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Enhanced vibrational electron energy-loss spectroscopy of adsorbate molecules

David Kordahl” and Christian Dwyer"
Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

® (Received 10 December 2018; published 28 March 2019)

Plasmonic excitations in metallic nanoparticles are known to depend strongly on nanoparticle size and
shape. Here we explore how such excitations can be harnessed to enhance the vibrational signals from
molecules adsorbed on nanoparticle surfaces, as detected using electron energy-loss spectroscopy in the scanning
transmission electron microscope. We use the Born-Huang formalism in the electrostatic approximation to
develop a theoretical model for electron energy-loss from an adsorbed molecule (represented by a point dipole)
on the surface of a dielectric nanoparticle. We find that the adsorbate contribution to the energy-loss spectrum
is approximately proportional to the square of the electric field at the adsorption site, and hence we find
that the enhancement of the molecule’s vibrational signal is greatest for molecules adsorbed on small, sharp
nanoparticles. When the molecular frequency is near one of the nanoparticle frequencies, we generally find an
asymmetric Fano-type spectrum line shape whose asymmetry is attributable to multimodal contributions. Our
calculations for a molecule adsorbed on the tip of a prolate spheroidal silver nanoparticle predict that signal
enhancements of several hundred times should be readily achievable, and up to several thousand times if the
nanoparticle’s plasmonic mode is “tuned” to the molecular frequency. Such enhancement effects potentially
make vibrational STEM-EELS a powerful tool for the characterization of surface-functionalized nanoparticles

and nanomaterials used for chemical sensing.
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I. INTRODUCTION

It has become possible in recent years to use high-energy
electrons in a scanning transmission electron microscope
(STEM) to perform electron energy-loss spectroscopy (EELS)
on the vibrational properties of materials [1-6]. One ad-
vantage of this form of vibrational spectroscopy is that it
encourages the study of freestanding nanomaterials, whereas
Raman and infrared spectroscopies typically require materials
to be either in bulk form or residing on a thick substrate.
Another advantage is that the STEM’s intrinsically high spa-
tial resolution permits nanometer spatial resolution in vibra-
tional spectroscopy [4], which in turn should allow for the
vibrational study of local inhomogeneities [7-9]. Aloof-beam
measurements of vibrational properties also make it possible
to achieve a spatial resolution of tens of nanometers without
causing radiation damage to the sample [1,5].

Recent experiments [10,11] have confirmed the adequacy
of the dielectric description for quantitative prediction of
optical-vibrational EELS signals, and recent numerical work
on vibrational inelastic scattering [12] has shown the di-
electric description to be useful for incorporating long-
wavelength modes into detailed simulations. The size and
shape of the sample have important implications for the
long-wavelength modes. These effects are characterized by
the sample’s shape on a scale of hundreds of nanometers
and are caused by the macroscopic electric fields associated
with nontransverse optical-vibrational excitations. Studies of
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optical-vibrational modes of dielectric materials with various
canonical shapes form an extensive literature that spans sev-
eral decades [13-20].

The primary purpose of this paper is to explore how
nanoparticle shape effects might be harnessed to enhance the
vibrational EELS signals from molecules adsorbed at the sur-
face of a nanoparticle. The analogy here is with tip-enhanced
Raman spectroscopy, where large signal enhancements can be
achieved by bringing a sharp metallic tip near the sample [21].
In that case, as in the EELS case, the molecular surroundings
enhance the local electric field relative to the electric field
from the probe, and the signal enhancement can be related
to the electric field enhancement at the molecular adsorption
site [22].

To translate this effect, we develop a classical model
for EELS signals in the STEM from an adsorbed molecule
(represented by a point dipole) coupled to the plasmonic
excitations of a metallic nanoparticle. For a molecular fre-
quency well separated from the plasmonic frequencies, the
model predicts weaker enhancement with a symmetric spec-
tral line shape, whereas for a resonance condition we ob-
tain stronger enhancement which can exhibit a Fano-type
asymmetric line shape due to multimodal contributions. We
find that the molecular signal enhancement is approximately
proportional to the square of the electric field at the adsorp-
tion site, and hence that the enhancement is greatest for a
molecule adsorbed on a small nanoparticle with a highly
curved surface. Our results are in good agreement with the
recent work of Konec¢na et al. [23] who used the dielectric
formalism to describe the STEM-EELS of a thin molecular
layer on metallic nanoparticles. We predict enhancement fac-
tors of several hundred times using silver nanoparticles with
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moderate aspect ratios, and enhancements of several thousand
times by tuning the aspect ratio to a resonance condition. Such
enhancement directly increases the sensitivity of molecular
vibrational STEM-EELS, and it could provide a powerful
tool for characterizing surface-functionalized nanoparticles
and nanomaterials used for chemical sensing.

This paper is organized as follows. We begin by summa-
rizing the established classical theory of vibrational prop-
erties for dielectric solids in the electrostatic approximation
(Sec. II). We then present our theoretical treatment which
solves for the case of a molecule adsorbed on the surface of
a dielectric nanoparticle and the corresponding EEL spectra
(Sec. IIT). To expound the effects of nanoparticle size and
shape, we carry out explicit calculations of EEL spectra for
thin foils, long cylinders, spheres, and various oblate/prolate
spheroids (Sec. IV). Detailed calculations of enhancement of
adsorbed molecular signals for prolate spheroids are presented
and discussed (Sec. V) before concluding.

II. HARMONIC MODES IN THE BORN-HUANG THEORY

The phenomenological model of Born and Huang [24,25]
treats the dielectric response of an ionic material in the contin-
uum approximation. Here we apply the model to particles with
surfaces. We also use the electrostatic approximation, which
neglects magnetic effects and tends to introduce a ~10%
blueshift in the calculated vibrational frequencies [26].

The Born-Huang equations read

i = —wju —2nu + Z;E",

e =l )

P=Zu+ e
where u is the displacement of ions from their equilibrium
positions multiplied by (1/)'/?, and where p is the reduced
mass and € is the volume of the ionic pair. Here E™ is
the macroscopic electric field inside the nanoparticle, and P
is the polarization density. The Born-Huang equations are
manifestly local. The first treats the ionic displacement at a
given position inside the nanoparticle as a damped harmonic
oscillator driven by the macroscopic electric field. The sec-
ond stipulates that displacements give rise to a polarization
density, even as fast-moving charges captured by €., provide
electronic screening.

The model includes four physical parameters: the trans-
verse resonant frequency wy, the effective ionic charge Z7,
the high-frequency dielectric constant €4,, and a damping
parameter 1. The effective charge Z; is a measure of the
longitudinal optical-transverse optical splitting (where wy is
the bulk longitudinal frequency), or, equivalently, of the split
between the low- and high-frequency limits of the dielectric
function (¢p and €, respectively):

AT (Z5) = €] — @) = (€0 — €00) 5. )

The Born-Huang Egs. (1) are supplemented with the equa-
tion of electrostatics:

V.-D=V.€cE=V.(E+4nP)=0. 3)

This requires no free charges to be present and that the normal
component of the electric displacement and the tangential

component of the electric field are continuous across the
nanoparticle’s surface. We suppose that u, P, and E are all
continuous, smooth functions inside the nanoparticle, having
time dependence exp(—iwt), which gives us the Born-Huang
dielectric function €(w):

w(w + 2in) — a)%
ooa)(a) + 2in) — a)(z)'

€(w) =€ “
The w of €(w) is complex as a result of the n term in the
equations of motion, which causes the oscillatory motion to
be damped. For all vibrational modes, the time variation is
exp(—nt) exp(—i(w? — n*)'?t), where w, is the undamped
vibrational frequency (e.g., w, = wy for transverse modes,
and w, = w, for longitudinal modes). Hence damping causes
a slight redshift.

A. Harmonic modes (surface modes)

Helmbholtz-Hodge decomposition [27] allows any displace-
ment u to be written as the sum of unique transverse, longitu-
dinal, and harmonic components:

V-u =0, V xu #0,
u=u +u+u, V-u #O0, Vxuy =0, (5
V'llh:O, Vth:O.

The harmonic components u;, are only present in nanoparti-
cles with surfaces. We can similarly decompose P and E. In
the electrostatic approximation E, = 0, and so there can be no
electron scattering from the transverse modes in the electro-
static approximation. Since both E, and E;, can be nonzero,
both longitudinal and harmonic modes can give rise to EELS
signals. We expect longitudinal modes to dominate for large,
thick samples, and harmonic modes to dominate for small,
thin samples.

In this paper, we will consider nanoparticles up to thick-
nesses of 50 nm, and so we restrict our attention to the
harmonic modes u;, (also called “surface modes,’ as their
polarization charge —V - P;, must vanish everywhere except
the nanoparticle surface). The harmonic displacements inside
the nanoparticle can be put in terms of the scalar harmonic
potentials:

u'=vVe, Vi =0. ©6)

By analogy, we introduce the notation that
uzut — V(p;ul’ V2¢2m — O (7)

For simple geometries, we can use the well-known solid har-
monic solutions to Laplace’s equation as our scalar potentials
¢n. We have scaled ¢}l“ and ¢;" such that ¢, is continuous
at the nanoparticle surface for each mode h. We list the
coordinate systems and their associated harmonic functions
in the Appendix.

If @ is the unit normal vector at the nanoparticle surface,
we can find the value ¢, that the dielectric function must take
on to fulfill the electrostatic boundary conditions for a given
harmonic mode A:

®)

surface
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FIG. 1. Comparison of harmonic frequencies across five canon-
ical geometries. The dashed horizontal line is at the value of wj, for
which €, = —1. Sphere and spheroid plots display frequencies for
£ = 1—-40, with the spheroids having cross-sectional eccentricites of
0.99. Cylinder and foil plots display frequencies for k &~ 0-0.2nm™!
for particles having maximal midpoint thicknesses of 50 nm.

Notice that ¢, is negative for these harmonic solutions. In the
undamped limit, the harmonic electric field both inside and
outside the nanoparticle is

AnZ;

Ey=——u, &)
€0 — €p

and the harmonic frequencies €(wy,) = €, are

2 2
2 €coly — €py
w, = .

(10)
€00 — €p
In Fig. 1, we plot the harmonic mode frequencies for five
particle geometries, for the mode labels given in Table II of
the Appendix. Although nanoparticle shape restricts the range
of available values for ¢, (and hence for wy), we can easily
identify the transverse and longitudinal limits:

—€p —> 00, wp —> o,

an

—¢, — 0, wp —> wy.

We can also note that, for each geometry, as # — oo the
harmonic frequency approaches the value for which ¢, = —1.

Born-Huang

77777777 +Fr—-——— - ————-¢

€

\\ | Drude
e e == — — — €0

FIG. 2. Dielectric functions for the Born-Huang and Drude mod-
els, with real (red) and imaginary (blue) parts. In the Born-Huang
model, a vanishing real part specifies the longitudinal frequency w,,
while in the Drude model it specifies the bulk plasma frequency w,.

This reflects the fact that large values of & correspond to rapid
spatial variations in the surface charge. Since the high-order
multipoles are short ranged, this convergence in frequency
corresponds to local oscillations that are effectively decou-
pled.

B. Surface vibrations vs surface plasmons

As has been long been recognized [28,29], the Born-Huang
model is formally equivalent to the Drude model for metals in
the case where the oscillators have no restoring force, and with
limits taken as follows:

wy— 0, ZiVar — w,. (12)
This allows plasmons to function as longitudial optical
phonons in the long-wavelength limit, and implies that many
of the results for bulk and surface plasmons will translate to
the vibrational context. The Born-Huang and Drude dielectric
functions are compared in Fig. 2.

C. Generalization to irregular geometries

As a final comment in this section, we emphasize that
these methods are not limited to the “separable” nanoparticle
geometries considered in this paper. The methods can be
extended to irregularly shaped nanoparticles, as long as their
surfaces remain smooth. It can be shown that the harmonic
potential obeys the eigenvalue equation,

-1 /
in e, —1 r—r ,
by, (r) = i /SdS- |r_r/|3¢h(r ), 13)
where €, now acts as an eigenvalue. One could scan the
parameter space for values of ¢, that support solutions to
Laplace’s equation for an irregular shape, and the largest
negative value of ¢, would then align with the lowest-energy
mode. Eq. (13) is equivalent to computational treatments of
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surface plasmons that introduce a mesh to find the electrostatic
normal modes of the surface charge density [26,30].

III. DIELECTRIC NANOPARTICLE WITH A SURFACE
MOLECULE

In this section, we obtain concise expressions for the
expected STEM-EELS signal from an aloof electron passing
a point dipole near the surface of a dielectric nanoparticle.
The dipole here is meant to model an adsorbed molecule, and
the nanoparticle surface is defined by a single coordinate &; in
an orthogonal separable coordinate system—e.g., in spherical,
oblate spheroidal, or prolate spheroidal coordinates.

The calculation begins with an expansion of the Coulomb
potential in terms of the harmonic functions ¢, discussed
above [31]. For two points r_ and r.. with radial components
&1- < &1~ the Coulomb potential can be written as

1

|r> —Ic

= DG gy (r). (14)
h

where the C, are real coefficients, and the overbar notation,
here and following, denotes a complex conjugate. Each ¢,
is separable into a real-valued “radial” part and a complex-
valued ““surface” part,

P = RIMNENSH(E, &),
o = RM(ENDSH(E2, &), (15)

where ¢, can be made continuous across the particle surface
by requiring that RI"(£)) = R"(&)), where &) is the particular
value of the & coordinate defining the nanoparticle boundary.
Then the coefficients C}, can calculated as

G -1
C, = 4n (W (R", R / ds %) , (16)
s 1

where W is the Wronskian, the integral is over the nanopar-
ticle’s surface é?, and h; is the scale factor of the radial
coordinate. The Appendix gives these factors explicitly for
our regular geometries, and shows how C,, can be found for
the general case.

A. Applying boundary conditions

The potential due to the beam electron can be expanded
using Cj,. If the beam electron follows a straight path along
the optic axis with z = v¢ and transverse coordinate x, we
can write its potential near the origin in terms of harmonic
functions:

D(r, 1) = Y —eCy (OO (x, v1). (17)
h
Taking the Fourier transform, this becomes
D (r, ) = ) —eCi) (D (X, ), (18)
h

with I;(X, w) being the projection integral of the harmonic
potential defined by

o0 d _ .
Ii(x, w)=/ fqﬁ;’“‘(x, 7)€Y, (19)

[ee]

And if we suppose that the dipole p (the molecule) points
along the nanoparticle surface normal such that

p(w) = p(w)i, (20)
then the dipole potential

On(r,w) =p(@) - Vi 2D
Ir — |
can also be expanded using Cj:
D (r,w) = Y Cpp(w)h - 07" (ry)PJ1 (r),
' (22)

OR(r, @) = ) Cup(@)hi - 0} (1 )7 (r).
h

Using these expressions, we write the electric potential out-
side and inside the dielectric nanoparticle in terms of unknown
coefficients A, (w) and By (w):

Do (1, ) = De(r, ) + B/ (r, ) + Y Ap(@)pp" (r),
h

Din(r, ) = ) By(@)@j(r). (23)
h

Notice that in applying the electrostatic boundary conditions
we use <I>ig(r, w) for the molecular contribution to @y (r, w)
since the dipole is positioned strictly on the outside of the
nanoparticle’s surface. Applying the boundary conditions, we
find that

Ap(w) = Chah(a))[elh(x, ) — p(w)f - @) (rp, )], (24)

where, following Ferrell et al. [32] and using ¢, as defined in
Eq. (8) above, we have introduced the nanoparticle polariz-
ability:

e(lw)—1

P (25)

ap(w) =

B. The molecular dipole

We suppose the molecular dipole p(w) has a charge ¢, re-
duced mass u, damping factor y, and bare resonant frequency
wn . If the dipole is driven by the electric field E(w) along i,
its equation of motion,

e

;ﬁ E(0) = [0}, — o(o + 2iy)]p(o), (26)
allows us to find p(w) in terms of two ancillary functions,
En(w) and Aw? (w):

(@) = 7 En ()
pl@) = ;a)rzn — A2 (0) — o(w + 2iy)

27)
The first of these ancillary functions,
Em(®) =Y _eCply(x, 0)[ 0} () — ap(@)u" (ry)] - A,
h

(28)

is the electric field along fi driving the molecular dipole (m).
The u}ln terms encode the field of the electron beam, and the
u)" terms encode the nanoparticle’s induced field. For our
model parameters in Sec. V, at the adsorption site the induced
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field from the nanoparticle will be much larger than the direct
field from the electron beam.
The function in the denominator of p(w),

2
AW () = %ZChah(w)|u2”t(rm) )
h

arises from the electrostatic interaction of the dipole with its
image charge, shifting the natural resonance wy to a lower
frequency. Physically, given a molecular dipole p(w)i outside
the dielectric particle surface, we would expect an additional
field E7 (rp,) - fi induced by the molecule in the particle to act
back on the molecule along its dipole axis. This field is

El - fi = —p(w)Aw (®). (30)

Hence the frequency shift is proportional to the electric field
per unit dipole at the molecular site induced by the molecule
itself, a sort of self-interaction.

C. The EEL spectrum

Now we can find the total potential ®(r, w) that acts back
on the beam electron. Given our solutions for A,(w) and
p(w), the only subtlety here is that we use the alternative
dipole expansion, since the beam electron passes outside the
molecule on the nanoparticle surface:

O(r, w) = PN(r, w) + ZA;,(a))ﬁ‘“(r). 31)
A

Next we find the work done on the beam electron by this
potential, and by switching the integration order of w and z,
we extract the EEL spectrum [32]:

dP © g .
ar_ i1m< / Z o, a))e”"z/”>. (32)
_ v

do wh o

We find that the EEL spectrum splits neatly into two parts,
one that matches that of the bare nanoparticle (without the
adsorbed molecule), and one that captures how the molecule
alters the spectrum:

dpP dpy dP,
— = —_— —_— . 33
dw dw + dw (33)
~—— —— ~——
full bare nanoparticle molecule
The bare nanoparticle spectrum takes on the form
dP() 62 2
=% ;Chm(x, o)PImfap@)]. (34

The molecular contribution to the spectrum depends on the
dipole amplitude p(w). It can be written as

dPy 1 CI2 En(w)E.(w)
——=——Im — ), (35
do umh 0} — Ak (w) — w(w + 2iy)

where E,(w) and Awfn(a)) are given by Eqgs. (28) and (29),
respectively, and E.(w) is given by a function similar to but
distinct from E\, (w):

Eo(@) =Y eCyly (%, 0)[8 (X) — (@) (1) - .
h (36)

The function E.(w) arises from the electric field that acts back
on the passing electron (e), with the ﬁih“ terms encoding the
direct field from the molecule, and the 1'12“l terms encoding the
field from the particle induced by the vibrating molecule. As
with Ep, (w), for our model parameters in Sec. V, the induced
field tends to dominate the direct field.

Signal enhancement thus roughly takes the following
route: the electron beam induces an electric field in the
nanoparticle, which drives the molecular dipole, which in-
duces a response electric field in the nanoparticle, which then
acts back on the electron beam. Equation (35) will be analyzed
further in Sec. V.

IV. NANOPARTICLE SHAPE EFFECTS

Before presenting our results for vibrational enhancement,
we review here the EELS spectra obtained from bare nanopar-
ticles with five canonical geometries (semi-infinite foil, semi-
infinite circular cylinder, sphere, oblate spheroid, and prolate
spheroid). This is useful for gaining an appreciation of how
the frequencies plotted in Fig. 1 are manifest in the EEL
spectra. The spectra for prolate spheroids, and the changes
in these spectra as a result of shape eccentricity, will be
especially relevant to the enhancement results presented in
Section V.

The bare nanoparticle spectra in this section were com-
puted by applying Eq. (34). We use experimentally measured
parameters for cubic boron nitride [33], an isotropic material,
but with an unrealistically small damping parameter (n =
0.0005wy) to isolate the modes. For all plots going forward,
we assume a 60 keV electron beam and a 1 mrad collection
semi-angle.

A. Foil, cylinder, sphere

Figure 3 shows spectra for the three “limiting” geometries,
namely, the foil, the cylinder, and the sphere (see Fig. 1). In
each plot, three frequencies are marked: wy as the lower bound
for the harmonic frequencies, w, as the upper bound, and a fre-
quency between the two that picks out the intermediate value
associated with €, = —1 (which is the frequency associated
with modes of high spatial frequency as h — oo; see Fig. 1).

For the foil [19], as a general rule the cosh modes scatter
strongly, whereas the sinh modes do not. This behavior is
easily understood from the projection integral along the beam
direction in Eq. (32): the antisymmetry of the sinh potentials
implies that their projection almost vanishes for foil thick-
nesses << v/w, which is the case here. For the thicker foil in
Fig. 3, the peak around w(e, = —1) is due to a large density
of states, although the states are individually very weakly
scattering.

For the semi-infinite cylinder with its axis perpendicular
to the electron beam [34], modes above w(e, = —1) are not
present. The cylinder spectra depend on beam position. While
the broad band extending down to wy representing excitations
of the m = 0 states can be seen in spectra both when the beam
pierces the center of the cylinder and when the beam is aloof,
the odd m bands are missing from the piercing beam spectrum,
by symmetry.
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FIG. 3. Bare nanoparticle spectra for the three “limiting” geometries. Left: Thin (5 nm) and thick (50 nm) semi-infinite foil. Middle:
Semi-infinite cylinder of diameter 2a = 50 nm with (A) piercing beam at b = 0, and (B) aloof beam at b = 1.01a. Right: Sphere of diameter
2a = 50nm with (C) piercing beam at b = 0, and (D) aloof beam at b = 1.01a. Spectra are plotted in units of meV~". For each geometry,
representative harmonic potentials are shown atop, with the electron beam trajectory indicated by a solid black line when relevant.

The solid harmonics for the sphere are in terms of the
familiar spherical harmonics. As with the cylinder, the spectra
for the sphere [32,35] are also a function of position—that
is, the odd m states are again suppressed by symmetry for the
centrally piercing beam. The sphere is highly degenerate, with
wgm a function of £ alone, and its allowed range of harmonic
frequencies is narrow, limiting shape effects.

B. Oblate and prolate spheroids

Figure 4 shows spectra for the two “intermediate” ge-
ometries, namely, the oblate spheroids (intermediate between
sphere and foil), and the prolate spheroids (intermediate be-
tween sphere and cylinder). The Appendix includes details
of the spheroidal coordinate systems and their solid harmon-
ics. In Fig. 4, the spheroid spectra become redshifted and
“spread out” with increasing cross-sectional eccentricity. For
the oblate and prolate spheroids [36], shape effects become
increasingly pronounced as the nanoparticle eccentricity e
increases (when e — 0, both recover the sphere). The oblate
spheroidal harmonics stretch the sphere’s harmonics into
broad, flat regions at the poles, with even £ values mimicking
cosh-type foil states at large e, and odd ¢ values mimicking
sinh-type foil states. The prolate spheroidal harmonics (in
our unconventional rendering) tip and stretch the sphere’s
¥ = 0 axis along the x axis, thus mimicking the azimuthal
dependence of the cylindrical harmonics on m while retaining
the discrete ¢ modes of the sphere in place of the semi-infinite
cylinder’s continuous ks.

The symmetries of the oblate spheroid are such that only
b, the beam’s transverse distance from the origin, is relevant
to spectral differences. Comparing the spectra for » = 0 and
b = 1.01R in Fig. 4, where R is the projected spheroid radius,

we find that the aloof beam excites a wider range of energies
than the piercing beam, and that there are roughly twice as
many peaks in the aloof beam spectra as the piercing beam
spectra. Specifically, the states with £ = 2,4, 6, ...andm =0
are most excited by the piercing beam, and the states with £ =
1,2, 3, ... and m = £{ are most excited by the aloof beam.
In both cases, the preferentially excited states are locally
coshlike, with a single type of coordinated surface charge near
the STEM beam.

Beam position is even more important for prolate spheroid
spectra. As with the oblate case in Fig. 4, for the prolate
spheroids we position one beam at the center and one just
outside the nanoparticle, past the tip at (x,y) = (1.01R, 0).
Again, the aloof beam excites roughly twice as many fre-
quencies as the piercing beam, but for the prolate spheroid
we observe the same excited frequencies for our two chosen
beam positions, only with half of the peaks missing from the
spectra of the piercing beam. Specifically, while the aloof
beam strongly excites the states with £ = 1,2,3, ... and m =
0, the piercing beam only excites the states with £ = 2,4, 6, ...
and m = 0. Preferentially excited modes here are antennalike,
but modes with an odd spatial parity are suppressed for the
piercing beam, as with the sphere and cylinder.

V. MOLECULAR ADSORBATE SIGNALS

In this section, we present detailed simulations of the en-
hancement of the EELS signal from an adsorbed molecule on
the surface of a prolate-spheroidal Drude-metal nanoparticle.
In Fig. 4, we see that the mode frequencies of the prolate
spheroids exhibit large redshifts with increasing eccentricity.
For a Drude metal considered in this section, the behavior
will be similar, but with stretched high- and low-frequency
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FIG. 4. Bare nanoparticle spectra for the two “intermediate” geometries. Oblate (left) and prolate (right) spheroids of maximal thickness
2a = 50 nm over a wide range of eccentricity. In the oblate spheroid spectra, beam positions are (A) through the center b = 0, or (B) just
past the edge R of the nanoparticle at » = 1.01R. In the spectra for prolate spheroids of length 2R, beam positions are either (C) piercing their
centers, both in length and width, or (D) aloof just past the lengthwise tip, at (xo, o) = (1.01R, 0). Spectra are plotted in units of meV~'.
Representative harmonic potentials in plan view and cross-section view are shown atop, with the electron beam trajectory indicated.

limits @y — wp/\/€x and wy — 0. Thus the surface plas-
monic excitations of prolate spheroidal metallic nanoparticle
with large eccentricity are shifted into the infrared, and hence
can be used to enhance molecular vibrations. In some cases,
the nanoparticle excitations can be “tuned” to a resonance
condition, giving a large degree of enhancement, as shown
below. Generally, we expect that a molecule positioned at a
higher curvature site on the nanoparticle surface will experi-
ence a larger electric field, and thus a larger degree of EELS
enhancement. Hence we consider molecules adsorbed on the
tips of prolate spheroids (our results for molecules on oblate
spheroids follow similar trends but are not presented).

As before, we deploy a 60 keV beam, but now we assume it
has a finite energy width described by a Gaussian distribution
with a full-width at half-maximum (FWHM) of 5 meV. The
nanoparticle’s Drude parameters are taken to be those of silver
[37]: hiw, = 8.9 €V, lin = 0.10 eV, €5, = 5. The molecule is
defined via its charge ¢, reduced mass u, resonant frequency
®n, and damping parameter y; we have used g =e, u =1
amu, fhwy, = 530 meV, and /iy = 12 meV. This large natural
damping y has been chosen to compensate for another omis-
sion in our calculations.

For an adsorbed molecule realistically near the nanopar-
ticle surface, the predicted frequency shift from Awfn(w)
[Eq. (29)] is unrealistically large. One reason for this overesti-
mation is that a point dipole (representing the molecule in our
model) can interact with the arbitrarily fine spatial variations
of the arbitrarily high-order harmonic modes. However, a
model similar to ours included finite-size effects [38] but also
overestimated the frequency shifts observed in IR studies. To

address this problem, we have set Aw?2 () to zero by fiat.
But this breaks self-consistency, so we need to introduce a
large y to maintain positivity for all spectra. The effect of
setting Aw? () to zero should be a systematic underestimate
of the molecular signal (since signal is inversely related to
frequency), and a systematic overestimate of the molecular
signal-to-noise (since this neglects any additional particle-
mediated peak broadening). The function Aw? (w) captures
the interaction of the molecular dipole with its own image
dipole, so its neglect also eliminates the ability of more
sharply curved absorption sites to encourage larger molecular
resonance redshifts.

A. Off- vs on-resonance—Fano line shapes

Since the molecular damping y is small compared to the
dielectric particle damping 7, the phase of the molecular
vibration varies quickly relative to phase of the nanoparticle’s
induced electric field. As shown below, when a resonance
condition is approached, that is, when a nanoparticle mode
frequency approaches the molecular frequency, we typically
obtain a strong Fano-type asymmetric spectral signature [39]
in the molecular spectrum dP,/dw. If the molecular fre-
quency is far separated from any of the nanoparticle’s har-
monic frequencies, then d Py, /dw reverts to a weaker symmet-
ric bump poking above the bare nanoparticle signal.

We introduce the dimensionless frequency variable Q2 =
(w — wy,)/y’. (The primes on these parameters reflect that
they include contributions from the particle, downshifting the
molecular resonance o, and broadening the damping y.)
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Near the molecular resonance, the fields E,(w) and E.(w)
[Egs. (28) and (36)] can be estimated, respectively, by
|Em(w),)] exp(ifn) and |E.(w),)|exp(ife). Substituting into
Eq. (35) yields an approximate expression for the molecular
contribution to the spectrum

dPn 1 q* |En(@])Ec(@),)| (cos(8) — Q2sin(8) 37)
do pnh 2wy’ 1+ Q2 ’

where 6 = 60y, +6.. In Eq. (37) the values § =0 and =
correspond to positive- and negative-symmetric line shapes,
respectively, whereas § = 7 /2 and 37 /2 correspond to asym-
metric line shapes. For our model parameters, the fields Ey, (w)
and E.(w), and hence the phase 6, are dominated by the
nanoparticle response.

Well below the nanoparticle frequencies (off-resonance),
the nanoparticle responds “in phase” with the Fourier-
decomposed field of the electron beam. Hence § =0+ 0=0,
corresponding to a positive-symmetric line shape. At a
nanoparticle frequency wy (on-resonance), the phase of the
response due to mode h is w /2. Thus, in a simple picture
consisting of just the single nanoparticle mode £, at resonance
8 =n/2+ /2 =, corresponding to a negative-symmetric
line shape. The molecular spectrum dP,/dw sits atop the
bare nanoparticle spectrum dPy/dw, so the condition that
dPy/dw < 0implies that the field causing the beam electron’s
energy loss is weaker in the presence of the molecule.

With the nanoparticle modes at other frequencies included,
we observe that § can deviate significantly from the “simple
resonance value” . Hence, at a resonance condition, we can
obtain Fano-type line shapes with significant asymmetry, with
the asymmetry arising ultimately from multimodal contribu-
tions.

Figure 5 compares line shapes for the molecule adsorbed
on the surface of a sphere and a prolate spheroid. The sphere,
with its low eccentricity, gives an off-resonance condition
with § ~ 0, leading to a symmetric line shape. At the res-
onance condition wy, =~ wjy (i.e., the molecular frequency
matches the harmonic frequency associated with £ = 1, m =
0), the phase § & 7 /4 (# 7 due to multimodal contributions),
leading to a Fano-type asymmetric line shape. These spectral
features are similar to those predicted in the recent work
of Konecna et al. [23] who modeled the spectral response
of thin dielectric layers, representing molecular layers, on
nanoparticle surfaces.

B. Quantifying signal enhancement

The intensity of the enhanced molecular signal is most
easily characterized in the off-resonance limit that § = 0 and
the line shape is symmetric. Analytically, if we assume that
the electric field E®(ry,, @) varies slowly in @ near the bare
molecular frequency o/, and that the molecular damping
factor ¥’ < wj,, the total integrated enhanced signal is

2
q ~
Py~ mmw(rm, wl) -2, (38)

m

where, as before, ' and o], are the shifted parameters.
This is the same as for a bare molecule, except the field
[E®U(ry, wl,) - i|? now contains contributions from the di-
electric, and not only the beam electron.

0=0 d=7/2|| d=m ||6d=3m/2| d=27
dw v —~J
Q Q Q Q Q
b
((5) /128
0
(d)
dP, o~0
dw dw
1 I
|
0 1
%107 ) /2
25| B : s
2 ) :
1
0
5 x10° (h)
0.01 dap dPy
dw 4 h dw
0.005 2 |
0 [0 -2 W
| 2 3 0.5 0.55
w (eV) w (eV)

FIG. 5. Relating enhanced molecular line shapes to §, the cumu-
lative phase shift from E}, and E. (top row). In (a)—(d) the molecule
adsorbed on a silver sphere gives an off-resonance condition (c) lead-
ing to 6 & 0 and hence a symmetric line shape (d). In (e)—(h), a
long prolate spheroid gives an on-resonance condition (g) leading
to § ~ 7 /4 and hence an asymmetric line shape (h). The grey strips
in (c) and (g) indicate the plotting range used in (b), (d), (), and (h).
The red dot indicates the molecule (the cartoons are not to scale).
The sphere and spheroid both have a central thickness # = 50 nm.

Hence the enhanced signal is proportional to the square
of the field at the molecular site. Intuitively, this is squared
because one factor of the electric field arises from the molec-
ular excitation, and one factor arises from the molecule acting
back on the nanoparticle. This contrasts with the case of
surface-enhanced Raman spectroscopy, in which the signal
enhancement scales roughly as the electric field enhancement
to the fourth power: two powers for photoabsorption, and two
for photoemission [40].

Figure 6 illustrates how we have quantified the signal,
using the same physical situations as in Fig. 5. The full
EEL spectrum dP/dw (plotted in blue) is dominated by
the nanoparticle, but the presence of the molecule causes
the spectrum to depart from the bare nanoparticle spectrum
dPy/dw. This departure constitutes the enhanced molecular
spectrum dPy,/dw (plotted in purple). Compared to the bare
molecular spectrum dP?/dw (plotted in red), for which the
nanoparticle is absent, the enhanced molecular spectrum ex-
hibits greater intensity, since the adsorbed molecule is coupled
to the nanoparticle.
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FIG. 6. Quantifying signal enhancement. Plots (a)—(c) show sig-
nals for the sphere of Fig. 5, and plots (d)—(f) show signals for
the prolate spheroid of Fig. 5. The molecular signal P, in (b) and
(e) is estimated by finding the maximal feature in the enhanced
spectrum and integrating the FWHM. The bare-nanoparticle signal
Py in (a) and (d) is found by integrating the same spectral region
for the background. The bare molecular signal P2 in (c) and (f) is
equal for both cases, as it only depends on the beam distance from
the molecule (5 nm throughout).

Figure 6 defines three quantities: the background signal
from the nanoparticle Py, the enhanced molecular signal Py,
and the bare molecular signal P. We then define

. P,
signal enhancement = —-.
PO

m

(39)

The signal enhancement is defined relative to the bare molec-
ular signal. The widths of the peaks in dPy,/dw and dP? /dw
are determined both by the particle damping y and the beam’s
energy width. For each, we integrate over the FWHM so that
the signal enhancement is insensitive to the beam’s energy
width.

The enhanced molecular spectrum sits atop the spectrum
from the nanoparticle, so we also quantify the enhancement
of the signal-to-noise ratio (SNR) of the molecular signal,
assuming Poisson noise only:

SNRu _ Pu/vPo _ Pa
SNRY,  PY/VES T VRPY

The SNR enhancement is defined relative to the SNRY of
the bare molecular signal. The SNR enhancement depends
on the background signal Py which is proportional to the
integration interval, scaling inversely with the square root of
the molecular peak width.

SNR enhancement =

(40)

C. Off-resonance enhancement

Figure 7 shows how the signal enhancement and the SNR
enhancement vary as the prolate spheroid’s aspect ratio (AR =
width/height) changes from 1 to 10. Both “thick” (2 = 50 nm)
and “thin” (h = 10 nm) prolate spheroids are considered. All
these are off-resonance cases where the nanoparticle mode

FIG. 7. (a), (b) Full EEL spectra;(c), (e) signal enhancements;
(d), (f) and SNR enhancements for adsorbed moleules on the tip
of prolate spheroids of aspect ratios (AR = w/h) between 1 and
10 (specific ARs are color coded). Cases of constant thickness are
shown, both with 4 = 50 nm (left) # = 10 nm (right).

frequencies lie well above the molecule’s frequency wy,. For
AR = 10, we find the greatest signal enhancements of about
50 in the thick case, versus about 250 in the thin case. The
greater enhancement for the thin nanoparticles comes from
the sharper tip, and hence the stronger fields at the adsorption
site. The results here also give us our first confirmation that
small, sharp nanoparticles will help the most with signal
enhancement. Along with its sharper tip, a small nanoparticle
contributes a lesser background signal, allowing the molecular
signal to stand out. For AR = 10, our calculations in Fig. 7
predict a SNR enhancement barely above unity for the thick
nanoparticle, versus about 16 for the thin nanoparticle.

In Fig. 8, we explore how the SNR enhancement varies
more generally. First consider the red curves, which use
the same nanoparticle/beam geometry as above. For a fixed
nanoparticle thickness 47 = 10 nm, we investigate how the
molecular signal, the signal enhancement, and the SNR en-
hancement vary with nanoparticle length, specified by w,
keeping the beam distance from the adsorbate constant at
5 nm. The signal enhancement increases with increasing
nanoparticle length, which is readily understood in terms of
the local electric field, as explained above. In the colormap
figures, we notice that the SNR enhancement is more closely
aligned with the thickness / of the nanoparticle than with the
aspect ratio.

The blue and grey curves in Fig. 8 investigate another
possibility, as raised by Konecna et al. [23]. They reported
the possibility of “ultraremote sensing,” with the beam on the
opposite side of the nanoparticle as the adsorbate, as shown in
our cartoon by beam B. While the model of Konecna et al.
differs from ours—they use a thin dielectric layer on the
nanoparticle surface rather than a point dipole—our results are
consistent. At far beam distances, the intrinsically small signal
from the bare molecule allows for enormous signal and SNR
enhancements. But when the “ultraremote enhancement” is
defined in terms of the expected signal for case A, as in the
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200 Sggga 6 FIG. 9. Calculations for adsorbates on prolate spheroids with
fixed AR = 29.23 [(a)—(c), with w;y matching wy], and AR =
30 150 4 18.32 [(d)—(f), with w;o — 21 matching wy . For thickness & = 5 nm,
100 'SNR2 SNRE (a) and (d) show the molecular spectra, while (b) and (e) show the
50 SNRAY SNR{?P total spectra. In (c) and (f), we quantify the signal enhancement (in
2 blue) and the SNR enhancement (in red) for the two cases.
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FIG. 8. Results are given for beam positions adjacent to the
molecule (A) and opposite to the molecule (B), with the beam
5 nm from the particle in each case. The colormap plots (b) and
(e) summarize many different cases for the adjacent beam (A). Plots
(a), (c), and (f) contrast outcomes from beams A and B in terms of
the definitions given in the main text, while (d) and (g) compare the
results of beam B to the benchmarks used for beam A.

grey curves in Fig. 8, we find smaller relative enhancements
for the ultraremote beam B that one might expect.

D. On-resonance enhancement

Pushing toward higher aspect ratios, Fig. 9 shows how par-
ticle resonances can be harnessed to improve enhancements
further still. An obvious possibility is to tune the aspect ratio
of the particle such that the lowest particle resonance g (that
is, the resonance corresponding to mode £ = 1, m = 0) aligns
with the molecular resonance wy. This leads to enormous
signal enhancements, up to several thousand times, with the
signal manifesting as a Fano-type dip into rather than a bump
atop the nanoparticle background. But such dips are sensitive
to the beam energy resolution, and the position of the dip atop
a particle resonance limits the achievable SNR enhancement.

One way both to lower the nanoparticle background signal
and to regain an asymmetric bump in place of the resonant
dip is to tune the particle resonance w;o such that it lies
just above the molecular resonance wy,—2n above, say, such
that the molecular resonance lies on the bottom edge of the
particle resonance. Figure 9 shows that such particles will
produce roughly half the signal enhancement of the particles
tuned to overlap the molecular resonance directly, yet such
off-resonant tuning is able to achieve somewhat better SNR

for small particles of 7 = 5 nm.

VI. CONCLUSIONS

We applied the Born-Huang phenomenological theory in
the electrostatic approximation to model the optical vibrations
in finite dielectric nanoparticles. We reviewed the qualitative
features of the electron energy-loss (EEL) spectra obtained
in the STEM for five canonical nanoparticle geometries (foil,
oblate spheroid, sphere, prolate spheroid, and cylinder). We
reviewed how the associated solid harmonics for these geome-
tries allow us calculate the resonant frequencies of the various
modes. We also emphasized the applicability of the same
theory, with a suitably altered dielectric function, to describe
surface plasmon excitations in finite metallic nanoparticles.

We then showed how the Born-Huang theory can be ex-
tended to model the enhancement of the vibrational EEL
signal from a molecule, regarded as a point dipole, adsorbed
on the surface of a metallic nanoparticle. The degree of
enhancement was found to be proportional to the square of the
local electric field at the adsorption site. Detailed expressions
for the associated energy-loss spectrum were derived. These
expressions for the spectrum split neatly in two parts, one
from the bare nanoparticle, and the other from the molecule.

We predicted the degree of enhancement of the vibrational
STEM-EELS signal for a molecular dipole adsorbed on the
tip of a prolate spheroidal metallic nanoparticle having the di-
electric properties of silver. For the parameters stated in the
main text, our calculations indicate that signal enhancements
of several hundred times are readily achieved for nanoparticles
of suitably small thickness (e.g., 10 nm) and high aspect ratio
(e.g., 10). The enhancement is maximized by the larger elec-
tric fields associated with a sharper nanoparticle tip. Tuning
the nanoparticle surface plasmon frequency to the molecular
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TABLE I. Convenient coordinates. Contra tradition; here the cylinder and prolate spheroid lie along x rather than z.

Geometry Coordinates, &; Coordinate ranges Scale factors, h;
x=4& —00 <§ < h =1
foil y==5& —00 <& < 00 h =1
7=2§& —00 <& <0 h; =1
circular x=48 0<é <0 h =1
cylinder y = &1 cos(é2) 0<& <2n =&
z = & sin(&) —00 <& < 00 =1
x = & sin(§) cos(&3) 0<& <0 h =1
sphere y = & sin(&,) sin(é3) 0<&H < hy =&
z =& cos(&) 0<& <27 hy = & sin(&)
oblate x = c[(1+ &)1 — &' cos(&3) 0<é <o hy = c[(&8 + D) /(EE+ 1)]'/2
spheroid y=c(+&)01 =) sin(s) ~1<e <1 hy = cl(§7 +&)/(1 - &)1
=chb 0<é <2n hy = cl(5] + (1 = )1
prolate X=chis IS8 <00 hy = cl(&} — &)/ — DI'?
spheroid y = clE = D1 = &)1 cos(&y) ~1<e <1 hy = cl(&} — £)/(1 - £
2= (& — D1 — NN sin(&) 0<é <2n hy = el (€] — D1 = &N

frequency, signal enhancements of several thousand times are
predicted by the model, with the spectral line shapes typically
exhibiting significant Fano-type asymmetry due ultimately to
multimodal contributions.

In summary, the present paper indicates that significant
enhancements of molecular vibrational EELS signals can
be achieved by coupling the vibrations of adsorbates to the
plasmonic excitations of metallic nanoparticles. Such an ef-
fect could significantly increase the sensitivity of molecular
vibrational STEM-EELS and, when combined with the simul-
taneous imaging capabilities of the STEM, could therefore
provide a powerful tool for the characterization of surface-
functionalized nanoparticles and nanomaterials for chemical
sensing applications.

APPENDIX: GEOMETRIES AND COORDINATES

The five geometries treated in this paper correspond to
respective coordinate systems for which Laplace’s equation
can be solved most easily via separation of variables [31,41].
For a more general approach, these could all be considered
as versions of the confocal elliptic coordinate system with
special symmetries.

In Table I, we summarize the coordinates we have used,
including explicit scale factors for each system,

ax \> ay 2 9z\*
’”‘:/(a—a) +(a—si) +<a_a>’

(AD)
which help us to find the gradient
E, 0 & 0 & 9
= E_l _— E_Z e §_3 — (A2)
hy 081 hy 0&  h3 0&3
the differential volume element
dV = hihyh3d&1d&,d&;, (A3)
and the differential surface element
dS = hyhydé,d&sE, (A4)

where we assume the surface is constant in &;.

In Tables II and III, we give the harmonic functions for
the five geometries. For the strictly finite geometries, we
provide the Coulomb expansion coefficients of Eq. (16). For
the spheroidal harmonics, Hobson [42] is an authoritative
reference. To compute the associated Legendre functions of
the second kind Q7' (x) for x > 1, we used the method of
Gil and Segura [43]. The projection integrals [Eq. (19)] are

TABLE II. Modes and potentials for the semi-infinite nanoparticle geometries, with spatial periods in infinite directions fixed by lengths

L. Potentials need fixing to ensure continuity at particle boundaries.

Geometry Mode labels, i Inner potentials, q)}l“ Outer potentials, ¢p™
ky =2mm/L, ¢ = cosh ([k|&;) exp (ik - §) ¢, =exp (— |k|&) exp (ik - §)
foil ks = 2mn/Ls ¢, = sinh (|k|&;) exp (ik - §) ¢, = exp (+ |k|&) exp (ik - §)
m,n=xl,+2,£3... k=(kh, k), §&§=(&,8&) k=(ky,k3), &=(5&,8&)
. m=0,+1,+£2...
circular ) )
. k=2mn/L Iu(|k|&1) exp (i(m&s + k&3)) Ky (|k|&) exp (i(mé&; + k&3))
cylinder
n==l1,4+2,4+3...
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TABLE III. Potentials for the strictly finite nanoparticles with boundary S,O [see Eq. (15)]. For these potentials, £ =0,1,2... and m =

—{ ...+ £. Throughout, we use the notation M = |m|.

Geometry RIN(E)) R™(&1) Sn(62,63) Ci

¢ . —M)!
sphere (?}})) (g)“rl P}"[cos(&)] exp(imés) é G
oblate Mo oM (ig;) M . i—1M (=M \2 pM /50
Spheroid PZ (lgl) P;"(ié’?) Pe (€2) exp(lmgfi) (2€ + 1) c ((Z+M)!) PZ (lél )
prolate ” oM(g,) M . (=DM (=M1 \2 pM ;£0
spheroid Ly P?a (&) P (82) exp(imés) Qe+ D= P &)

the biggest remaining difficulty. Analytic solutions for these
integrals are known for the sphere [32] and for the spheroids
[36] when the projection is along the axis of rotational sym-
metry. For prolate spheroids oriented in the transverse plane,
a different approach was needed. We were able to express the
external prolate spheroidal harmonics via a convolution with
the solid harmonics of the sphere, and by combining this with
the rotated spherical solid harmonics [44], we constructed the
projected prolate spheroidal potentials.

Although these methods are convenient mainly for “sepa-
rable geometries,” they are not limited to such geometries in
principle. Consider a nanoparticle of a general shape whose
harmonic potentials are determined using Eq. (13). Assuming

that these harmonic potentials can be orthogonalized with
respect to the nanoparticle surface, this enables a Coulomb
expansion in terms of the potentials, as in Eq. (14). Using
Green’s identities, it can be shown that the expansion coef-
ficients Cj, are given by

-1
Cy = 4n [ / ds - ("¢ — uih%;;“‘)} . (A5

This form reduces to Eq. (16) when the radial and angular
parts of the harmonic functions are separable.
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