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Localization of scattering resonances in aperiodic Vogel spirals
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By using the dyadic Green’s matrix spectral method, we demonstrate that aperiodic deterministic Vogel spirals
made of electric dipoles support a light localization transition in three dimensions, an effect that does not occur in
traditional uniform random media. We discover a light localization transition in Vogel spiral arrays embedded in
three-dimensional space by evaluating the Thouless conductance, the level spacing statistics, and by performing
a finite-size scaling. We probe light localization in the plane of the array by analyzing the behavior of the
scattering resonances in three-dimensional space. This light localization transition is different from the Anderson
transition because Vogel spirals are aperiodic deterministic structures characterized by nonuniform geometries.
Moreover, this transition occurs when the vector character of light is fully taken into account, in contrast to
what is expected for traditional uniform random media of pointlike scatterers. We show that light localization in
Vogel arrays is a collective phenomenon that involves the contribution of multiple length scales. Vogel spirals
are suitable photonic platforms to localize light thanks to their distinctive structural correlation properties that
enable collective electromagnetic excitations with strong light-matter coupling. Our results unveil the importance
of aperiodic correlations for the engineering of photonic media with strongly enhanced light-matter coupling
compared to the traditional periodic and homogeneous random media.
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I. INTRODUCTION

Understanding the localization of vector waves in dielectric
systems provides exciting opportunities for the realization of
more efficient sensors and active photonic platforms. Since the
discovery by P. W. Anderson in 1958 that strong disorder can
inhibit electronic transport [1], the quest for an optical coun-
terpart of strong localization has motivated an intense research
activity in photonic random media [2,3]. Random lasers [4,5],
multiple scattering in random media [3,6–17], local density
of states modification induced by multiple scattering [18,19],
tuning and controlling of coupled-random modes [20–22], and
speckle pattern information decoding [23–25] are some of the
important results recently achieved in the field of disordered
photonics. However, there is no unquestionable observation
of a light localization transition in three-dimensional (3D)
uniform random systems (i.e., in a full vectorial electromag-
netic problem) so far [26–29]. The lack of materials with large
enough refractive index values at optical frequencies and the
presence of near-field coupling effects between scatterers in
dense systems are often considered the main reasons prevent-
ing Anderson localization of light in homogeneous random
media [27,30]. Moreover, due to the lack of simple design
rules for efficient optimization, the applications of uniform
random structures to optical engineering remain quite limited.

Aperiodic optical media, generated by simple determinis-
tic mathematical rules, offer an alternative route to achieve
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light confinement with respect to uniform random systems.
Aperiodic deterministic systems have recently attracted sig-
nificant attention in the optics and electronics communities
[31–34]. This is due, not only to their design advantages and
compatibility with current nanofabrication technologies, but
also to their distinctive optical behavior [34–39]. In particular,
deterministic aperiodic structures display physical properties
that cannot be found in either periodic or uniform random
systems, such as anomalous transport [40–42] and fractal
transmission spectra [43,44]. Moreover, the tunable structural
complexity of aperiodic deterministic media leads to the
formation of rich spectra of resonances, called critical modes
[38,45,46], characterized by power-law envelope localization
and multifractal field intensity oscillations [37–39,43]. Due
to their unique functionalities, deterministic aperiodic designs
have been successfully utilized in engineering applications
for light emission and lasing [42], optical sensing [33,35],
photodetection [36], nonlinear optical devices [47,48], as well
as optical imaging [49].

In this paper we show that the large family of deterministic
aperiodic Vogel arrays composed of electric dipoles can be
conveniently designed to achieve a light localization transi-
tion in three dimensions. We prove that a transition from
diffusive to localized regimes exists in planar Vogel spiral
arrays embedded in 3D space by using the dyadic Green’s
matrix formalism [12–15]. The Green’s matrix method has
been applied to investigate Anderson localization of light in
uniform disordered systems [6–17] and has allowed us to
unveil the fundamental scattering and transport properties of
aperiodic deterministic geometries [37–39].

2469-9950/2019/99(10)/104202(12) 104202-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.104202&domain=pdf&date_stamp=2019-03-15
https://doi.org/10.1103/PhysRevB.99.104202


SGRIGNUOLI, WANG, PINHEIRO, AND DAL NEGRO PHYSICAL REVIEW B 99, 104202 (2019)

In this work we focus on open planar spiral structures
as they are relevant architectures for experiments and ap-
plications where light can leak out through the array plane
[34–36,50–52]. Therefore, the dimensionality of the elec-
tromagnetic problem is 3D but the geometrical support of
the scattering arrays is two dimensional (2D). In such situ-
ations the electromagnetic field, which corresponds to a 3D
scattering resonance, is not only spatially confined in the
plane of the array, strongly depending on the geometry of
its support, but it also leaks out from such a plane with
a characteristic time proportional to the quality factor of
the resonance. The discovered 3D light transition provides
information on the localization of the waves in the plane
of the support probed by the distinct behavior of 3D scat-
tering resonances. As a result, this mechanism is different
from a conventional 3D localization transition (e.g., Anderson
localization transition) where waves are confined in all di-
mensions by the three-dimensional nature of the geometrical
support.

We study light localization in Vogel spiral arrays with
different geometrical parameters by evaluating the Thouless
conductance, the level spacing distribution, and by performing
a finite-size scaling. We show the existence of different classes
of localized resonances that display spatial mode profiles
recently discovered across the multifractal band edges of
Vogel spirals performing 2D finite element method (FEM)
simulations [53,54]. We explain the similarities between 3D
and 2D scattering resonances in terms of light localization in
Vogel spiral arrays that is generated by the nature of their
geometrical supports. Moreover, we provide a comparison
with respect to open uniform random planar arrays embedded
in a 3D environment for both scalar as well as vector waves
unveiling the full potential of aperiodic spatial correlations
for the engineering of complex photonic media with more
efficient light-matter interaction. Specifically, we demonstrate
that light localization in Vogel spirals is driven by collective
electromagnetic coupling effects that involve multiple length
scales. For comparison, we show that vector wave localization
is never achieved in planar homogeneous random systems,
even when neglecting the near-field interaction term. This is
shown by separately investigating the relative contributions
of the different coupling terms that appear in the dyadic
Green’s propagator and by evaluating the Thouless conduc-
tance for sufficiently large scattering strengths. In summary,
light localization transition in Vogel spirals occurs when the
vector nature of light is taken into account, in contrast to
the Anderson localization transition that it is limited to scalar
waves [8,9]. Despite this important difference, the discovered
light localization transition in Vogel spirals remarkably shares
similar properties with the Anderson transition such as the
crossover from level repulsion to the absence of level repul-
sion and the behavior of the Thouless conductance. Hence we
conclude that structural correlations play a crucial role in light
localization in Vogel spirals as compared to uniform random
systems.

This paper is organized as follows. In Sec. II we describe
the Green’s matrix method and the Vogel spiral photonic array.
In Sec. III we present and discuss our findings whereas Sec. IV
is devoted to the conclusions.

II. METHODOLOGY: THE VOGEL SPIRAL PLATFORM
AND THE GREEN’S MATRIX FORMALISM

Vogel spiral point patterns have been studied in physics,
mathematics, botanics, and theoretical biology in relation to
the fascinating geometrical problems offered by the field of
phyllotaxis [37,54–57]. This class of deterministic aperiodic
media is a powerful platform for nanophotonics and nanoplas-
monic applications. Polarization-insensitive light diffraction
[36], light-emission enhancement [50,51], enhanced second-
harmonic generation [58], and omnidirectional photonic band
gaps [59,60] are some of them. Vogel spiral geometries are
characterized by diffuse scattering spectra like uniform ran-
dom media but with circularly symmetric scattering rings that
can be easily controlled by the spiral geometry [37,53,61].
By using simple generation rules, particle arrays with Vogel
spiral geometry can be easily designed to produce a very rich
structural complexity best described by multifractal geometry
[53]. Moreover, Vogel spirals support distinctive scattering
resonances that have been shown to encode well-defined nu-
merical sequences in the orbital angular momentum of light,
which have a great potential for device applications to singular
optics and optical cryptography [62,63].

Vogel spiral arrays are defined in polar coordinates (r, θ )
by the following parametric equations:

rn = a0
√

n (1)

θn = nα, (2)

where n = 0, 1, 2, . . . is an integer, a0 is a positive constant
called scaling factor, and α is an irrational number, known as
the divergence angle [57]. This angle specifies the constant
aperture between successive point particles in the array [55].
Since the divergence angle is an irrational number, Vogel
spiral point patterns lack both translational and rotational
symmetry. The divergence angle (α◦, in degrees) can be
specified by the choice of an irrational number ξ according to
the relationship α◦ = 360◦ − f rac(ξ ) × 360◦ where f rac(ξ )
denotes the fractional part of ξ . Vogel spirals with remark-
ably different structural properties can be obtained simply
by selecting different values for the irrational number ξ . For
instance, when ξ is equal to the golden mean ξ = (1 + √

5)/2
the corresponding divergence angle α ∼ 137.508◦ is called
the “golden angle” while the resulting Vogel spiral structure
is called the golden angle spiral, or GA spiral. This provides
opportunities to tailor different degrees of aperiodic structural
order in a very efficient way [37,61].

In this work, we primarily focus on four different types
of Vogel spiral arrays introduced in Refs. [37,52,62], which
are called GA spiral, τ spiral, π spiral, and μ spiral. They
are generated according to Eq. (1) and Eq. (2) choosing the
values ξ = (1 + √

5)/2, ξ = (5 + √
29)/2, ξ = π , and ξ =

(2 + √
8)/2, respectively. The π spiral exhibits the lowest

degree of structural order, followed by the μ spiral, the τ

spiral, and the GA spiral [37,61]. This ordering reflects the
smallest number of convergents (i.e., rational approximations)
necessary to approximate the irrational number ξ in continued
fractions at any level of accuracy [37,62].
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We now investigate the spectral and wave localization
properties of Vogel spirals using the Green’s matrix method.
This approach provides access to all the scattering resonances
of a system composed of vector electric dipoles in vacuum and
accounts for all the multiple scattering orders, so that multiple
scattering process is treated exactly. In addition, this method
allows for a full description of open 3D scattering resonances
of large-scale structures at a relatively low computational
cost if compared to traditional numerical methods such as
finite difference time domain (FDTD) or FEM techniques.
Each scatterer is characterized by a Breit-Wigner resonance
at frequency ω0 and width �0 (�0 � ω0). The quasimodes of
this scattering system can be identified with the eigenvectors
of the Green’s matrix

←→
G which, for N vector dipoles, is a

3N × 3N matrix with components [9]:

Gi j = i(δi j + G̃i j ). (3)

G̃i j has the form:

G̃i j = 3

2
(1 − δi j )

eik0ri j

ik0ri j

{
[U − r̂ijr̂ij] − (U − 3r̂ijr̂ij)

×
[

1

(k0ri j )2
+ 1

ik0ri j

]}
(4)

when i �= j and 0 for i = j. k0 is the wave vector of light, the
integer indexes i, j ∈ 1, . . . , N refer to different particles, U
is the 3 × 3 identity matrix, r̂i j is the unit vector position from
the ith and jth scatter while ri j identifies its magnitude. This
method is suitable not only for the study of atomic clouds,
as atoms are perfect dipoles, but also provides fundamental
insights into the physics of periodic, aperiodic, and uniform
random systems of small scattering particles [6–17,37–39].
The Green’s matrix (3) is a non-Hermitian matrix. As a con-
sequence, it has complex eigenvalues 
n (n ∈ 1, 2, . . . , 3N)
[12,13]. The real and the imaginary part of 
n are related
to the detuned scattering frequency (ω0 − ωn) and to the
scattering resonance decay �n both normalized with respect
to the resonant width �0 of an isolated dipole [9–11]. In the
following, we define ω̂n = (ω0 − ωn)/�0.

In order to establish light localization, we have analyzed
two parameters. The first parameter characterizes the degree
of spectral overlap between different optical resonances and
it is called Thouless conductance g [64,65]. The second
parameter quantifies the sensitivity/insensitivity of scattering
resonances with respect to a perturbation of the system bound-
ary conditions and it is known as the β parameter. In order
to prove a light localization transition we have applied two
criteria. First, the g conductance, which is proportional to
the scattering mean free path of the system, must decrease
when increasing the scattering strength, i.e., increasing the
optical density ρλ2. Here ρ is the number of particles per unit
area while λ is the optical wavelength. Second, the scaling of
the β parameter with respect to the logarithmic conductance
(β = β[ln(g)]) must show a critical point qc = ln(gc) at which
β vanishes, i.e., the Thouless conductance does not depend on
the system size L [66,67]. Moreover, we have corroborated
our analysis by showing a crossover from level repulsion to
the absence of level repulsion of the level spacing statistics
(see Appendices E for details).

FIG. 1. Eigenvalues of the Green’s matrix (3) are shown by
points on the complex plane for 2000 electric point dipoles arranged
in a GA Vogel spiral geometry. Panels (a) and (b) refer to an
optical density of 1 and 15, respectively. Scattering resonances with
very small decay rates (
[
n] = �n/�0 � 1) appear only when
ρλ2 = 15. The data are color coded according to the log10 values
of the MSE. Insets: spatial profiles of representative quasimodes.
Panels (c) and (d) show the frequency dependence of the Thouless
conductance g when ρλ2 is equal to 1 and 15, respectively. The
dashed-black lines identify the threshold of the diffusion-localization
transition.

Within the Green’s matrix formalism, the Thouless con-
ductance is defined as the ratio of the dimensionless lifetime
(δω)−1 = 1/
[
n] to the spacing of nearest dimensionless
resonant frequencies �ω = �[
n] − �[
n−1] [9]. In order
to study the behavior of g as a function of the resonance
frequencies, we have subdivided, for each value of the scat-
tering strength ρλ2, the range of resonance frequencies in 300
equispaced intervals. This allows us to consider the average
value of g within each subinterval and to obtain its frequency
dependence by plotting the average values associated to each
subinterval. The Thouless conductance g can be written in
terms of the eigenvalues of the Green’s matrix as

g = g(ω) = δω

�ω
= (1/
[
n])−1

�[
n] − �[
n−1]
, (5)

where {· · · } indicates the average of g over each frequency
subinterval. The frequency ω is the central frequency of each
subinterval used to sample the �[
n] axes. Differently from
the uniform random scenario [6–17,68], we do not perform
any average with respect to different geometry configurations
because Vogel spirals are deterministic structures.

III. RESULTS AND DISCUSSIONS

We will first consider the case of N = 2000 electric vector
dipoles arranged in a GA Vogel spiral configuration. The
3N × 3N Green’s matrix (3) is diagonalized numerically and
the Thouless conductance g, defined by Eq. (5), is calculated
as a function of the frequency ω for different values of ρλ2.
Figures 1(a) and 1(b) show the distribution of the resonant
complex poles 
n, color coded according to the log10 values
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of the mode spatial extent (MSE), when the optical density
is set equal to 1 and to 15, respectively. The MSE parameter
characterizes the spatial extent of a photonic mode [20].

At low optical density (ρλ2 = 1), the system is in the
delocalized regime. The complex eigenvalue distribution does
not show the formation of any long-lived resonances with
�n/�0 � 1. Consistently, the spatial profiles of the modes in
this regime are delocalized across the array. For example, two
representative eigenvectors that correspond to the smallest
decay rates around ω̂n ∼ −0.3 (white-square marker) and
ω̂n ∼ 0.8 (white-pentagram marker), are shown in the inset of
Fig. 1(a). Expectedly, we found that the Thouless conductance
is always larger than one in this case, as shown in Fig. 1(c).

However, at large optical density (ρλ2 = 15), the situation
is completely different. Long-lived resonances appear and a
significant fraction of the complex eigenvalues of the Green’s
matrix have a very small decay rate (�n/�0 � 1). For compar-
ison, no such long-lived resonances appear in uniform random
media when the vector nature of light is taken into account
(see Appendix A and Refs. [8,9,16] for more details). We
show the spatial profiles of two representative eigenvectors in
the inset of Fig. 1(b) and we report in Fig. 1(d) the Thouless
conductance as a function of frequency. These findings clearly
demonstrate that the system reached the localization regime at
large optical density, namely the eigenvectors are radially con-
fined and g(ω) < 1. We notice that the long-lived resonances
shown in Fig. 1(b) are clustered around two “tail regions” that
appear at the frequency positions where g becomes lower than
one [see Fig. 1(d)].

Two other important features arise at sufficiently large
optical density: the existence of a spectral gap region and
the absence of subradiant “dark” states, also called proximity
resonances, in the complex distribution of the eigenvalues
[12,37,69]. Proximity resonances are subradiant states local-
ized around pairs of scatterers and can be identified in random
systems by their typical spiral distributions in the complex
eigenvalue plane and are characterized by MSE=2 [8,12,68].
The absence of proximity resonances in Vogel spiral systems
was originally reported in Ref. [37] and attributed to the more
regular structure of Vogel spirals compared to random media.
This can be understood based on the fact that, for a given
optical density, the first-neighbor distance of the particles
is, on average, larger in the case of Vogel spirals. Indeed,
we have previously shown that the probability distribution of
first-neighbor distances is non-Gaussian for Vogel spirals and
characterized by long tails [34,37,53,70]. More specifically,
the mean value of the first-neighbor distances of the GA

spiral is δ
1st = 1.70 ± 0.02 (in units of the scaling factor a0).

In contrast, uniform random point patterns, with the same
density, are characterized by a Poissonian first-neighbor dis-

tribution [71] with larger fluctuations: 〈δ1st 〉e = 0.89 ± 0.47.
Here 〈· · · 〉e indicates the average over two hundreds different
point pattern realizations. Therefore, for a given optical den-
sity the probability of observing two very close particles is
much larger for the uniform random patterns (see Appendix
B for more details). Interestingly, these fluctuations increase
up almost 20% in the π spiral configuration, which in fact is
the spiral with the lowest degree of structural order among
the ones considered in this work. The lack of significant

FIG. 2. Highly resolved maps of the logarithmic values of the av-
eraged Thouless conductance are evaluated for different values of the
optical density ρλ2 as a function of ω. The data of panels (a)–(d) are
color coded according to ln[g] and refer to the GA spiral, τ spiral, π

spiral, and μ spiral, respectively. Each Thouless conductance g(ω) is
characterized by 300 points. These maps are calculated in the range
ρλ2 = [0.1, 30] with a resolution of 0.1. Insets: enlarged view of the
threshold region for the diffusion-localization transition. Green-red-
yellow features identify the appearance of localized resonances that
follow clear dispersion branches with respect to ω. Different markers
identify the classes of localized resonances that produce the stronger
localization feature in the considered Vogel spirals.

contributions from the subradiant resonances in Vogel spiral
has profound consequences for light localization and simplify
considerably the analysis of g and the β scaling compared
to uniform random systems where the proximity resonances
need to be carefully removed [8–10].

In order to gain more insights on the localization transition
we study the logarithm of the averaged Thouless conductance
for different values of the optical density (starting from 0.1
up to 30 with a resolution of ρλ2 = 0.1) as a function of
ω. In this way, highly resolved maps of the quantity ln[g] =
ln[g(ω, ρλ2)] can be obtained. The results of this analysis are
summarized in Figs. 2(a)–2(d) for the GA, τ, π , and μ spirals,
respectively. The data are color coded according to the loga-
rithmic values of the Thouless conductance. The diffusion-
localization threshold is defined according to ln[g(ω, ρλ2] =
0 and it is identified by the cyan color. Insets display enlarged
views of the threshold region for the diffusion-localization
transition. Localization begins to take place at ρλ2 ∼ 3.5
for all the geometries except for the less correlated π spiral
configuration, whose threshold occurs at ρλ2 ∼ 2. While this
analysis focused on spirals with N = 2000, we have numeri-
cally verified that the results are robust with respect to system
size (N = 500–4000) and the frequency resolution used in the
computation of the Thouless conductance g.

The appearance of localized resonances, identified by the
green-red-yellow features in Fig. 2, shows a clear dispersion
branch with respect to the frequency ω in all the investigated
geometries. These features cannot be obtained in a uniform
random medium where the attainable value of the Thou-
less conductance are always larger than one [8,9]. (See also
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FIG. 3. Representative spatial distributions of the Green’s matrix
eigenvectors that belong to the class of scattering resonances that
produce the stronger localization feature in the GA spiral. A1, A2,
and A3 identify the first three resonances with the lower decay rates
(�n/�0 � 1). Panels (a)–(c) show these quasimodes when the optical
density ρλ2 is fixed to 10, 20, 30, respectively. The spectral positions
of these quasimodes are identified by the white-circle markers in
Fig. 2(a).

Appendix A for a detailed comparison with respect to the
vector and the scalar model of uniform random planar arrays
embedded in a 3D space with the same optical density of
Vogel spirals). In Vogel spirals different classes of localized
resonances are clearly visible in Fig. 2.

To achieve a deeper understanding on the nature of these
localized scattering resonances that belong to different dis-
persion branches, we have systematically analyzed the spatial
distributions of a few representative examples identified by
the markers shown in Fig. 2. These markers identify the
behavior of the class of scattering resonances that produce the
stronger localization feature in the considered Vogel spirals.
We first focus on the type of resonances highlighted with
the white-circle markers in Fig. 2(a). The spatial distributions
of eigenvectors of the Green’s matrix corresponding to the
three resonances with the lower decay rates are labeled in
Fig. 3 as A1, A2, and A3, respectively. In Figs. 3(a)–3(c) the
optical density ρλ2 is fixed to 10, 20, and 30, respectively. For
each one of them, the frequency of the scattering resonance
ω̂n is also indicated. It is clearly shown that exactly the
same spatial profile is retrieved when scanning along the
dispersion branches for all the three resonances A1, A2, and
A3. The effect of increasing the optical density ρλ2 is simply
to produce a frequency shift in the complex scattering plane.
Interestingly, we notice that the spatial profiles of the scat-
tering resonances shown in Fig. 3 agree very well with what
has been previously reported based on the 2D FEM method
[53,54,70], demonstrating the power of the more efficient
Green’s matrix approach. Specifically, in our previous 2D
numerical studies we discovered that the localized modes
of Vogel spirals have a quality factor that scales linearly
with the frequency, which allowed us to classify them into
different classes [53,54,70]. The modes belonging to the same
class have similar spatial patterns and each one of them has

a degenerate counterpart characterized by a complementary
spatial profile. We now report a complete classification of the
Vogel spiral modes based on the more systematic and general
dyadic Green’s matrix analysis that provides access to all the
scattering resonances that exist, for a given optical density, in
an open 3D electromagnetic system. As an example, the three
types of resonances shown in Fig. 3 have exactly the same
spatial profiles that correspond to band edge modes of class A,
as defined in Refs. [53,54,70]. Moreover, also the degenerate
modes of A1, A2, and A3 can be identified by using the dyadic
Green’s matrix formalism. They occur exactly at the same ω̂n

and they are characterized by a complementary spatial profile.
This comparison demonstrates also that light localization in
Vogel spirals is produced at the band edge due to the strongly-
fluctuating (multifractal) dispersion in the density of states
[53]. Exactly the same conclusions are obtained for the τ

spiral, π spiral, and μ spiral (see Appendix C for more
details).

In order to understand the similarities between the spatial
distribution of the localized scattering resonances of Vogel
spirals in 2D and 3D environments, we have calculated their
spatial distributions and average modal lifetimes using the
cylindrical Hankel functions, which describes a 2D electro-
magnetic problem, as well as a dyadic Green’s matrix method,
which describes 3D electromagnetic systems. We find that
localized eigenmodes supported by open Vogel spiral arrays
embedded in a 3D environment correspond very well to the
ones obtained for a 2D electromagnetic problem at large
optical densities. This is due to the fact that the geometrical
support is the same and that light localizes in the plane of the
spirals. Indeed, the 2D modes survive in a totally open 3D
environment if the optical density is large enough to induce
light localization in the plane of the support. On the other
hand, Fig. 1(a) demonstrates that 2D modes do not correspond
to the scattering resonances supported by open Vogel spiral
arrays embedded in 3D space in the diffusive regime. In
this case the scattering resonances are short lived and hence
very different from the 2D ones [see inset of panel (a) of
Fig. 1]. However, 3D scattering resonances have much smaller
average modal lifetimes due to the open nature of the 3D
space with respect to their 2D counterparts (see Appendix F
for details).

Motivated by the similarities between the light localization
transition in Vogel spirals and the Anderson light localization
transition in random media characterized by a Gaussian (uni-
form and isotropic) disorder model, we perform the scaling
analysis of localization [9] for Vogel spirals. For the Anderson
localization in random media, this analysis predicts that a
phase transition between localization and diffusion exists only
in 3D, whereas the system is expected to be in the localized
regime in lower dimensions for sufficiently large systems [66].
Therefore, the diffusive and localized regimes are separated
by a critical point, called the “mobility edge.” The scaling
analysis is characterized by only one parameter, the Thouless
conductance g. According to the scaling theory of Anderson
localization, the dependence of the conductance on the system
size can be described by the β function [66]:

β(ln[g]) = d ln[g]

d ln[L]
, (6)
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FIG. 4. The β scaling analysis is performed by increasing the
number of scatters from N = 500 up to N = 4000. Panels (a)–(d) dis-
play the results of this scaling for the GA spiral, τ spiral, π spiral, and
μ spiral, respectively. Different markers correspond to calculations
of the β function for all the possible combinations of N . Red circles,
blue diamonds, olive squares, and gray triangles determine the com-
bination of N = 500 versus N = 1; 2; 3; 4 × 103, N = 1000 versus
N = 2; 3; 4 × 103, N = 2000 versus N = 3; 4 × 103, and N = 3000
with respect to N = 4 × 103, respectively. The dashed-black lines
identify the β parameter transition threshold. Insets: set of differ-
ent Vogel spirals generated by increasing the number of scatters:
N = 4000 (yellow), N = 3000 (gray), N = 2000 (olive), N = 1000
(blue), and N = 500 (red).

where L is the product of the wave vector k0 and the system
size R, which is the maximum radial coordinate of the spiral
(see insets of Fig. 4). Equation (6) assumes that Thouless
conductance g is a continuous and monotonic function of L.
Figures 4(a)–4(d) display the results of the scaling analysis
applied to GA spiral, τ spiral, π spiral, and μ spiral, respec-
tively, by increasing the number of scatters from N = 500 up
to N = 4000. Even though a scaling theory of localization
for nonuniform systems is currently missing, the analysis
reported in Fig. 4 suggests the existence of a localization
transition in Vogel structures because the sign of β changes
from negative to positive, consistently with the one-parameter
scaling theory. However, deeper theoretical investigations,
beyond the scope of the present work, are necessary to fully
understand the nature of the discovered light transition probed
by the 3D scattering resonances of Vogel spirals.

Our results demonstrate a light localization transition sup-
ported by open Vogel spirals planar arrays embedded in three
dimensions. This phenomenon cannot occur in traditional
uniform random media when the vector nature of light is
taken into account within the Green’s matrix formalism (see
Refs. [8,9] and Appendices A and D for more details). These
results put into evidence the main difference between the
light localization transition in Vogel spirals and the Ander-
son localization transition, which occurs only in the scalar
approximation for pointlike electric dipoles [8,9]. However,
the light localization transition in Vogel spirals remarkably
shares similar properties with the Anderson transition such
as the crossover from level repulsion to the absence of level

FIG. 5. Panels (a)–(d) display, in a semilog-y scale, the frequency
dependence of g after diagonalizing the 3N × 3N Green’s matrix
associated to only the near-field term, the near-field term plus the
intermediate-field contribution, the far-field term only, and all the
coupling contributions, respectively. These data refer to the GA spiral
when the optical density ρλ2 = 10. The dashed-black lines identify
the threshold of the diffusion-localization transition g = 1. Similar
results are obtained for all the other investigate Vogel spirals and
compared with uniform random media in Appendix D.

repulsion (as demonstrated in Appendix E) and the behavior
of the Thouless conductance. It is important to note that in
our study, although the dipoles are arranged in planar Vogel
spiral arrays, the electromagnetic field is not only confined in
the plane but it also leaks out to free space according to the
quality factors of the scattering resonances (see Appendix F
for more details). Therefore such systems are truly open scat-
tering 3D systems. In contrast, in a two-dimensional problem
the electromagnetic field is uniform along the z axis and its
propagator is the 2D Green’s function [15–18].

In order to investigate the role of cooperative effects in
the light localization of Vogel spirals we have decomposed
the Green’s matrix of Eq. (4) into the sum of three coupling
terms. Each term describes different electromagnetic coupling
regimes proportional to 1/ri j, 1/r2

i j , and 1/r3
i j , correspond-

ing to long-range, intermediate-range, and short-range elec-
tromagnetic interactions, respectively. We separately inves-
tigated these different contributions of the dyadic Green’s
propagator and, for each one of them and for their different
combinations, we evaluated the Thouless conductance for an
optical density ρλ2 = 10. Figure 5 summarizes our results
for the case of a GA spiral (similar results are obtained for
all the other investigated Vogel spirals and compared with
uniform random media in Appendix D). Panels (a)–(d) show
the frequency dependence of the Thouless conductance g
obtained by using Eq. (5) after diagonalizing the 3N × 3N
Green’s matrix associated to only the near-field term, the
near-field term plus the intermediate-field contribution, the
far-field term only, and all the coupling contributions, respec-
tively. Light localization, characterized by g < 1, occurs only
when all the coupling terms, including the near-field regime,
are simultaneously taken into account. Therefore, our results
demonstrate that light localization in Vogel spirals results
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FIG. 6. (a) The minimum value of the Thouless conductance as
a function of ρλ2 is reported in a semilog-y scale. Different markers
identify the different analyzed structures. Red-circle markers, blue-
diamond markers, gray-square markers, olive-triangle markers, and
red/black-hexagram markers refer to the GA spiral, τ spiral, π

spiral, μ spiral, and to the uniform random configuration (i.e., UR),
respectively. 10 different disorder realizations are considered for the
UR analysis. (b) min[g] behavior as a function of the divergence
angle α (expressed in radiant) when ρλ2 = 5. 300 Vogel spirals, with
remarkably different structural correlations, are generated between
α = 2.4 rad and α ∼ 5.4 rad. Some representative Vogel spiral
geometries are shown in panel (c). The dashed-black lines identify
the threshold of the diffusion-localization transition g = 1.

from a collective coupling effect that involves multiple length
scales. Remarkably, we also demonstrate that vector wave
localization is never achieved in uniform random systems with
a planar support, even neglecting the near-field interaction
term (see Appendices A and D for more details).

The effect of the optical density on the minimum value of
the Thouless conductance g is illustrated in Fig. 6(a) where we
also compare with the case of planar uniform random media,
referred to as UR in the legend. All the structures have N =
2000 interacting particles and the random system’s results are
averaged over 10 different realizations. Moreover, in order to
eliminate the contribution of proximity resonances from the
analysis of the random configuration, we have carefully ne-
glected the resonances with MSE = 2 [8,12,68]. Figure 6(a)
shows that light localization never appears in uniform random
arrays. This analysis is performed for different values of ρλ2

up to 50. In contrast, all the Vogel spirals exhibit light localiza-
tion starting from a threshold value of ρλ2 � 2, as previously
discussed. The π spiral configuration, whose geometry is the
least correlated, displays the lowest localization threshold as
well as the minimum g value. In order to generalize our
findings to a much larger set of Vogel spirals, we compute in
Fig. 6(b) the minimum value of g at optical density ρλ2 =
5 for 300 different Vogel spirals obtained by continuously
varying the polar divergence angle α defined in Eq. (2). All
these structures are generated with a divergence angle that
linearly interpolates between the GA spiral and the π spiral.
Some representative geometries are shown in Fig. 6(c). These
data demonstrate that vector wave localization is a very robust
feature of Vogel spiral arrays that can be achieved for many
different choices of the divergence angle α. The results of our
paper clearly establish the relevance of controllable aperiodic
correlations for the engineering of photonic scattering plat-
forms with strong light-matter interaction.

IV. CONCLUSIONS

In summary, we have demonstrated a light localization
transition supported by Vogel spiral planar arrays embedded
in three dimensions by means of the dyadic Green’s matrix
method. Specifically, a clear transition from the diffusive to
the localized regime, different from the Anderson localization
transition in three dimensions, is discovered by evaluating
the Thouless conductance, the level spacing statistics, and
by performing a finite-size scaling analysis of the scattering
resonances. This transition is a result of the complex inter-
play between the nature of the 2D geometrical support and
wave propagation in three dimensions. Different classes of
localized scattering resonances in Vogel spirals with distinc-
tive spatial distributions have been identified and analyzed.
By decomposing the dyadic field propagator in its different
components we show that light localization in Vogel arrays
originates from collective electromagnetic coupling involving
the contributions of multiple length scales. All these effects
do not occur in traditional uniform random media. Our results
unveil the importance of structural correlations in determin-
istic aperiodic photonic media for the design of localized
states with strongly enhanced light-matter interactions. In
addition, our findings may open vistas for the engineering of
mesoscopic transport and localization phenomena and should
encourage deeper investigations of photonic devices based on
deterministic aperiodic architectures.
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APPENDIX A: PLANAR UNIFORM RANDOM
CONFIGURATION

The relevant features of light localization properties of
uniform random arrays are presented in this Appendix. By
following the procedure presented in Sec. II, we have eval-
uated the complex eigenvalues distributions of 10 different
realizations of 2000 uniformly random distributed scatterers
on a plane. Moreover, the spectral and optical properties of
matrix (3), which takes into account the vector nature of light,
were compared with those of its scalar approximation [9]

Gi j = iδi j + (1 − δi j )
eik0ri j

k0ri j
. (A1)

Figures 7(a) and 7(b) display the complex eigenvalues
distributions obtained after diagonalizing the matrix (3) and
its scalar approximation (A1) for ρλ2 = 30, respectively. In
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FIG. 7. Panels (a) and (b) display the complex eigenvalues dis-
tributions of 10 different random realizations of the Green’s matrix
defined by matrix (3) and matrix (A1), respectively. The data are
color coded according to the log10 values of the MSE. Insets: spatial
profiles of representative quasimodes. Panels (c) and (d) show the
frequency dependence of the Thouless conductance g for the vector
and scalar model, respectively. These data are produced by fixing
ρλ2 = 30. The dashed-black line identifies the threshold of the
diffusion-localization transition g = 1. The error bars are calculated
as the standard deviation of the Thouless conductance g evaluated for
the different disorder realizations.

random media, long-lived resonances do not appear when the
vector nature of light is taken into account. Consistently, the
spatial profiles of the Green’s matrix eigenvectors correspond-
ing to the resonances with the lower decay rates are delocal-
ized across all the structure (see the representative quasimode
shown in the inset of Fig. 7(a)). On the other hand, the
situation is completely different in the scalar configuration.
Long-lived resonances are clustered around one band of local-
ized quasimodes near ω̂n ∼ −2.5. The spatial distributions of
quasimodes of the Green’s matrix corresponding to this “tail
region” are localized between several particles, as shown in
the inset of Fig. 7(b) for a representative scattering resonance
(star marker).

This analysis, inspired by Ref. [9], is confirmed by the
frequency dependence of the Thouless conductance g. The
conductance is evaluated by using Eq. (5), which has been
modified to take into account the effect of the different
disorder realizations [9,10]. Moreover, the contribution of
subradiant resonances (for which MSE = 2) is omitted from
this analysis [8–10]. As expected, Fig. 7(c) shows that the
Thouless conductance g is always larger than one when the
vector nature of light is taken into account. On the contrary,
the frequency dependence of g shows a transition from g <

1 to g > 1 in the scalar case [see (Fig. 7(d)]. These data
are obtained by fixing ρλ2 = 30. This analysis confirms the
results of Refs. [8,9] obtained for a 3D random distribution
of electric dipoles. However, in our case localization is less
pronounced if compared to the case treated in Refs. [8,9] for
the scalar model. This is due to the fact that in open random
arrays leakage through the system plane results in more lossy
channels if compared with the corresponding 3D case.

FIG. 8. Panel (a) and (b) displays the first-neighbor probability
density function an homogeneous Poisson process and a GA spiral,
respectively. The black lines are the corresponding analytical density
functions obtained by using Eq. (B1) and the Weibull distribution,
respectively. In the homogeneous Poisson process two hundred
different realizations, with the same density of the GA spiral, are
considered. All these data are in units of the scaling factor a0 (see
Eq. 1).

APPENDIX B: FIRST-NEIGHBOR PROBABILITY
DENSITY FUNCTION ANALYSIS

In order to gain more insights on why proximity resonances
are absent in Vogel spiral point patterns we study the proper-
ties of the first-neighbor probability density function of a GA
spiral as compared to homogeneous Poisson point pattern. It
is important to remember that the first-neighbor probability
density function is a measure of the spatial uniformity of a
given point pattern [37,71]. Figures 8(a) and 8(b) show the
results of this analysis as a function of the spacing parameter
r. Figure 8(a) is the result of an average over 200 different
homogeneous Poisson patterns with exactly the same density
of the GA spiral. The results of Fig. 8 clearly demonstrate that
the GA spiral is characterized by a more regular structure as
compared to random media. Indeed, the probability density
function of a GA spiral is extremely peaked around the mean

FIG. 9. Representative spatial distributions of the Green’s matrix
eigenvectors that belong to the class of scattering resonances that
produce the stronger localization feature in the τ spiral (panel (a)),
π spiral (panel (b)), and μ spiral (panel (c)), respectively. B j , C j ,
and D j (with j = 1, 2, 3) identify the first three resonances with
the lower decay rates (�n/�0 � 1). Moreover, panels (a)–(c) report
these quasimodes when the optical density ρλ2 is fixed to 10 and 30.
The spectral positions of these scattering resonances are identified
by the different markers of Figs. 2(b) and 2(d).
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FIG. 10. Semilog plots of the Thouless conductance, as a function of ω, obtained by using Eq. (5) after diagonalizing the 3N × 3N Green’s
matrix associated to only the near-field term (panel (a)), the near-field term plus the intermediate-field regime (panel (b)), the far-field term
only (panel (c)), and all the coupling contributions (panel (d)) for the τ, π, μ spirals as compared to the UR configuration. This analysis is
performed by fixing ρλ2 equal to 10. The error bars are evaluated as the standard deviations of the Thouless conductances calculated for 10
different disorder realizations. The dashed-black lines identify the threshold of the diffusion-localization transition g = 1.

value of the first-neighbor distances and it is very well repro-
duced by considering a Weibull distribution fitting function,
as highlighted by the black line of Fig. 8(b). On the contrary,
the UR configuration is characterized by a Poissonian first-
neighbor distribution described by the analytical expression
[71]

d1(r) = 2(λπr2)

r
e−λπr2

, (B1)

where λ is the intensity of the Poisson point process. It
is important to emphasize that the trend of 〈d1(r̂)〉e (〈· · · 〉e

indicates the average over an ensemble) in Fig. 8(a) is not
the result of a fitting procedure. Rather, it is obtained by
using Eq. (B1) after calculating λ as N/(π R2). Here N is the
number of points equal to 2000 while R is the maximum radial
coordinate of the system (see the insets of Fig. 7).

Figure 8 clearly shows that two extremely different first-
neighbor probability density functions characterize the two
considered point processes. For a given optical density, the
probability of finding two particles very close together is
much larger for homogeneous random patterns (see the trend
of 〈d1(r̂)〉e near r = 0). On the contrary, proximity resonances
do not influence Vogel spirals thanks to these peculiar geomet-
rical properties.

APPENDIX C: REPRESENTATIVE EIGENVECTORS OF
DIFFERENT LOCALIZED-RESONANCE BANDS

Figures 9(a)–9(c) display representative eigenvectors cor-
responding to the different classes of the scattering resonances
that lead to more pronounced localization in the τ, π , and μ

spirals, respectively. The spatial distributions of these quasi-
modes correspond to the three eigenvalues of the Green’s
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FIG. 11. Level spacing statistics of the Green’s matrix eigenvalues for two different regimes: ρλ2 = 0.1 (panels a-d) and ρλ2 = 10 (panels
e-h). Panels (a-e), (b-f), (c-g), (d-h) refer to the GA spiral, τ spiral, π spiral, and μ spiral configurations, respectively. The fitting curves are
performed by using the critical cumulative distribution [37,38,72] (solid curves in panels (a-d)) and the Poisson distribution (solid curves in
panels (e-h)).

matrix with the lower decay rates. They are labeled B j , C j ,
and D j (with j = 1, 2, 3) in the τ, π , and μ configurations,
respectively. In each panel of Fig. 9 the optical density is
fixed to 10 and 30. Moreover, for each of them, the frequency
ω̂n is also reported. We clearly observe that exactly the same
spatial profile is retrieved when scanning along the dispersion
branches identified by the different markers of Fig. 2. The
effect of increasing the optical density ρλ2 is simply to
produce a frequency shift in the complex scattering plane,
as discussed in the main text for the GA spiral. Moreover,
we notice that the spatial profiles reported in Fig. 9 agree
very well with what was previously reported based on the
FEM technique [53,70]. This analysis demonstrates that the
different localized resonances of Fig. 2 are the different lo-
calized band edge modes produced by the strongly-fluctuating
(multifractal) dispersion of the density of states in the different
investigated Vogel spirals [53,70].

APPENDIX D: DIFFERENT COUPLING TERMS OF
THE DYADIC GREEN PROPAGATOR

The effects of the different coupling terms of the dyadic
Greens’s propagator are analyzed for the τ, π, μ Vogel spi-
rals as compared to the UR configuration. Figure 10 displays
the frequency dependence of the Thouless conductance g
obtained by using Eq. (5) after diagonalizing the 3N × 3N
Green’s matrix associated to only the near-field term (panel
(a)), the near-field plus the intermediate-field contribution
(panel (b)), the far-field term only (panel (c)), and all the
coupling contributions (panel (d)). These results are obtained
for ρλ2 = 10. Light localization, characterized by g < 1, only
occurs in Vogel spirals when all the coupling terms, including
the near-field regime, are taken into account. This shows
that light localization in Vogel spiral arrays composed of
pointlike scatterers results from a collective coupling effect
that involves multiple length scales.

On the other hand, homogeneous planar random media do
not show any light-localization transitions when the vector

nature of light is taken into account confirming the results of
Refs. [8,9,16]. Indeed, the localization criterium g(ω) < 1 is
never satisfied in the UR configuration (see the last column
of Fig. 10). Interestingly, the Thouless conductance is larger
than one also when the only far-field coupling term is taken
into account. Hence our findings clearly demonstrate that the
absence of any structural correlations is the main responsible
that prevents light localization in uniform random arrays when
the vector nature of light is taken into account.

APPENDIX E: LEVEL SPACING STATISTICS
IN VOGEL SPIRALS

Level statistics provides important information about elec-
tromagnetic propagation in both closed and open scattering
systems. Indeed, the concept of level repulsion is related to
the transport properties supported by eigenmodes because it
indicates the degree of spatial overlap between them [73].
Level repulsion can help to discriminate a transition from a
delocalized (presence of level repulsion) to a localized wave
transport regime (absence of level repulsion). In Refs. [37,38]
the distribution of level spacings was investigated in different
open scattering systems for different scattering strengths. The
presence of the level repulsion is characterized by the deriva-
tive of the interpolation function, called critical cumulative
probability [72], while the suppression of level repulsion is
indicated by the fact that the level spacings is described by the
Poisson distribution [37,38,74].

The distribution of level spacings is calculated for two
different optical densities (0.1 Figs. 11(a)–11(d) and 10
Figs. 11(e)–11(f)) for all the investigated Vogel spiral con-
figurations. Figure 11 shows a clear transition between level
repulsion at low optical densities and the absence of level
repulsion at large optical densities. For large optical density,
the distribution of level spacings follows the Poisson distri-
bution (no level repulsion), as it occurs for uniform random
systems in the localized regime [37]. On the other hand,
for weakly scattering systems the level spacing distribution
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follows the same critical distribution that describes the An-
derson transition in random media, where wave functions
feature multifractal scaling [72]. Differently from traditional
uniform random media where criticality is achieved at the
localization threshold, which occurs for a specific optical
density in 3D, in Vogel spirals we have verified that the critical
behavior occurs for a broader range of optical densities. Inter-
estingly, this behavior was reported also for complex prime
arrays [38].

APPENDIX F: AVERAGE MODAL LIFETIME

In order to address the similarities between our problem
and the scattering resonances of a 2D open system we have
calculated their spatial distributions and their mean lifetimes
in both a 3D and a 2D environment. This analysis is summa-
rized in Fig. 12.

Figures 12(a) and 12(b) show a comparison between rep-
resentative spatial distribution of localized Green’s matrix
eigenvectors calculated using the cylindrical Hankel functions
[17] and the dyadic formalism applied to the golden angle
Vogel spiral, respectively. The 2D localized scattering reso-
nances are very similar to the ones found in a 3D scenario.
This comparison clearly shows that the geometrical nature of
the 2D support determines, even in the case of 3D open sys-
tems, the spatial distribution and the localization properties of
localized modes in the plane of its support. This feature allows
the 2D modes to be probed by the scattering resonances of
their 3D counterparts if the scattering strength is sufficiently
large to induce light localization in the 2D support. However,
such 3D scattering resonances have smaller average modal
lifetime due to the open nature of the 3D space with respect
to their 2D counterparts, as shown in Figs. 12(c) and 12(d).

FIG. 12. Panels (a) and (b) show representative spatial distribu-
tions of localized Green’s matrix eigenvectors generated by using
the cylindrical Hankel functions and the dyadic formalism applied
to the golden angle Vogel spiral, respectively. Panels (c) and (d)
report the average modal lifetime as a function of ρλ2 in 2D and
3D environments, respectively.

In fact, Figs. 12(c) and 12(d) compare the average modal
lifetime �̂ = 〈�0/�n〉, which determines the mean time that
light spends inside a medium surrounded by vacuum [7,14],
in the 2D and 3D scenarios as a function of ρλ2 for all the
investigated spirals.

For comparison, Fig. 12(d) also reports the average modal
lifetimes of uniform planar random arrays that are much
smaller than the ones of Vogel spirals. This result is consis-
tent with the fact that a light localization transition is never
achieved in the random case.
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