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Coherent order parameter dynamics in SmTe3
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We present ultrafast optical pump-probe and ultrafast x-ray diffraction measurements of the charge density
wave dynamics in SmTe3 at 300 K. We performed ultrafast x-ray diffraction measurements at the Linac Coherent
Light Source to directly probe the dynamics of the finite-wave-vector order parameter. The dynamics reveal
coherent oscillations at ∼1.6 THz that become overdamped with increasing fluence. We identify this oscillation
with the lattice component of the amplitude mode. Furthermore, our data allow for a clear identification of
the amplitude mode frequency in the optical pump-probe data. In both measurements, the system reaches
the symmetric phase at high fluence, where the order parameter vanishes and the response (reflectivity and
x-ray intensity) is quadratic in the order parameter. This is observed in the x-ray diffraction as a small
overdamped modulation near zero intensity. Similar overdamped features are observed in the optical reflectivity
at high fluence. A time-dependent Ginzburg-Landau model captures qualitatively the essential features of the
experimental observations.
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I. INTRODUCTION

Charge density waves (CDWs) [1] are broken-symmetry
states of metals that spontaneously develop a valence charge
modulation and a gap in the electronic structure concomitant
with a frozen lattice distortion with a well-defined wave vector
qcdw. The lattice exhibits a Kohn anomaly, a soft phonon mode
of the symmetric phase, whose frequency ω(qcdw) decreases
as the transition temperature Tc is approached from above.
In the original mechanism proposed by Peierls, the CDW
forms due to an electronic instability that occurs because
of Fermi-surface nesting between bands separated by qcdw.
Later arguments, however, showed that Fermi-surface nesting
does not provide predictive power: in most two-dimensional
systems the CDW wave vector is not the optimum nesting
wave vector, and the wave vector dependence of the electron-
phonon matrix elements must be included to obtain the correct
ordering wave vector [2].

Over the last few decades we have seen tremendous
progress towards materials control at ultrafast timescales us-
ing light pulses [3]. With the goal of understanding the ma-
terials dynamics, CDWs provide attractive model systems to
study the dynamics of order parameters and fluctuations when
driven out of equilibrium. In addition, the CDW long-range
order typically occurs at a well-defined wave vector, and the
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transition can be modeled with a small number of degrees of
freedom. Pump-probe methods have the ability to probe the
system both near and far from equilibrium as the transition
occurs and, from the dynamics, obtain information about
the coupling between the participating degrees of freedom.
Various ultrafast techniques have been used to probe the
transient dynamics of charge density waves: ultrafast x-ray
[4–6] and electron [7] diffraction can probe the structural
transformation by measuring the intensity of the CDW Bragg
peaks, ultrafast optical spectroscopy can probe the spectrum
of low-energy excitations and their transient dynamics with
excellent frequency resolution [8–10], and time- and angle-
resolved photoemission spectroscopy can probe the transient
electronic gap and quasiparticle populations [11–13].

The rare-earth tritellurides (RTe3, with R being a rare-earth
ion) have attracted much attention as a model system for
studying the interplay between Fermi-surface nesting [14]
and electron-phonon coupling [6,15,16] in CDW phenom-
ena. To characterize the effect of electron-phonon coupling,
it is important to clearly identify the order parameter and
its low-amplitude oscillations, the amplitude mode (AM).
Prior ultrafast works have probed this mode indirectly by
its modulation of the optical reflectivity [9], Raman scatter-
ing [17], photoemission [11–13], and soft-x-ray scattering
[6]. Here we present comprehensive ultrafast optical pump-
probe and ultrafast x-ray diffraction on SmTe3 at 300 K
that allows us to make a clear assignment of the AM to
modulations in the x-ray diffraction signal. SmTe3 undergoes
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a CDW transition at Tc = 416 K. The high-symmetry phase
of SmTe3 crystallizes in the Cmcm space group [18] with lat-
tice constants a = 4.333, b = 25.68, c = 4.336 Å. Below Tc

the material develops a static CDW [19] with an incommen-
surate wave vector qcdw = (0, 0, q) ≈ (0, 0, 2/7) (reciprocal-
lattice units). The magnitude of the distortion, based on an
analysis of the intensity of the CDW sideband relative to the
nearest Bragg peak [20], is ∼0.04 Å. The sample studied
here was a flat single crystal of SmTe3 with dimensions of
4 × 4 × 0.3 mm3 with the long axis, b, perpendicular to the
large sample surface.

Using ultrafast hard x-ray pulses from the Linac Coherent
Light Source (LCLS), we measured the dynamics of the lattice
component of the order parameter at momentum transfer
Qcdw at varying degrees of photoexcitation. Comparing the
pump-probe reflectivity data with the x-ray results allows
for the identification of the features observed in reflectivity
and separation of the zone-center optical phonons from the
relevant mode at Qcdw. We observe that at high fluence the
system reaches the symmetric state, where the order parameter
vanishes. Moreover, the order parameter oscillates around
zero, which is manifested in diffraction as an oscillation of the
intensity of the nearly suppressed CDW Bragg peaks. A time-
dependent Ginzburg-Landau model explains qualitatively the
dynamics of the lattice order over the range of fluences
measured.

We have organized the paper as follows: we first present
a phenomenological model of the dynamics of the order pa-
rameter based on the time-dependent Ginzburg-Landau (GL)
equation. In this section we also establish the nomenclature
used in the rest of the paper and derive phenomenological
expressions for the dielectric constant and x-ray intensity
for small perturbations of the order parameter. Following the
model, we introduce the ultrafast x-ray diffraction results and
analyze these in the framework of the GL model. Then we
present the optical pump-probe results and compare them
with the x-ray data. The concluding paragraph summarizes
the findings.

II. GENERAL FRAMEWORK

Here we develop a general model that describes phe-
nomenologically the dynamics of the lattice, including the
anharmonic regime at high fluence and its effect on the x-
ray structure factor and the optical response. We model the
average lattice distortion of the CDW using a time-dependent
extension of the Ginzburg-Landau (TDGL) formalism for
second-order phase transitions [5,10]. The model assumes that
the dynamics of the transition can be described by a real
order parameter, the amplitude of the lattice distortion at qcdw,
and ignores phase fluctuations at these timescales [10]. The
potential is

V (x) = 1
2 a(η − 1)x2 + 1

4 bx4, (1)

where a > 0 and b > 0. Here η � 0 acts as a control parame-
ter that in equilibrium has the form η = T/Tc. For η = 0 the
system is in a double-well configuration with two minima at
x = ±x0 = ±√

a/b. Defining the normalized order parameter
y = x/x0, y = 1 corresponds to the equilibrium ordered phase,
and y = 0 corresponds to the high-symmetry phase, as shown

FIG. 1. Normalized Ginzburg-Landau potential V (y) of the an-
harmonic lattice dynamics model for various levels of excitation.

schematically in Fig. 1. In terms of y, Eq. (1) reads

V (y) = ax2
0

4
[2(η − 1)y2 + y4]. (2)

The equation of motion for y is
1

a
ÿ + [η(t ) − 1]y + y3 + 2�

a
ẏ = 0, (3)

with initial conditions y(0) = 1, ẏ(0) = 0, which corresponds
to the system in the ordered phase at t < 0. The last term in
(3) accounts for damping of the dynamics. We describe the
photoexcitation by introducing a time-dependent η = η(t ) =
e−βt�(t ), with �(t ) being a unit step function. As we show
in detail below, in the low-fluence limit, Eq. (3) reduces to
the displacive excitation of coherent phonons (DECP) model
of Ref. [21], where −η/2 becomes the shifted equilibrium
position of the potential. To account for the experimental
observations, the relaxation rate of the photoexcited potential
β is assumed to be fluence dependent and is allowed to vary
when fitting the model.

A. X-ray structure factor

The x-ray structure factor for the CDW sideband was de-
rived by Overhauser [20]. To first order in the CDW distortion
x, the intensity at momentum transfer Qcdw = qcdw + K near
reciprocal-lattice vector K is [20]

I (Qcdw) = J2
1 (Q · x) ≈ 1

4 [cos(α)Qx0y]2, (4)

where J1 is a Bessel function of the first kind, Q = ||Q||, and
α is the angle between Q and x. As expected, Eq. (4) respects
the inversion symmetry y → −y of the disordered phase. It
is convenient to normalize the intensity to I (t < 0), which
simplifies to

Ĩ = I (Qcdw, t )

I (Qcdw, t < 0)
= y2(t )

y2(t < 0)
= y2(t ) (5)

since y(t < 0) = 1. When comparing the model with time-
resolved diffraction results, we will refer to Ĩ unless otherwise
stated.

B. Dielectric constant

As developed in Ref. [22], the expansion of the dielectric
constant of a system near a second-order phase transition in
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terms of the order parameter y is [22]

ε ≈ ε0 + d y2, (6)

where d = ∂2ε/∂y2. Here again the first term in the expansion
allowed by symmetry is quadratic in y.

C. Small-amplitude limit and relation to DECP

In the low-fluence regime, η � 1, the system stays near the
ordered phase, y = 1, and we can approximate y ≈ 1 + δy,
with δy � 1. Expanding the equation of motion (3) to first
order in δy and η, we get

δÿ + �2

(
δy + η(t )

2

)
+ 2�δẏ = 0, (7)

where � = √
2a. As expected, this is the equation of motion

for the DECP model (Eq. (3) in [21]) with a shifted equilib-
rium position Q0(t ) = −η(t )/2. Note that the curvature of the
potential is unchanged to first order in δy and η.

In the limit δy � 1, the quadratic equations for the x-ray
intensity (4) and dielectric constant (6) become

I ≈ 1
4 [cos(α)Qx0]2

(
1 − 1

2
δy

)
(8)

and

ε ≈ ε0 + d

(
1 − 1

2
δy

)
, (9)

respectively. We note that δy is the displacement of the so-
called amplitude mode of the CDW, and the linear dependence
of ε on δy makes the AM Raman active in the ordered phase
[23]. For the same reason, the linear dependence of these
quantities on δy means that a coherent motion of δy appears
as a modulation of Ĩ or ε as ∼ cos(�t ).

For completeness, the solution to Eq. (7) is [21]

δy(t ) = A

{
e−βt − e−�t

(
cos �t − β − �

�
sin �t

)}
�(t ),

(10)

with

A = −η(0)

2

�2

β2 + �2 − 2�β
. (11)

Here the first term in Eq. (10) corresponds to the inhomo-
geneous solution with the source term η(t ) that shifts the
equilibrium position, and the second term comes from the ho-
mogeneous, oscillatory solution. For �/� � 1 the amplitude
A reduces to

A = −η(0)

2
. (12)

As expected, the parameters of the DECP model are directly
related to those of the anharmonic equation of motion, Eq. (3),
in the limit δy � 1, η � 1.

III. ULTRAFAST X-RAY DIFFRACTION

The ultrafast diffraction experiment was carried out at the
x-ray pump probe (XPP) instrument at the LCLS [24] with
x-ray pulses <50 fs in duration at a photon energy of 9.5 keV

selected using a diamond double-crystal monochromator that
provides 0.5 eV bandwidth. The x-ray probe was focused to
0.02 × 0.1 mm2. The pump consisted of 50-fs pulses from a
regenerative Ti:sapphire amplifier centered at 800 nm focused
to a cross-sectional area of 0.05 × 0.2 mm2. The pump
polarization was perpendicular to the sample surface (p polar-
ization). An area detector (Cornell-SLAC pixel array detector)
was positioned at ∼1 m from the sample and was rotated to
capture the various Bragg reflections. To match the optical
(∼20 nm) and x-ray penetration depths we implemented a
grazing incidence geometry. The incidence x-ray angle of
0.3◦ was accurately calibrated by measuring the deflection by
x-ray total external reflection at small angles. The arrival time
of each optical-pump, x-ray-probe sequence was measured
on every shot, and the pump-probe delay was corrected in
postprocessing, yielding a time resolution of <80 fs.

In Figs. 2(a)–2(c) we show the dynamics of Ĩ of three
different CDW diffraction peaks for various incident fluences.
The intensity is integrated over the entire diffraction peak
and normalized by the intensity without the pump I0(Qcdw).
For clarity in what follows we drop the (Qcdw) argument.
The low-fluence traces (top trace in each panel) show a 20%
decrease in Ĩ and clear oscillations with frequency (period) of
∼1.55 THz (650 fs) that decay within a few picoseconds.
Based on the estimated static distortion x0 ∼ 0.04 Å [25], the
amplitude of the motion corresponding to the lowest-fluence
trace is |x0δy| ∼ 8 × 10−3 Å. All the traces are shifted hori-
zontally by the same amount to the t = 0 time obtained by the
fitting procedure described below. Momentum conservation
ensures that to leading order, only phonon modes with wave
vector qcdw contribute to Ĩ . Thus, x-ray scattering at the CDW
wave vector avoids the contribution from other Raman-active
phonon modes at the zone center [9,13] and isolates the lattice
distortion of the AM. Thus, we ascribe these oscillations to
the displacement of the amplitude mode δy, which modulates
the intensity at Qcdw through Eq. (8). The green dashed traces
in Figs. 2(a)–2(c) correspond to a fit of the low-amplitude
solution [Eq. (10)] to the lowest-fluence trace with �/2π =
1.55 THz, A = 0.085, � = 1.8 THz, and β = 0.65 THz (also
listed in Table I).

TABLE I. Parameters of the TDGL fit and DECP fits of Eq. (10).
The errors in the TDGL fits were estimated by running 2000 in-
dependent fits with multiple random initial conditions (within 20%
of the best solution); the values reported correspond to the standard
deviation from those fits whose residue is within 10% of the best
fit. The errors in the DECP are 95% confidence intervals. Note that
� = √

2a, but we report � for the TDGL fits for easier comparison
with DECP.

�/(2π ) η(0)
F (mJ/cm2) (THz) (arbitrary units) �(THz) β(THz)

0.1 1.60(2) 0.163(3) 1.89(7) 0.61(18)
0.25 1.6a 0.47(1) 3.13(15) 0.142(2)
0.5 1.6a 0.890(1) 4.53(6) 6.7×10−3 b

1 1.6a 2.0(1) 2.97(7) 10−5 b

0.1 (DECP) 1.55(9) 0.17(3) 1.8(4) 0.65(8)

aValue was fixed at the result of the fit for 0.1 mJ/cm2.
bValue was not possible to fit due to the short measurement window
and was kept fixed.
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FIG. 2. Dynamics of CDW x-ray diffraction Ĩ for several incident
fluences for CDW peaks (a) (17q), (b) (2 2 1 + q), and (c) (2 2 1 −
q). The legend in (a)–(c) indicates the incident fluence (in mJ/cm2).
The green dashed line is a fit using Eq. (10); the parameters of the
fit (given in the text) are the same for all panels. (d) Line-out of
the intensity across the detector along the dashed line indicated in
(e) for representative delays. (e) The detector image of the (17q)

CDW Bragg peak; the horizontal scale bar is 9 × 10−4 Å
−1

, and the
intensity scale is logarithmic.

As the fluence increases, we observe a strong suppres-
sion in Ĩ as well as a nearly complete softening of the
oscillations at fluences ∼0.25–0.5 mJ/cm2. At the maximum

fluence of 1 mJ/cm2, Ĩ ≈ 0, and we observe two overdamped
oscillations near delay t ∼ 0.5 ps [see, e.g., 1 mJ/cm2 traces
in Figs. 2(a) and 2(c)]. This can be understood qualitatively
as the order parameter crossing to the opposite side of the
quartic potential well, indicated by the arrow on the top curve
in Fig. 1. At high excitation densities, δy becomes large (i.e., y
can deviate significantly from y = 1), and one must consider
Eq. (4) instead of (8) to properly describe the x-ray intensity.
Also, because of this quadratic dependence, the period of
the oscillation observed in the 1 mJ/cm2 traces is half of
the period of oscillation of y(t ) around y = 0 in the new
potential (top trace in Fig. 1), as has been previously observed
in K0.3MoO3 [5]. A similar crossover from Eqs. (9) to (6)
as the symmetric phase is approached is also observed in the
pump-probe reflectivity presented below. We will discuss the
observed fluence dependence scaling (seen clearly in the inset
of Fig. 6 below) in more detail later in the context of the
TDGL model.

IV. ULTRAFAST OPTICAL REFLECTIVITY

As we see next, many of the features of the order pa-
rameter dynamics pointed out above are also visible in an
ultrafast reflectivity probe. We present here an optical-pump,
optical-probe reflectivity measurement of SmTe3 for similar
excitation fluences. The transient reflectivity at 800 nm was
measured with 45-fs pulses from a Coherent RegA laser sys-
tem at a repetition rate of 250 kHz. The pump and probe were
near collinear at normal incidence, and the pump was chopped
at 2 kHz. The reflected beam intensity was collected with
a photodiode, and the signal at the chopper frequency was
measured with a lock-in amplifier. The pump and probe beam
sizes (full width at half maximum) at the sample position were
60 and 25 μm, respectively.

Figure 3(a) shows the time-domain reflectivity of SmTe3 at
300 K for increasing incident fluence, indicated in the legend
(in mJ/cm2). These data have more oscillatory components
than the x-ray traces in Fig. 2 because the reflectivity is
modulated, in principle, by all possible Raman-active modes
in the material consistent with selection rules. Figure 3(b)
shows a zoomed-in view at early times of the same data in
Fig. 3(a) but normalized by the respective fluence to highlight
the features at low fluence. The dashed line in Fig. 3(b) shows
a fit of Eq. (10) to the 0.033 mJ/cm2 trace, whose frequency
most closely matches that of the 0.1 mJ/cm2 x-ray data in
Fig. 2. For low fluence the time-domain trace shows several
oscillations corresponding to various Raman-active phonons,
including the AM, which is folded back to zone center in the
distorted phase [9,17], a consequence of the static distortion
in Eq. (9). The AM softens with increasing fluence and
becomes overdamped as fluence reaches F ∼ 0.33 mJ/cm2.
This is made clear when normalizing the time traces by the
incidence fluence [Fig. 3(b)] and is observed as a delay of
the first maximum of oscillation. For F ∼ 0.7 mJ/cm2 [top
trace in Fig. 3(a)] we observe a fast, single-cycle oscillation,
whose period is shorter than that of the low-fluence AM and
which resembles the high-fluence trace in the x-ray structure
factor [compare with the high-fluence traces in Figs. 2(a) and
2(c)]. At this fluence the system can reach y ≈ 0 (see the
discussion of Fig. 4 for a comparison between the fluences
in the x-ray and optical experiments). Thus, as before, at this
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FIG. 3. (a) Differential reflectivity at a wavelength of 800 nm as
a function of pump-probe delay. The pump wavelength is 800 nm,
and the incident fluence for each trace is labeled in the legend in
(mJ/cm2). (b) Zoomed-in view of the data in (a) normalized by the
incident fluence. The dashed curve is a DECP fit of 0.033 mJ/cm2

with �/2π = 1.55 THz, γ = 2.5 THz, β = 1.95 THz. The vertical
dashed line marks the t = 0 point.

excitation level we expect a crossover between Eqs. (9) and
(6). Interestingly, a consequence of Eq. (6) is that in the region
near y = 0, the lattice motion is not probed through first-order
Raman as in the case of δy, but the deviations of the order
parameter from y = 0 couple with the probe as a second-order
Raman process [10,23,26].
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FIG. 4. Comparison between x-ray and optical data for the low-
est fluence. The dashed line is the DECP fit of the x-ray data in Fig. 2.

FIG. 5. Frequency spectrum of the optical reflectivity data in
Fig. 3 extracted from (a) a Fourier transform (FT) after background
subtraction and (b) the linear prediction procedure discussed in the
text [27]. The incident fluence for each trace is indicated next to the
FT traces (in mJ/cm2). The purple dots in (b) mark the frequency of
the LP component ascribed to the soft mode. Vertical bars indicate
the frequencies of the most prominent phonon modes of SmTe3

observed in Raman scattering [17].

For comparison between x-ray and optical results we plot
in Fig. 4 the two traces of low-fluence x-ray and optical data
that most closely match (the optical data have been inverted
and scaled to match the overall amplitude). The dashed line
here is the DECP fit from Fig. 2(a). We observe that the
oscillations in the 0.033 mJ/cm2 optical reflectivity curve
best match the low-fluence oscillations in the x-ray data
(0.1 mJ/cm2), which provides a robust comparison between
the fluences of the two measurements and removes systematic
errors when comparing excitation levels between them. This
comparison suggests that the soft-mode component in the
optical data is related to the lattice component of the order
parameter at qcdw.

Figure 5(a) shows the Fourier transform of the data
in Fig. 3 after subtraction of a double exponential that
represents the nonoscillatory contribution from photoexcited
quasiparticles [8,10]. It is clear from Fig. 5(a) that there are
several modes in the data with a broad double feature at
∼1.65 THz and two clear modes at 2.5 and 3.95 THz. The
most prominent broad feature at ∼1.65 THz softens as a
function of fluence, while the frequencies of the other modes
remain static as fluence increases. The vertical bars indicate
the frequencies of the most prominent Raman-active modes
of SmTe3 observed in [17].

As an alternative approach to obtain the frequency content
of these oscillations, we treat the data using a linear prediction
algorithm. This algorithm operates on the time-domain data
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and assumes that the signal is a superposition of an unknown
number of decaying cosines, some of which may have zero
frequency (i.e., pure decaying exponentials). Since it does not
involve a least-squares fit of a function to the data, this method
is a direct and more robust way of extracting the parameters
of exponentially decaying cosines. Furthermore, the number
of oscillators is determined from the statistical properties of
the data [27,28]. Following Ref. [27], the procedure relies
on linear prediction of each observation rn in terms of M
previous ones: rn = a1rn−1 + a2rn−2 + · · · + aMrn−M for n =
M + 1, . . . , N , where N is the number of time points equally
spaced by �t . This overdetermined linear set of equations
can be solved for the coefficients an. A subset of 2K < M
of these coefficients, where K is the number of oscillators
in the data, becomes the coefficients of a polynomial whose
complex roots zi = exp[(−bi ± iωi )�t] contain the frequency
ωi and damping bi of each oscillator. As described in [27]
the procedure outputs the frequencies, decay constants, am-
plitudes, and phases of the oscillators and can include pure
decaying exponential (zero-frequency) components. For pre-
sentation purposes we compute the total spectrum as a sum of
Lorentzian functions

I (ω) =
∑

j

A j
b

(ω − ω j )2 + b2
,

where the amplitudes Aj , frequencies ω j , and dampings b j are
extracted from this linear prediction algorithm.

Figure 5(b) shows the spectrum of the low-fluence traces
obtained by applying linear prediction to the time-domain
traces in Fig. 3(a). The frequency of the soft mode obtained
with this method is indicated by the dot ∼1.6 THz above the
corresponding trace. Note that not only does the frequency
decrease but the width of this soft-mode component increases
with increasing fluence, consistent with the observations in
the FT [Fig. 5(a)]. We point out that the AM, whose fre-
quency is ∼2.2 THz near 10 K [9], softens strongly as
temperature increases towards the critical temperature Tc and
crosses other phonon modes near 1.75 THz at 100 K below Tc

[9]. Extrapolation from the literature observation for HoTe3,
DyTe3, and TbTe3 [9] to SmTe3 indicates that the AM crosses
the 1.75-THz mode around T ∼ 280 K. Thus, the AM at
300 K is already significantly softened, and photoexcitation
likely contributes additional softening. We further note that
the 2.5-THz mode does not soften and remains visible even
for fluences >0.25 mJ/cm2, where the CDW diffraction is
strongly suppressed. Taking into consideration the x-ray and
optical comparison in Fig. 4, we identify the soft mode at
1.6 THz with the 1.55-THz oscillations in the low-fluence
x-ray traces in Fig. 2 and assign it to the AM. Note that time-
and angle-resolved photoemission spectroscopy shows modes
at 2.2 and 2.5 THz at relatively low fluence [13], and per the
discussion above, we associate the softened 1.6-THz mode
observed here with the 2.2-THz mode seen in Ref. [13].

V. HIGH-FLUENCE REGIME

We now turn our attention to the high-fluence x-ray data.
As the incident fluence F increases, we observe a suppression
of the oscillatory dynamics for fluences above 0.25 mJ/cm2

and almost complete extinction of the CDW intensity at
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FIG. 6. Time-dependent Ginzburg-Landau model of the dynam-
ics of the order parameter. The solid lines are the time dependence of
the structure factor for the (17q) reflection as in Fig. 2(a). The dark
dashed lines are the solutions to the TDGL for the values reported
in Table I. For comparison, the dash-dotted line shows the DECP fit
from Fig. 2. The inset shows the fluence dependence of the measured
intensity Ĩ (0.25 ps) and the fitted value of η(0) (from Table I).

F > 0.5 mJ/cm2 (Fig. 2). We note that the Bragg peak
width (inverse of the correlation length) does not appreciably
change over the range of delays probed here, as seen in the
Bragg peak cross sections in Fig. 2(e) and consistent with
previous resonant diffraction measurements [6]. This suggests
that, unlike the thermal transition [19] where the correlation
length diverges, the ultrafast destruction of the CDW order
proceeds without the creation of topological defects [29] at
these timescales.

Figure 6 shows the fit of the numerical integration of
Eq. (3) (black dashed lines) together with the experimental
data for the (17q) Bragg peak from Fig. 2(a) for various flu-
ences (solid lines). The frequency was varied only when fitting
the 0.1 mJ/cm2 data and was kept fixed at the resulting value
when fitting the other fluences. The fit parameters are given
in Table I. As can be seen in Fig. 6, this model reproduces
the dynamics of the structure factor for the entire delay and
fluence ranges. In the limit of low fluence, y ≈ 1 + δy, and
δy(t ) reduces to the DECP solution from Eq. (10), which is
shown by the dash-dotted line in Fig. 6. At this fluence the
model predicts a ∼20% suppression of the intensity together
with time-dependent oscillations due to the low-amplitude
vibrations of δy as observed experimentally in the top trace
of Fig. 6. Experimentally, we observe that the intensity at
t = 0.25 ps, Ĩ (0.25 ps), sharply decreases with fluence, as
can be seen in the inset of Fig. 6. This fluence scaling in
the inset of Fig. 6 is a consequence of the ∼y2 form of
Eq. (4). As fluence increases, the motion in y(t ) becomes
overdamped at F = 0.25 mJ/cm2 (which corresponds to η =
0.5; see Table I). The critical point η = 1 is reached for F ∼
0.5 mJ/cm2, which achieves nearly complete suppression of
the CDW Bragg peak. Note that while Ĩ (0.25 ps) scales as y2,
the scaling of η(0) with fluence is linear (see inset in Fig. 6,
from Table I). At 1 mJ/cm2, η = 2, and the system is pushed
well into the high-symmetry phase, where the potential has a
single minimum at y = 0 (top trace in Fig. 1); after the sudden
excitation the order parameter crosses the y = 0 point and
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performs two overdamped oscillations before fully decaying,
as seen in Figs. 2(a) and 2(c). A similar crossover behavior
is observed in the reflectivity data in Fig. 3 for comparable
fluences (F > 0.5 in Fig. 3). The TDGL model described
above provides a phenomenological description of these ob-
servations and qualitatively explains the behavior of both the
x-ray and reflectivity data over the entire regime of fluences.

VI. CONCLUSIONS

In conclusion, we have presented a comprehensive ultrafast
x-ray and optical study of the lattice dynamics of SmTe3.
We used x-ray diffraction to directly probe the dynamics of
order parameter at qcdw, which was previously accessed only
indirectly. Comparison of ultrafast reflectivity measurements
with the x-ray results allows for unequivocal identification
of the amplitude mode in the optical pump probe. In the
high-excitation regime, the lattice distortion reaches the sym-
metric structure at y = 0 and can overshoot for even higher
fluence excitation. The overshoot and subsequent modulation
of the order parameter around y = 0 appear as overdamped
oscillations slightly above Ĩ = 0. Similar oscillatory features

are observed in reflectivity for high excitation levels. Finally,
a phenomenological time-dependent Ginzburg-Landau model
describes qualitatively the large-amplitude dynamics of the
lattice distortion.
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