal) phase and the correspond-
ing ergodic transition in the generalized Rosenzweig-Porter
(RP) model. This model appeared to be relevant for several
many-body problems such as the quantum random energy
model [42] with implications for quantum computing [43],
as well as for nonergodic extended states in the Sachdev-Ye-
Kitaev [44,45] (SY K4 + SY K2) many-body model [46–48].
The presence of nonergodic extended phase and of above
mentioned ergodic transition puts on a solid ground the
search for ergodic transition and nonergodic extended phase
on random regular graphs (RRG) (initiated in Refs. [49,50]
and discussed in detail in Ref. [50]) and in real many-
body systems [51,52]. Slow dynamics on RRG [53–55]
and in disordered spin chains [56–58] may be a signature
of such a phase. In this work we suggest the translation-
invariant extension of the RP model and study the localiza-
tion properties of the RP family of models along with the
PLRBM family as the correlations in the long-range hopping
increase.

A remarkable feature of random TI models is the presence
of the Poisson spectral statistics within the delocalized phase
(see Fig. 3). This goes against the common wisdom that the
Poisson statistics signals of localization. The reason for such
a behavior is that the Poisson spectral statistics emerges in
the parameter region where the states in the coordinate space
are, indeed, extended and weakly ergodic [59], but those in
the momentum space are localized. The common wisdom
assumes by default that the states in momentum space are
always chaotically extended. The TI models introduced in
this paper constitute a class of models where this assumption

fails. We formulated principles to identify the type of basis-
invariant spectral statistics if the statistics of eigenstates in
the coordinate and in the momentum spaces are known (see
Fig. 3). One of them reads that the Poisson spectral statistics
emerges each time when the eigenstates are localized either in
the coordinate or in the momentum space [60]. This statement
is checked numerically in the paper.

The results of this paper allow us to formulate a new
phase diagram, which is presented in Fig. 1. This figure
shows a certain hierarchy of phases with respect to the extent
of ergodicity of eigenstates. The fully ergodic (FE) phase
corresponds to the Porter-Thomas eigenfunction statistics if
it is basis-independent. The corresponding level statistics is
Wigner-Dyson. We denote the states as weakly ergodic (WE)
if the eigenfunction support set [50,61] in a given basis scales
like the matrix size N but the significant fraction of sites
are not populated. The eigenfunction statistics in the WE
phase is basis-dependent and deviates from the Porter-Thomas
one. The nonergodic extended, (multi)fractal (F) states are
characterized by the support sets which scale as ND, where
0 < D < 1. Finally the localized (L) states correspond to
D = 0. Obviously, the ergodicity of the states decreases in the
following sequence:

FE → W E → F → L. (1)

The main result of this paper illustrated by Fig. 1 is that
with increasing correlations in the long-range hopping the
sequence of phases at a certain fixed disorder strength is
that of Eq. (1), where some phases of this sequence may be
missing, i.e., with increasing the correlations in the long-range
hopping the ergodicity of eigenstates progressively degrades.
Simultaneously, the lines of localization or ergodic transitions
are shifted to lower disorder. At fully correlated long-range
hopping the delocalized states in the bulk of the spectrum
disappear whatsoever.

It is important that the critical lines of all transitions bend
to the left, i.e., the states which are localized in the absence
of correlations remain localized when the correlations are
present. However, the former ergodic extended states may
become weakly ergodic, nonergodic, or even localized in the
presence of correlations in the long-range hopping. This is the
essence of correlation-induced localization.

II. LOCALIZATION CRITERIA FOR MODELS
WITH LONG-RANGE HOPPING

The most generic free-particle Hamiltonian is defined as
follows:

Hnm = εmδnm + jnm, (2)

where 1 � m, n � N are lattice sites, εm are random on-site
energies with zero mean 〈εm〉 = 0 and the variance 〈ε2

m〉 = �2

[62] represents uncorrelated diagonal disorder. The (possibly
correlated) hopping integrals jmn = j∗nm can be deterministic
or random and they are characterized by the averaged value
〈 jnm〉 and the variance 〈| jnm|2〉. Throughout the text we refer
to the correlations in the hopping terms jnm simply as corre-
lations. For simplicity we restrict our consideration to d = 1,
unless stated otherwise.
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The basic localization principle originally suggested by
Mott [63] states that the wave functions are localized (ex-
tended) when the disorder strength � is larger (smaller) than
the bandwidth �p in the absence of diagonal disorder. The
results of this paper and other recent works [34–39,41,64,65],
however, show that this principle should be reformulated.

Let us first consider the case when the spectrum of the
off-diagonal part of the Hamiltonian Eq. (2) ĵ = Ĥ (εn = 0)
is bounded both from above and from below in the limit
N → ∞, and we are concerned with the statistics of eigen-
states in the bulk of the spectrum. We claim that the Mott’s
criterion,

� � �p, ⇒ weak ergodicity, (3)

is the sufficient condition for (at least weakly) ergodic delo-
calization when � is smaller than the bandwidth �p of ĵ. We
will be using this criterion in a weak sense as the condition,

lim
N→∞

�

�p
= 0, ⇒ weak ergodicity. (4)

In the absence of correlations in ĵ the bandwidth is given by

�2
p = 1

N

N∑
n,m,m 
=n

〈|Hnm|2〉. (5)

For this particular case the criterion equivalent to Eq. (4) was
mentioned in Ref. [64].

For correlated long-range hopping, specifically for the
translation-invariant hopping described in Sec. III, the spec-
trum of ĵ is often noncompact, with an infinite support set
in the energy space. In this case the bandwidth �p should be
defined as the width of the energy domain where mean level
spacing δ(N ) takes a typical value. The observation energy E
should be also chosen from inside of this domain.

As was explained in the Introduction, weak ergodicity
[49,50] defined in a given (e.g., coordinate) basis does not im-
ply invariance of wave-function statistics under basis rotation.
In some models (see, e.g., Ref. [64]) weak ergodicity may
survive beyond the condition Eq. (3), showing that Eq. (3) is
only the sufficient but not the necessary condition of weak
ergodicity and, thus, � = �p is the lower bound for the
ergodic transition between the weakly ergodic extended phase
and the nonergodic phases (localized or extended).

The criterion of localization suggested for systems with
long-range hopping by Levitov [4,5] following Anderson’s
ideas of locator expansion, reads

δR > | jR|, ⇒ localization. (6)

The key point of Refs. [4,5] is that one should compare the
mean level spacing δR ∼ �/Rd of a d-dimensional system at a
certain length scale 1 � |m − n| ∼ R � N with the width of a
resonance governed by the average absolute value of hopping
integrals jR within the same scale. Then most eigenstates
(except measure zero) are localized if Eq. (6) holds for almost

all R. Indeed, to find the eigenstates one can use the pertur-
bation theory in the small parameter jR/δR. The inequality
Eq. (6) means convergence of the perturbation series and thus
localization. A more strict condition,

| jR|
δR

< R−ε, ε > 0, (7)

as R → ∞ implies convergence of the series
∑

R | jR|. For
random matrices the corresponding criterion of convergence
reads as follows:

lim
N→∞

S/� < ∞, ⇒ localization, (8)

S = 1

N

∑
n,m,n 
=m

〈| jnm|〉.

If the criterion Eq. (6) is violated, both a multifractal [41]
and a weakly ergodic [64] extended phases may emerge. More
surprisingly, violation of Eq. (6) does not exclude localization
either, provided that the hopping integrals are correlated. In-
deed, the presence of correlations cannot destroy localization
if the condition Eq. (6) is fulfilled and the perturbation series
is convergent. Under this condition the main contribution to
the eigenfunction amplitude away from the localization center
comes from the first-order perturbation theory which knows
nothing about correlations in the hopping matrix elements.
The situation changes completely when the perturbation the-
ory diverges. In this case all orders in perturbation theory
contribute to the eigenfunction amplitude on an equal footing
and correlations come into play. As recent examples [35–39]
show, the effect of correlations when Eq. (6) is violated
may be localization of states which were extended in the
absence of correlations. These examples, in which hopping
is deterministic, prove that Eq. (6) is a sufficient but not a
necessary condition of localization.

The Anderson and Mott criteria may be made sufficient
and necessary criterion of localization by means of the ma-
trix inversion trick described in Sec. V. This trick converts
the initial Shrödinger problem into a family of equivalent
problems with modified Hamiltonians Ĥeq(E0) parameterized
by a continuous parameter E0 ∝ Nβ . The effective disorder
strength saturating Eq. (6) to an equality is a function of
this parameter β. The true border of the localized phase then
corresponds to the optimal β that minimizes this effective
disorder.

The domains of validity of Eqs. (3) and (6) are in general
noncomplimentary. This is the reason why the nonergodic
extended phase may exist [41] in the parameter region where
neither Eq. (3) nor Eq. (6) holds true.

III. TRANSLATION-INVARIANT (TOEPLITZ) MODELS

An important subclass of the models Eq. (2) is a family of
translation-invariant (TI) models with the hopping term jnm =
jn−m [66] depending only on the directed distance m − n
between coupled sites [40] (Toeplitz random matrix models).
For such models a special role is played by the momentum
basis. An equivalent dual form of the Hamiltonian Hnm =
εmδnm + jn−m in the momentum basis is Hpq = Ẽpδp,q + J̃p−q,
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with new on-site energies,

Ẽp = Ẽ∗
p =

N−1∑
m=0

jme−2π i pm
N , (9)

and new hopping integrals,

J̃p = J̃∗
−p = 1

N

N−1∑
m=0

εme−2π i pm
N , (10)

exchanging their roles after Fourier transforming (FT). It
allows one to generalize the Levitov’s localization principle
Eq. (6) to the momentum space, with |p − q| ∼ P,

δ̃P > J̃P, δ̃P = 〈|Ẽp − Ẽq|〉P

P
, J̃P = 〈|J̃p−q|〉P. (11)

The dual counterpart of the weak ergodicity criterion Eq. (4)
for TI models differs from Eq. (4) only by the opposite sign
of the inequality:

lim
N→∞

�p

�
= 0, �p = 〈

max
p,p′

|Ẽp − Ẽp′ |〉. (12)

Equations (4), (6), (11), and (12) form the basis of our
qualitative analysis throughout the manuscript [60]. Below
we consider two families of random matrix models as ex-
amples and show the effect of correlations on their localiza-
tion properties applying two dual pairs of these localization-
delocalization principles.

IV. PRINCIPLES OF LEVEL STATISTICS

It is frequently taken for granted that the level and eigen-
function statistics are in one-to-one correspondence: Delocal-
ized states correspond to the Wigner-Dyson level statistics and
the localized ones correspond to the Poisson level statistics.
However, there is a big problem with this statement: The level
statistics is basis-invariant while the eigenfunction statistics is
generically basis-dependent. We will show in this paper that
in the random TI ensembles eigenfunctions may be extended
in the coordinate space and localized in the momentum one.

The key phenomenological principles to identify the level
statistics in such a situation are the following:

(i) if there is a basis in which the states are localized
and uncorrelated with the corresponding eigenvalues, then the
level statistics is Poisson;

(ii) the Wigner-Dyson (WD) level statistics hold if and
only if the eigenfunction statistics is fully ergodic and basis-
invariant; and

(iii) when neither (i) or (ii) holds, the level statistics is of
the hybrid nature that shares the features of both WD and the
Poisson statistics.

It follows from these principles that a coexistence of
Poisson levels statistics and the delocalized (but not fully
ergodic!) character of eigenstates is possible in a certain (e.g.,
coordinate) basis. Indeed, according to Eqs. (9)–(11) in TI
models at small enough disorder � there exist states localized
in the momentum space (p-localized states). At the same time
in the coordinate space these states must be extended due to
the dual criterion Eq. (4). Then using the principles (i) and
(ii) we come to the conclusion that the level statistics in TI

models at small disorder must be Poisson, despite the states
are delocalized in the coordinate space.

Below we consider the level statistics in TI models in more
detail.

V. MATRIX INVERSION TRICK

In this section we describe a useful trick that allows to
reduce the problem with the spectrum of the hopping matrix
ĵ which is unbounded from above or from below to the
equivalent problem with the bounded spectrum.

The initial problem is given by the Schrödinger equation:

(E − εn) ψE (n) =
N∑

m=1
m 
=n

jn−m ψE (m). (13)

Let us introduce the matrix Mn−m:

M̂ = (1̂ + ĵ/E0)−1 =
∑

p

|p〉 〈p|
1 + Ẽp

E0

, (14)

where |p〉 is the momentum-space basis vector and E0 ∝ Nβ

is a certain energy, such that (−E0) lies outside the spectrum
of Ẽ (p) of ĵ or inside the gaps in this spectrum.

Singling out the diagonal term Mnn = M0 and sym-
metrizing the hopping matrix, one arrives at the equivalent
eigenvalue/eigenfunction problem:

(Ẽ − εn) (E + E0 − εn) ψE (n) =
N∑

m=1
m 
=n

Jnm ψE (m), (15)

where Ẽ = E + E0 (1 − M−1
0 ), and

Jnm = −(E + E0 − εn)
Mn−m

M0
(E + E0 − εm). (16)

The spectrum of the matrix Mn−m (n − m 
= 0) is given by
Eq. (14), and it is bounded in the limit N → ∞ even if Ẽp

is unbounded. The same is true for the constant M0. For an
unbounded Ẽp � E0 one obtains at large |n − m|:

Mn−m ≈ E0

N

∑
p

e2π i(n−m) p/N

Ẽp
, (17)

in contrast to

jn−m = 1

N

∑
p

Ẽp e2π i(n−m) p/N . (18)

Equations (17) and (18) will be useful to prove the duality
discovered in Ref. [39]. However, the main idea of introduc-
ing the matrix inversion trick is applying the localization-
delocalization and ergodicity criteria Eqs. (4) and (8) to a new
hopping matrix Jnm(E0), Eq. (16), and to find the true borders
of the localized and ergodic phases by optimization over E0.

In the next sections we show how does it work for RP
family, Sec. VI, and PLRBM family, Sec. VII, of matrix
ensembles.
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VI. ROSENZWEIG-PORTER FAMILY

A. Yuzbashyan-Shastry model

The simplest model with long-range fully correlated hop-
ping is the model with the constant jnm = N−γ /2 [35–37],
which we will refer to as the Yuzbashyan-Shastry (YS) model.
It is a particular case of a wider class of exactly solvable
random matrix ensembles with the rank-1 hopping matrix
jnm = gn g∗

m suggested in Refs. [35,36]. We use this exactly
solvable model to illustrate the general method of identifying
the eigenfunction and spectral statistics developed in this
paper.

In the absence of (diagonal) disorder in this model the
single zero-momentum (p = 0) level Ẽ0 is decoupled from the
degenerate set of the rest of states in the momentum space:

Ẽ0 = N1−γ /2, Ẽp
=0 = 0. (19)

Thus, for γ < 2 the spectrum of ĵ is unbounded from above.
Then applying the matrix inversion trick Eq. (14) and taking
into account that 〈n|0〉〈0|m〉 = N−1 and

∑
p |p〉〈p| = 1̂ one

obtains for the matrix M̂:

M̂ = 1̂ − N−γ /2

E0 + N1−γ /2
, (20)

where 1̂ is the unit matrix, the second term stands for the
matrix with equal elements for all n 
= m, and E0 ∝ Nβ . Then
the matrix elements Mn 
=m are independent of n, m and scale
with N like

Mn 
=m ∝
{

N−γ /2−β, if γ > 2(1 − β )
N−1, if γ < 2(1 − β ).

(21)

The ratio of the hopping matrix Jnm(E0) to effective diagonal
disorder

�(E0) ∼ Nmax(0,β ) (22)

of the equivalent problem, Eq. (15), scales as

〈|Jnm(E0)|〉
�(E0)

∝
{

N−γ /2−min(0,β ), if γ > 2(1 − β )
N−(1−max(0,β )), if γ < 2(1 − β ).

(23)

As the result, the border line for Eq. (7) with jnm ⇒
Jnm(E0) is [see Fig. 7(a)]

γ (β ) =
{

2(1 − β ), if β � 0
2, if β > 0 . (24)

The minimal value γmin = 2 of γ (β ) is reached at the optimal
value of β = βopt = 0. Thus, we conclude that the true border
of localization for YS model is γ = 2.

At β = βopt = 0, Eq. (23) gives( 〈|Jnm|〉
�

)
opt

∝
{

N−γ /2, if γ > 2
N−1, if γ � 2.

(25)

Equation (25) implies that (S/�)opt ∼ N0 for all γ � 2. It
corresponds to the critical state similar to the one in the
point of Anderson transition on the Bethe lattice [49]. In
many respects this state may be considered as the limiting
localized state which we refer to as the “critically localized”
state.

The absence of truly extended states in YS model can be
further confirmed by the Mott’s criterion Eq. (4). Indeed, the

spectrum of ĵ given by Eq. (19) consists of the (N − 1)-fold
degenerate band and a single level. Thus, the typical level
spacing of ĵ is exactly zero, the same as the corresponding
bandwidth �p. This means that the Mott’s criterion of delo-
calization Eq. (4) is never fulfilled.

We come to the conclusion that for YS model the delocal-
ized phase in the coordinate space is absent, in agreement with
the results in the literature [35–37], despite infinitely long-
ranged hopping integrals. This is the most spectacular effect
of destructive interference of long-range hopping trajectories
on Anderson localization.

B. Rosenzweig-Porter ensemble

The destructive interference in long-range hopping is dras-
tically sensitive to correlations in the hopping integrals. The
best studied relative of YS model is the Rosenzweig-Porter
(RP) ensemble [41,65,67–81].

The Hamiltonian of the RP-ensemble takes the form of
Eq. (2) with totally uncorrelated hopping matrix elements
jnm with zero mean and the variance 〈| jnm|2〉 = �2N−γ

scaling with the matrix size N in the same way as | jnm|2
in YS model. The diagonal elements are characterized by
〈ε2

m〉 = �2.
In contrast to YS model, there are three phases in RP

model [41]: fully ergodic (FE) for γ < 1, fractal (F) for
1 < γ < 2, and localized (L) for γ > 2, of which two
(FE and F) are extended. These three phases are separated
by two phase transitions: the Anderson localization transition
(AT) at γ = 2 and the ergodic transition (ET) at γ = 1. At
γ = 2 the eigenfunctions are critically localized like in the
corresponding point of YS model, while at γ = 1 a different
type of critical statistics emerges.

The level statistics of RP-ensemble [41,65,68–72,75] is of
Wigner-Dyson form for γ < 1 and Poisson for γ > 2. For
1 < γ < 2 it shows the Wigner-Dyson-like level repulsion
at small level spacings sk = En+k − En < kδ and the Poisson
statistics at sk � k δ [65]. Further on we refer to this level
statistics as the hybrid one.

Low-energy level repulsion is well-represented by a so-
called ratio- or r-statistics, see Fig. 4:

r =
〈
min

(
rn,

1

rn

)〉
, rn = En − En−1

En+1 − En
, (26)

showing the value r ≈ 0.5307 for Gaussian orthogonal en-
semble (GOE), r ≈ 0.5996 for Gaussian unitary ensemble
(GUE), and r = 2 ln 2 − 1 � 0.3863 for Poisson level statis-
tics [82].

We stress once again that despite the r-statistics being
widely used to locate the localization transition, it is not
capable of distinguishing between the WD level statistics of
fully ergodic phases and the hybrid statistics. To distinguish
between them one should study the spectral statistics at energy
scale much larger than the mean level spacing δ. An example
of such statistics is the level number variance 〈n2〉 − 〈n〉2

at a large average number 〈n〉 � 
/δ ∼ N2−γ of levels in
the studied energy interval (here 
 ∼ N1−γ and δ ∼ N−1)
[41], which for the hybrid statistics should show the quasi-
Poisson behavior 〈n2〉 − 〈n〉2 = χ 〈n〉 (0 < χ < 1). Another
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FIG. 4. r-statistics (average level-spacing ratio) for (a) RP and
(b) PLBM families of models numerically calculated for random
matrix ensembles of unitary symmetry for the system size N = 214

and Nr = 103 disorder realizations. In both cases deterministic mod-
els (YS and BM) show only the localized or the critical behavior,
while TI models (TI-RP and TI-PLRBM) demonstrate delocalized
behavior in a finite range of parameters turning to Poisson statis-
tics both at small and large hopping integrals, corresponding to
localization in real and momentum space. Upper (lower) horizontal
line shows the r values for Wigner-Dyson (Poisson) statistics. Right
(left) vertical line shows the Anderson localization transition in real
(momentum) space for TI models.

possibility is to study the probability distributions of several
consecutive level spacings sk = En+k − En [65,83].

A relevant measure of eigenfunction statistics is the distri-
bution of amplitudes P(|ψE (n)|2) encoded in the spectrum of
fractal dimensions [7],

f (α) = 1 − α + lim
N→∞

ln[P(|ψE (n)|2 = N−α )]/ ln N. (27)

As shown in Ref. [41] for RP f (α) takes a simple linear form,

f (α) =
{

1 + (α − γ )/2, max(0, 2 − γ ) < α < γ

−∞, otherwise ,

(28)
for γ � 1 with an additional point f (0) = 0 for γ > 2. The
f (α) in the ergodic phase, γ < 1, coincides with the one
at γ = 1 and is represented by a single point f (1) = 1; see
Fig. 5.

Simple arguments based on Mott’s and Anderson’s criteria,
Eqs. (4) and (6) allow us to locate the localized and ergodic
phase without going into cumbersome mathematics. Indeed,
Anderson’s criterion δ ∼ N−1 � 〈| jnm|〉 ∼ N−γ /2 predicts lo-
calization for γ > 2. At the same time, Mott’s criterion � �
�p predicts ergodic delocalized states for γ < 1, as � ∼ 1,
and �p ∼ N (1−γ )/2 according to Eq. (5).

Note that using the spectral properties of the hopping
term of the RP model in its eigenbasis and the optimization
procedure for Eqs. (4) and (6) one may show that the latter
are not only sufficient but also necessary conditions for weak
ergodicity and localization, respectively. The corresponding
analysis in the translation-invariant model is given in the next
subsection.

C. TI-RP ensemble and the coordinate-momentum
space duality

We extend the Rosenzweig-Porter family of random matrix
ensembles by introducing a translation-invariant RP ensemble
(TI-RP). It is described by the Hamiltonian

Hnm = εmδnm + jn−m, 〈| jn−m|2〉 = �2N−γ , (29)

with independent identically distributed (i.i.d.) Gaussian ran-
dom (GR) hopping integrals jn−m with zero mean and the
variance independent of m and n.

Because of translation invariance jnm = jn−m, the TI-RP
model possesses the duality of properties in the coordinate
and the momentum spaces [84]. Indeed, FT of i.i.d. real {εn}
or complex { jn = j∗−n} GR numbers are i.i.d. complex {J̃p =
J̃∗
−p} or real {Ẽp} GR numbers with the dual variances [85].

Then from Eqs. (9) and (10) one obtains

〈
Ẽ2

p

〉 � N〈| jn|2〉 ∝ N1−γ , (30)

〈|J̃p|2〉 � N−1
〈
ε2

n

〉
. (31)

To avoid complications related to the correlations (degener-
acy) {Ẽp = Ẽ−p} of FT of real symmetric GR { jn = j∗−n = j∗n }
here and further we consider the class of Gaussian unitary
ensembles. For discussion of orthogonal class of ensembles,
see Ref. [85].

Thus, the ratio 〈|J̃p|2〉/〈Ẽ2
p〉 ∝ N−γp determines a parame-

ter γp dual to γ in the momentum space

γp = 2 − γ . (32)

Equation (32) implies that in TI-RP model the phases in the
coordinate and momentum spaces are symmetric with respect
to the point γ = 1 (see Fig. 3).

The Mott’s criterion Eqs. (3) and (4) ensure existence of
weakly ergodic phase for γ < 1, since according to Eq. (30)

FIG. 5. Spectrum of fractal dimensions f (α) for the Rosenzweig-Porter family of models (RP, TI-RP, YS) for (a) γ = 0.5, (b) 1.5,
(c) 2.5 numerically extrapolated from system sizes N = 29 . . . 214 with Nr = 103 disorder realizations in each. Dashed lines show analytical
predictions Eq. (28) for f (α). (inset) Spectrum of fractal dimensions in the momentum space fp(αp) with analytical predictions Eq. (28)
(dashed lines) and γp = 2 − γ for TI-RP, demonstrating the difference between RP and TI-RP ensembles in their ergodic phases.
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�p ∼ N (1−γ )/2 and � ∼ N0 [86]. This result is corroborated
by numerics [see Fig. 5(a)].

To use efficiently the Anderson localization criterion we
first apply the matrix-inversion trick. Consider first the case
when E0 ∝ Nβ � �p ∼ N (1−γ )/2. Then expanding Eq. (14)
in ĵ/E0 one obtains

M̂ = 1̂ − ĵ/E0. (33)

The new hopping matrix Jnm(E0), Eq. (14), is estimated as

〈|Jnm(E0)|〉
�(E0)

∼
{ | jnm| = N−γ /2, for β > 0,

| jnm|/E0 ∼ N−γ /2−β, for β � 0.
(34)

Then the border line γ (β ) for the Anderson localization cri-
terion Eq. (8) takes the form (see Fig. 7) identical to Eq. (24)
[87].

Thus we find the same optimal βopt = 0 as for the YS
model. However, being substituted into Eq. (34), this optimal
β results in a different optimal 〈|J (opt)

nm |〉 = 〈|Jnm(E0 ∼ Nβopt )|〉
[cf. Eq. (25)]:

〈|J (opt)
nm |〉/�(E0) ∼ N−γ /2. (35)

With the optimal Ĵ (opt) Eq. (8) becomes the necessary and
sufficient criterion of localization. Thus, we conclude that
in the TI-RP model the localized phase in the coordinate
space corresponds only to γ > 2. Numerics fully confirms
this conclusion [see Fig. 5(c)]. Due to the duality Eq. (32) the
localized phase in the momentum space (which corresponds
to the ballistic propagation) is realized for γ < 0.

To establish the character of wave-function statistics in the
remaining interval 1 < γ < 2 in the coordinate space and in
the dual interval 0 < γ < 1 in the momentum space we apply
the Mott’s criterion to the equivalent problem Eq. (15). The
bandwidth �p(β ) for this problem determined by Eqs. (5) and
(34) is given by

�p(β ) ∼
{

N (1−γ )/2−β, if (1 − γ )/2 < β � 0,

N (1−γ )/2, if β > 0.
(36)

The bandwidth is small �p(β ) � 1 in the entire region
γ > 1 and β > 0, and thus the borderline for the Mott’s
criterion is γ (β ) = 1 for all β > 0. For β � 0 the domain of
validity of Mott’s criterion seems to be wider, as the band-
width increases with decreasing β. This is, however, not true.
The reason is that the left-hand side of Eq. (15) is sign definite
(E − εn)2 � 0 at E0 = Nβ � 1. For the usual Schrödinger
equation this corresponds to the energy E outside the band
of on-site energies or on the border of it. If, in addition,
the hopping matrix bandwidth is small, the true eigenstates
will be either absent (as in band insulator) or localized as
in the Lifshitz tail. We conclude that the special structure
of left-hand side of Eq. (15) prohibits extended states in the
region β � 0. Thus optimization over β helps to establish a
true border line γ = 1 of the WE states in the TI-RP model.
In the region 1 < γ < 2 in the coordinate space and the dual
region 0 < γ < 1 in the momentum space wave functions
are neither ergodic nor localized, i.e., they are nonergodic
extended. Numerics confirms [see Fig. 5(b)] that they are
fractal, like in the RP model.

A nontrivial property that follows from the above analysis
which is also confirmed by numerics (see Figs. 3 and 5) is

that the sequence of phases in the coordinate space of RP and
TI-RP ensembles and the positions of phase transitions are the
same along with the spectra of fractal dimensions (see Fig. 5).
The only difference is that fully ergodic phase is not realized
for the TI-RP ensembles, as due to duality Eq. (32) the phases
in the coordinate and in the momentum space never coincide
at the same value of the disorder parameter γ .

In agreement with the principles formulated in Sec. IV, the
level statistics of TI-RP is symmetric with respect to the dual
point γ = γp = 1; see Fig. 4. It shows the hybrid behavior
(the same as for RP in the interval 1 < γ < 2) in the entire
interval 0 < γ < 2 and the Poisson behavior outside of it.

Note that for γ < 0 the Poisson level statistics coexists (be-
cause of localization in the momentum space) with the weakly
ergodic delocalized wave-function statistics in the coordinate
space. This is fully confirmed by numerics presented in Fig. 5.
In contrast to RP model, the Wigner-Dyson level statistics in
TI-RP model do not occur, as the eigenfunction statistics in
the coordinate and in the momentum spaces never coincide.

VII. POWER-LAW BANDED MATRIX FAMILY

The next family we consider is the one of the power-law
random banded matrices (PLRBM) [6,7]. The Hamiltonian
of the conventional (fully random) PLBRM is of the form of
Eq. (2), with 〈 jnm〉 = 0 and 〈| jnm|2〉 = [1 + (|n − m|/b)2a]−1.
Its fully correlated counterpart, to which we refer further
as the Burin-Maksimov (BM) model [34], is characterized
by the deterministic sign-fixed power-law decaying hopping
integrals [34,38,39,88–91] jnm = j0(1 − δnm)/|n − m|a.

PLRBM shows ALT at a = 1, with ergodic states for a < 1
and localized states for a > 1. The parameter b matters only
at the transition point a = 1 and determines the strength of
multifractality [6,7].

By contrast, the BM model demonstrates the power-law
localization for most of the states (except measure zero)
not only at a > 1, but also at a < 1 [39] with an intriguing
symmetry of the exponents in the power-law decay of wave
functions.

The level statistics of PLRBM is of the Wigner-Dyson
form at least for a < 1/2 (4) and Poisson for a > 1 (6) [6,7].
Recently it has been shown [64] that in PLRBM the wave-
function statistics is not Porter-Thomas for 1/2 < a < 1 [see
also Figs. 8(a)–8(d)], implying the presence of weakly ergodic
phase in this interval. In contrast, for the BM model the level
statistics is always Poisson, except for an integrable point
a = 0 coinciding with the YS model with γ = 0, where the
statistics is critical, see right panel in Fig. 4.

Both power-law models have a built-in spatial structure.
Therefore the eigenstate statistics allows more detailed char-
acterization than in RP family. Indeed, considering the typ-
ical decay of the wave-function intensity |ψE (n)|2 with the
distance |n − n0| [40] from its maximal value |ψE (n0)|2, one
finds at large distances

|ψE (n)|2typ ≡ exp[〈ln |ψE (n)|2〉] ∼ |n − n0|−μ, (37)

with μ = 2a for a > 1 both in PLRBM and in the BM model
by the perturbation theory. At a < 1 the fully random model
shows μ = 0, while the deterministic one gives μ = 2aeff =
2 (2 − a), as shown numerically in Ref. [39]; see also Fig. 6.

104203-8



CORRELATION-INDUCED LOCALIZATION PHYSICAL REVIEW B 99, 104203 (2019)

FIG. 6. Average 〈ln(|ψE (n)|2〉 = ln |ψE (n)|2typ for power-law banded matrix family (PLRBM, TI-PLRBM, BM) for different exponents in
the power-law decay of hopping (a) a = 0.25, (b) 0.75, (c) 1.75 numerically calculated for the system size N = 214 and Nr = 103 disorder
realizations. All models are power-law localized for a > 1, while for a < 1 only BM shows localization with effective exponent aeff = 2 − a.
Dashed lines show analytical prediction Eq. (37) of this power-law decay. (inset) (a) spectrum of fractal dimensions in the momentum space
fp(αp) with analytical predictions Eq. (28) (dashed lines) demonstrating the difference between PLRBM and TI-PLRBM ensembles in their
delocalized phases a < 1; (b) spectrum of fractal dimensions in the coordinate space for TI-PLBRM coinciding with that of PLBRM for
1/2 < a < 1.

A random TI relative of the PLRBM model, namely TI-
PLRBM, is described by Hnm = εmδnm + jn−m, with i.i.d. GR
hopping integrals with zero mean and the variance:

〈| jn−m|2〉 = (1 − δnm)/|n − m|2a. (38)

In the momentum space both BM and TI-PLRBM ensem-
ble are characterized by i.i.d. GR hopping integrals which can
be found from Eq. (10): J̃p−q with

〈|J̃p|2〉 � �2/N. (39)

The momentum-space on-site energies Ẽp (which coincide
with the spectrum of the corresponding ĵ) are given by Eq. (9)
and depend crucially on correlations in the hopping matrix
elements.

For TI-PLRBM the spectrum of Ẽp is random with zero
mean and the variance:

〈|Ẽp|2〉 =
∑

m

〈| jn−m|2〉 ∼
⎧⎨
⎩

N1−2a, if a < 1/2
ln N, if a = 1/2

1, if a > 1/2
. (40)

In contrast, for BM model with fully correlated hopping
j0 |n − m|−a (a 
= 0), one obtains

Ẽp/(2 j0) � ζa + Aa

(
N

|p|
)1−a

, for |p| � N, (41)

Ẽp/(2 j0) � Ẽmin + Ba

(
2q

N

)2

, for |N/2 − p| � N. (42)

ζa is the Riemann zeta-function, and dimensionless constants
Aa, Ba, and Ẽmin given in Ref. [85].

One can see that the spectrum Ẽp for TI-PLBRM is either
bounded (a > 1/2) or unbounded from both sides (a � 1/2).
In contrast, for BM model the spectrum, while also bounded
for a > 1, is unbounded only from one side for all a < 1.

This difference appears to have crucial consequences for
the eigenfunctions statistics.

A. Wave-function statistics in BM model

In this section we consider the wave-function statistics of
BM model in the coordinate space. Before employing the
Mott and Anderson localization-delocalization criteria to BM

model at a < 1 we have to define the effective bandwidth of a
highly stretched spectrum Ẽp in this case. Equations (41) and
(42) show that the typical level spacing δ(N ) = dẼp/d p ∼
N−1 corresponds to |p| ∼ N/2 and |N/2 − p| ∼ N . The cor-
responding Ẽp ∼ 1 gives the right estimation of the effective
bandwidth:

�(eff )
p ∼ 1, (43)

for typical states of BM problem with a < 1. The remaining
part of the spectrum of Ẽp has an increasing mean level
spacing up to the maximal level spacing of the order of
δmax ∼ N1−a at Ẽp ∼ N1−a. This part of spectrum, as well as
the properties of the separate state in the YS model, requires a
special study [88–91]. In this paper we limit ourselves by the
case when the energy E ∼ 1 lies inside of the band of typical
states.

For a > 1, the spectrum is bounded with the bandwidth of
order 1, so that Eq. (43) is valid for all a.

Equation (43) implies that the Mott’s delocalization crite-
rion is never fulfilled in the sense of Eq. (4) and thus ergodic
delocalization is nowhere guaranteed.

To apply the Anderson localization criterion Eq. (8) we
first compute the “inverted” hopping matrix M̂(E0) given by
Eq. (14) with E0 ∼ Nβ . We start by the case a > 1 − β, where
|Ẽp|/E0 � 1, and the analysis may be carried out similar to
the case of TI-RP model. One obtains

〈|Jnm(E0)|〉
�(E0)

∼
{

jR, if β > 0
N−β jR, if 1 − a < β < 0

, (44)

where jR = R−a.
For a > 1, the sum S(E0)= N−1 ∑

n,m
n 
=m

〈| jnm|〉 in Eq. (8)

converges and one obtains

S(E0)

�(E0)
=

{
N0, if β > 0,

N−β, if 1 − a < β < 0.
(45)

For 1 − β < a < 1 and β > 0 one obtains S(E0)/�(E0) ∼
N1−a.
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FIG. 7. Optimized Anderson localization criterion. Domains of
validity of Eq. (8): (a) for the YS and TI-RP models and (b) for BM
model. The true domain of the localized states corresponds to the
optimal βopt at which the domain of validity of Eq. (8) is the widest
possible. In both cases βopt = 0 but for the BM model the typical
states are localized at all values of the exponent a, while for YS and
TI-RP models the truly localized states exist only at γ > 2.

Now consider the case a < 1 − β, where there are
Ẽp/E0 � 1 and the matrix inversion trick, Eq. (17), applies.
Then we obtain

Mn−m

E0
= C1e−κ|n−m| + C2

(1 − δnm)

j0 |n − m|2−a
, (46)

where dimensionless constants C1, C2, and κ can be found in
Ref. [85].

Notice that due to inverted position of Ẽp in Eq. (17)
compared to Eq. (18) a new exponent,

aeff = 2 − a, (47)

emerges in the place of a.
With this modification, Eq. (44) takes the form

〈|Jnm(E0)|〉
�(E0)

∼
{

N2β R−aeff , if 1 − a > β > 0
Nβ R−aeff , if β < 0

. (48)

The corresponding expression for S(E0)/�(E0) reads as fol-
lows:

S(E0)

�(E0)
=

⎧⎨
⎩

N2β, if a < 1; 1 − a > β > 0
Nβ, if a < 1; β < 0

Na−1+β, if a > 1; β < 1 − a
. (49)

As the result of this analysis we obtain a diagram which shows
the domains on the plane (β, a) where the sufficient condition
for localization, Eq. (8), is fulfilled in BM ensemble [see
Fig. 7(b)]. The optimal β corresponds to the widest domain
of validity of Eq. (8) which is the true domain of the localized
phase. In Fig. 7 such domains are shown in blue for the BM
model [Fig. 7(b)] and for the YS and TI-RP models [Fig. 7(a)].
It is seen that for BM model at the optimal βopt = 0 the states
inside the band Eq. (43) are localized at all values of the
parameter a. The corresponding spectral statistics is therefore
Poisson.

Note that the above analysis corresponding to the energy
E ∼ 1 does not apply to the states outside the effective band
Eq. (43) (i.e., in the stretched part of the spectrum) though the
method itself is applicable everywhere.

B. Duality of the exponent μ in BM model

The fact that the typical states in BM ensemble are local-
ized at all values of a can be traced back to the divergence of

the spectrum Ẽp and as a consequence to a possibility to use
the matrix inversion trick and Eq. (14) to derive Eq. (46) for
a < 1 and define aeff as in Eq. (47). The same Eq. (46) helps
to prove the duality of the exponents μ(a), Eq. (37), of the
power-law localization,

μ(a) = μ(2 − a), (50)

suggested recently in Ref. [39].
At a > 1 the conventional representation of the eigenprob-

lem

EψE (n) = εnψE (n) + j0
∑
m 
=n

ψE (m)/|m − n|a (51)

gives the standard solution from the locator expansion method
[1]. It converges to the power-law decaying large-distance
asymptotics of the eigenstate

|ψE (n)|typ ∼ 1/|n − n0|a, |n − n0| � 1, (a > 1), (52)

with the decay exponent coinciding with the matrix element
exponent a due to the convergence of the sum in the right-hand
side of Eq. (51). Note that this method applies to all PLBRM
model at a > 1 irrespective of their hopping correlations.

At a < 1 the usual locator expansion fails to converge.
However, the locator expansion can be applied to the equiva-
lent eigenproblem Eq. (15) with the “inverted” hopping matrix
given by Eq. (46). The latter contains the power-law decaying
part characterized by the exponent aeff = 2 − a.

Thus by the same token as Eq. (52) we obtain a similar
expression for |ψE (n)|typ at a < 1 but with aeff = (2 − a)
instead of a. Thus, we conclude that

μ =
{

2a, if a > 1
2 (2 − a), if a < 1 , (53)

which proves the duality Eq. (50).
Note that the duality concerns only the exponents in the

power-law tail of the localized wave functions and not to the
amplitude of this tail and the length scale at which the power-
law asymptotics sets in (see Fig. 6).

C. TI-PLBRM ensemble

Finally, we turn to statistics of eigen-data for the
translation-invariant PLBRM. We start by the statistics of
wave functions in the momentum space. Using Eqs. (39) and
(40), one finds

〈|Jp|2〉
〈|Ẽp|2〉

∝ N−γ (eff )
p , (54)

where

γ (eff )
p =

{
2(1 − a), if a < 1/2

1, if a > 1/2. (55)

Now the problem of wave-function statistics of TI-PLBRM
ensemble in the momentum space is reduced to the one for
TI-RP ensemble in the coordinate space with the replacement
γ → γ (eff )

p . The result is presented on Fig. 3 where we denote
by Loc − p, Frac − p, and Crit γeff = 1 the localized, fractal,
and critical phase at the point of ergodic transition, respec-
tively.
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FIG. 8. Comparison of eigenstate probability distributions P(N |ψ |2 = y) in (a–d) PLRBM and (e–h) TI-PLRBM models (solid lines for
different system sizes N) with the GUE Porter-Thomas distribution P(y) = e−y (black dashed line).

As for the phases in the coordinate space, one can easily
see from the Mott’s criterion Eq. (4) with �p ∼

√
〈|Ẽp|2〉

that for a < 1/2 [when �p ∝ N1/2−a according to Eq. (40)]
there is a weakly ergodic (WE) extended state. The Anderson
localization criterion Eq. (8) ensures existence of the localized
phase for a > 1.

The most difficult is the characterization of phase in the
interval 1/2 < a < 1. The matrix inversion also does not help
to establish a true border for the weakly ergodic phase. The
reason is that for the case a > 1/2 we are concerned, the
bandwidth �p ∼ Ẽp ∼ 1 and thus E0 could be chosen only
to be E0 � 1 which according to Eq. (34) leaves the scaling of
effective hopping matrix unchanged. In this situation we can
rely only on numerics presented in Figs. 6(b) and 8. Indeed,
Fig. 6(b) demonstrates a narrow f (α) in the coordinate space
of TI-PLBRM at a = 0.75 which is typical for weakly ergodic
states and identical to the one of non-TI PLBRM for the same
value of a.

Additionally, Fig. 8(g) shows much smaller deviation from
the Porter-Thomas distribution of the distribution function of
|ψE |2 for TI-PLBRM at a = 0.75 than that for the known
multifractal case of a = 1 of PLBRM on Fig. 8(d). This makes
us to conclude that in the interval 1/2 < a < 1 of TI-PLBRM
a weakly ergodic phase is realized, as well as for the non-TI
PLBRM.

We note also that in contrast to the TI-RP case, the phases
in the TI-PLBRM are not symmetric with respect to the point
a = 1/2. The reason is that the typical off-diagonal matrix
elements have a power-law decay in the coordinate space of
TI-PLBRM ensemble, while in the momentum space they
have no structure, similar to the coordinate space of TI-RP
ensemble. In contrast, for TI-RP ensemble the typical off-
diagonal elements are similar in a sense that they do not have
structure both in the coordinate and in the momentum space.
This allows to apply the duality relation Eq. (32) and establish
the symmetry of phases with respect to γ = 1.

The level statistics in TI-PLRBM (see Fig. 3) can be
easily identified using the three principles formulated Sec. IV
and checked numerically; see Fig. 4. It is Poisson at a < 0
and a > 1, a hybrid one at 0 < a < 1/2 and an ergodically
critical, like in the point γ = 1 of RP ensemble, at 1/2 <

a < 1. As mentioned above, the latter interval in TI-PLRBM
corresponds to γ (eff )

p = 1. Therefore the behavior of 〈n2〉 −
〈n〉2 = χ 〈n〉 (with level compressibility 0 < χ � 1) should
be quasi-Poisson, as in the point γ = 1 of ergodic transition
in RP ensemble [41]. In the interval 0 < a < 1/2 the hybrid
character of level statistics follows from the lack of basis
invariance of the eigenfunction statistics (see Fig. 3).

VIII. CONCLUSION AND DISCUSSIONS

The main result of this paper is the picture of correlation-
induced localization, which is presented in Figs. 1 and 3.
We demonstrate that the correlations in long-range hopping
may change drastically the localization-delocalization phase
diagram of many models turning extended phase into the
(multi)fractal or even localized one.

We show that the well-known localization principles
Eqs. (3) and (6) are not complimentary and are in fact
the sufficient (but not the necessary) conditions for weakly
ergodic delocalization and localization, respectively. Thus,
they are not able to determine exact bounds for localization-
delocalization and may leave room for nonergodic delocalized
phases. However, by applying the matrix inversion trick and
the optimization procedure suggested in this paper one can
make Eqs. (4) and (6) also necessary conditions for ergodicity
and localization and may in certain cases determine exact
phase diagram. We believe that the same arguments apply to
the models with sign-alternating nonrandom hopping integrals
[92,93] as the general applicability of the matrix inversion
method is related with the presence of the finite gaps or edges
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of the spectrum, but the consideration of these models is out
of scope of the current paper.

We suggest a natural extension of the class of models
with correlated long-range hopping integrals by introducing
the translation-invariant (TI) random matrix models, where
hopping integrals are fully correlated along the diagonals but
the correlations between the diagonals are absent. We identify
phases with different character of localization/delocalization
in these models both in the coordinate and in the momentum
spaces together with the spectral statistics. The results are
summarized in Fig. 3. It is shown that at moderately weak
disorder the delocalized phases in TI models are never fully
ergodic, as the eigenfunction statistics are different in the
momentum and the coordinate spaces.

We formulated the principles to identify the level statistics
in the considered models as belonging to the Wigner-Dyson,
Poisson or the new hybrid class. In particular, the spectral
statistics is Poisson if the eigenfunction statistics shows lo-
calization in either coordinate or in the momentum basis.
This implies that in TI random matrix ensembles the spectral
statistics may be Poisson despite the states are extended in the
coordinate basis (but localized in the momentum one). This
statement is confirmed by numerics.

The considered models with fully correlated, TI-correlated,
and uncorrelated hopping can be easily generalized to a
whole class of matrix models with the continuous parameter
correlations in the hopping integrals; see Fig. 1. Indeed, in
TI models hopping integrals are fully correlated along the
diagonals, while in uncorrelated models they are statistically
independent. In between one can consider, e.g., the models
with hopping terms in each diagonal to be correlated in such
a way that M1 elements in each diagonal are equal, where M1

changes from 1 for uncorrelated models to N for TI models.
In the similar way one can consider the continuous correlation
parameter from TI- to fully correlated models. Indeed, as in TI
models the correlations between the diagonals are absent one
can partially add them by considering blocks of M2 diagonals
to be equal, where M2 changes from 1 for TI models to N for
fully correlated models. The overall number of independent
hopping terms in the matrix that scales as N2/(M1M2) can be
considered as a continuous hopping correlation parameter. Of
course this is not a unique way to include hopping correlations
in uncorrelated models, but this kind of correlations is natural
as it emerges in physical models such as the RKKY where

hopping integrals deterministically oscillate as a function
of |n − m| with the period incommensurate with the lattice
constant.

Within the same method, for the random matrix mod-
els with deterministic power-law decaying hopping inte-
grals jn−m ∼ |n − m|−a we confirm that both for a > 1 (see
Refs. [88–91]) and a < 1 [39] the typical states are localized
with the power-law tails ψEn (m) ∼ |n − m|−aeff at a 
= 0 and
analytically prove the duality aeff = max(a, 2 − a).

It is also worth noticing that our arguments are not re-
stricted only to the one-dimensional case, d = 1. Recent work
[93] has shown the presence of localized states for isotropic
deterministic power-law hopping with a < d = 3 in three-
dimensional cubic lattices. This problem might be understood
within our formalism.

Another intriguing direction of research is the interplay
between correlations in the hopping integrals and in the on-
site energies. As recently shown the correlated on-site “dis-
order” (quasiperiodic potential [9]) may destroy localization
and produce a whole bunch of (multi)fractal phases depending
on the power a [94,95] in the BM model with deterministic
power-law hopping integrals.

Finally, the most challenging problem motivated by our
paper is the effect of correlations on many body localization
in the long-range interacting models (see, e.g., Refs. [15–27]).
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