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Hyperferroelectricity in ZnO: Evidence from analytic formulation and numerical calculations
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Hyperferroelectricity is an interesting phenomenon. The hexagonal ABC-type semiconductor LiZnAs was
discovered to be hyperferroelectric (HFE) [Garrity et al., Phys. Rev. Lett. 112, 127601 (2014)]. ZnO is a
technologically important semiconductor and possesses a wurtzite crystal structure similar to LiZnAs. It raises an
intriguing question of whether ZnO is HFE. Here we use various approaches to address this important question
by determining the electric equation of state, the free energy of ZnO under an open-circuit boundary condition
(OCBC), and the vibration properties of a LO phonon. We find the following: (i) The D ∼ λ curve of ZnO, where
D is electric displacement and λ = P/0.844 is a parameter directly proportional to polarization P, exhibits one
and only one root at λ = 0. (ii) Under OCBC, the free energy of ZnO does not produce a minimum at the
structural phase of nonzero polarization. (iii) The LO phonon with computed frequency ωLO = 255 cm−1 in
centrosymmetric ZnO is not soft and does not have an imaginary frequency. These results corroborate the others
and consistently lead to the conclusion that, although ZnO is interestingly on the edge of becoming a HFE, it is
not yet a HFE. We further provide a physical origin explaining why ZnO is not HFE and reveal a possibility that
may turn ZnO into a HFE.

DOI: 10.1103/PhysRevB.99.104101

I. INTRODUCTION

Hyperferroelectricity, in which a proper ferroelectric solid
of spontaneous polarization maintains its ferroelectricity un-
der an open-circuit boundary condition (OCBC), is an inter-
esting phenomenon of fundamental and technological rele-
vance [1,2]. Fundamentally, unlike in improper ferroelectrics
[3–6], the open-circuit boundary condition often generates
a strong depolarization field in proper ferroelectrics, which
tends to eliminate utterly the ferroelectricity and polarization
[7,8]. It is therefore profoundly interesting to understand the
physics behind hyperferroelectricity and to investigate why
ferroelectricity and atomic off-center displacements persist
in hyperferroelectrics (HFE), defying the existence of strong
depolarization fields. Possible explanations thus far include
small LO/TO splitting [1], competition between well depth
and spontaneous polarization [9], instability driven by short-
range interaction [10], and metascreening [11]. Furthermore,
determination of the free energy when a HFE is under OCBC
and determination of the electric equation of state for a HFE
are topics of fundamental importance. This knowledge may
also help in the future search and design of new hyperfer-
roelectric solids. Technologically, HFE can be used to form
interfaces with other functional materials such as semicon-
ductors, topological insulators, and ferromagnetics, where a
nonzero polarization maintained in HFE can effectively tune,
control, and enhance the properties of the functional materials.
Furthermore, certain hyperferroelectrics were shown to have
negative longitudinal piezoelectric coefficients [12]. To take
advantage of the unusual properties of hyperferroelectricity,
determining and understanding whether a solid is HFE are the
key.

HFE was discovered recently in hexagonal ABC-type
semiconductors such as LiBeSb and LiZnAs [1]. LiZnAs (and

LiBeSb) has a crystal structure similar to wurtzite semicon-
ductors, in the sense that Zn and As occupy the atomic sites of
the wurtzite lattice. Furthermore, both Zn and As atoms form
tetrahedral bonds with their neighbors. The minor difference
in LiZnAs compared to the wurtzite structure is the existence
of stuffing Li atoms which are located between the atomic
layers in the wurtzite structure. Based on the marked resem-
blance between ABC-type and wurtzite semiconductors, it is
intriguing to determine whether the wurtzite semiconductor
ZnO is a HFE and to investigate the underlying physics and
mechanism behind the conclusion.

ZnO is a polar semiconductor of technological importance
[13]. Being polar, ZnO offers an interesting possibility of
utilizing its polarization to control the already appealing elec-
tronic properties, forming so-called polarization electronics.
Also, ZnO has an exceptionally large exciton binding energy
of ∼60 meV, suitable for fabricating microelectronics and
optical devices that may operate at high temperatures under
extreme environments [14]. Meanwhile, ZnO exhibits a large
piezoelectric coefficient [15], which makes it an excellent
candidate for a piezoelectric semiconductor. ZnO also pos-
sesses the largest electromechanical d33 coefficient among
the wurtzite semiconductors [16], and its d33 = 12.4 pC/N
value is much larger than the d33 = 1.58 pC/N value in GaN
[17]. The large d33 coefficient in ZnO originates from the
local-polarization rotation mechanism [16], similar to what
occurs in ferroelectric solids [18–20]. Moreover, after doping,
ZnO shows high electrical conductivity and serves as a good
transparent conductor [21–23].

The purpose of this paper is to formulate and use various
approaches to determine whether ZnO is HFE and to reveal
important physics related to what characteristic properties a
HFE should have. The various approaches include (i) the
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determination of the electric equation of state, which yields
the relationship between electric displacement �D and polariza-
tion �P; (ii) the determination of free energy under the OCBC
with a vanishing electric displacement (�D = 0); and (iii) the
calculation of a longitudinal optic phonon, which reveals lat-
tice stability under the open-circuit boundary condition. These
formulated methods are rather general and can be applied to
solids other than ZnO. We find that different methods lead to
a consensus conclusion; that is, although ZnO is interestingly
on the edge of becoming a HFE, it is not HFE. We further
provide a physical origin that explains why ZnO is not yet a
HFE and reveal a possible condition under which ZnO may
become a HFE.

II. THEORETICAL METHODS

It is not trivial to investigate the hyperferroelectric prop-
erties since they require determining the electric polariza-
tion, the electronic screening of electric fields, and the LO
phonon after the phonon interacts with macroscopic electric
fields. To tackle these complex tasks, we use a combination
of different computational methods to study the structural
properties, electric polarization, dielectric susceptibility, and
lattice vibrations of ZnO, all of which are needed in order
to understand the hyperferroelectric properties of ZnO. These
techniques are described below.

Total-energy calculations and structure optimization. The
density functional theory (DFT) within the local-density ap-
proximation [24,25], as implemented in QUANTUM ESPRESSO

[26,27], is used to determine the total energy, atomic forces,
and optimized structure. Norm-conserving pseudopotentials
of Troullier-Martins type are used to mimic the effects of core
electrons [28]. Semicore states of Zn 3s and 3p are treated
as the valence states to ensure better accuracy, and details of
the atomic pseudopotentials were given in Ref. [16]. These
pseudopotentials have been successfully used to determine the
electromechanical d33 coefficient in ZnO under finite electric
fields [16] and to predict an interesting phase transition when
ZnO is subjected to in-plane tensile strains [29].

Modern theory of polarization. Electric polarization in a
solid consists of contributions from both ions and electrons.
The ionic contribution �Pion can be calculated straightfor-
wardly using point charges. The electronic contribution �Pel

is determined using the geometrical Berry-phase approach
according to the modern theory of polarization [30,31]. More
specifically, given Bloch wave functions |un�k〉 at wave vec-
tor �k, �Pel is calculated as �Pel = i 2e

(2π )3

∫
d�k〈un�k|∇�k|un�k〉 =

2e
(2π )3

∫
d�k⊥φ(�k⊥), and the polarization contribution φ(�k⊥) at

each �k⊥ is [30,31]

φ(�k⊥) = i
M∑

n=1

∫
d�k‖〈un�k|

∂

∂k‖
|un�k〉

= Im

⎧⎨
⎩ln

∏
j

det(〈un′�k j
‖
|un�k j+1

‖
〉)

⎫⎬
⎭, (1)

where ‖ and ⊥ mean, respectively, parallel and perpendicular
to the direction of polarization and M is the number of the

occupied bands of an insulator. The electronic polarization
�Pel can be further analyzed using the theory of polarization
structure, which describes the relationship between the phase
φ(�k⊥) and wave vector �k⊥ [32].

Density functional linear response theory. The density
functional perturbation theory (DFPT) [33–35] is used to de-
termine the effective charges, high-frequency dielectric con-
stant ε∞ (namely, the electronic contribution to the dielectric
constant), phonon frequencies, and eigenvectors of both non-
centrosymmetric and centrosymmetric ZnO. In DFPT theory,
the response |�ψn〉 of the electron state to the potential
deformation �V (�r) of bare ions caused by atomic vibration
is determined by solving the Sternheimer equation [33],

(Hsc f − εn)|�ψn〉 = −(�Vsc f − �εn)|ψn〉. (2)

To determine whether ZnO retains its polar nature under
OCBC with vanishing electric displacement (�D = 0), we need
to determine the LO-phonon frequency and the structural
instability of centrosymmetric ZnO at the Brillouin-zone cen-
ter. For long-wavelength phonons with a wave vector �q ap-
proaching zero, the interatomic force-constant matrix can be
separated into analytic and nonanalytic parts, Cαβ

i j = Ca,αβ
i j +

Cna,αβ
i j , where i and j are atomic indices and α and β are

direction indices. The analytic part Ca,αβ
i j is computed from the

DFPT perturbation theory [33–35], and the nonanalytic part
(due to interaction between lattice vibration and macroscopic

electric field) is given as [36] Cna,αβ
i j = 4π



e2 (�q·Z∗

i )α (�q·Z∗
j )β

�q·ε∞·�q ,
where Z∗

i is the Born effective-charge tensor of atom i. Since
Cna is not diagonal, it often causes a strong mixing among
different modes. This nonanalytic contribution leads to the
difference in frequency between a LO phonon and a TO
phonon. A rigorous definition of LO/TO splitting was given
in Ref. [37].

III. RESULTS AND DISCUSSION

A. Ground-state properties of polar ZnO

We first describe our first-principles results for the ground-
state properties of the noncentrosymmetric (polar) ZnO since
polar ZnO is an important semiconductor of technological
applications and its properties are of interest to many readers.
Ground-state ZnO crystalizes in the wurtzite structure with
lattice vectors �a1 = a( 1

2
�i +

√
3

2
�j), �a2 = a(− 1

2
�i +

√
3

2
�j), and

�a3 = c�k, where a is the in-plane lattice constant and c is
the out-of-plane lattice constant. Atoms inside a unit cell are
shown in Fig. 1, where four nonequivalent atoms are located at
0�a1 + 0�a2 + 0�a3 (Zn1), 0�a1 + 0�a2 + u�a3 (O1), 1

3�a1 + 1
3�a2 +

1
2 �a3 (Zn2), and 1

3�a1 + 1
3�a2 + ( 1

2 + u)�a3 (O2).
We optimize both cell parameters (a and c/a) and atomic

positions (i.e., the internal parameter u), and the optimal val-
ues of these quantities are given in Table I. After determining
the optimized structure, we then compute, from DFPT linear
response calculations, the dielectric components ε11

∞ and ε33
∞

of high-frequency dielectric constant and the Born effective
charge Z∗

33 of Zn and O atoms; the results are also shown in
Table I.

Our theoretical values of a = 3.250 Å and u = 0.3791 in
Table I are in good agreement with the experimental mea-
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FIG. 1. One unit cell of the wurtzite ZnO crystal, where
nonequivalent atoms are labeled as Zn1, Zn2, O1, and O2. The �a1,
�a2, and �a3 lattice vectors point at the �a, �b, and �c directions.

surement results of a = 3.253 Å and u = 0.382, respectively
[38]. The Born effective charge Z∗

33 = 2.20 of Zn in this
study is also close to the experimental value [39] of 2.10 and
another theoretical value [40] of 2.05. These indicate that our
theoretical results are reasonably reliable.

According to the group theory [41], the normal modes
at the zone center of polar ZnO (with a wurtzite crys-
tal structure and a point-group symmetry of C6v) are
2A1

⊕
2B1

⊕
2E1

⊕
2E2. Among them, A1(TO) and E1(TO)

are polar modes, B1 is silent (i.e., both IR and Raman inac-
tive), and E2 is nonpolar and IR inactive (but Raman active).
At the zone center, the acoustic A1 and E1 modes are trivial
with zero frequencies and are thus not discussed further. For
other nontrivial modes in polar ZnO, the computed phonon
frequencies ω, IR intensity, and phonon displacements |d〉
are given in Table II. Phonon displacement |d〉 is related to
the phonon eigenvector |e〉 by diα (l ) = 1√

Mi
eiαei�q·�Rl , where l ,

i, and α are, respectively, the indices for lattice sites, atoms
inside a cell, and the Cartesian vibration directions and �q is
the phonon wave vector.

The theoretical phonon frequencies are comparable to the
experimental measurements [42]. For instance, in Table II, the
computed frequencies for A1(TO) (394 cm−1) and for E1(TO)
(414 cm−1) are in good agreement with the experimental

TABLE I. Theoretical quantities (the second column) obtained
from our first-principles calculations for ground-state polar ZnO.
The available experimental results are given in the third column for
comparison.

Quantities Present work Experiments

a (Å) 3.250 3.253 [38]
c/a 1.613 1.603 [39]
u 0.3791 0.382 [38]

ε11
∞ 4.73

ε33
∞ 5.09

Z∗
33 (Zn) 2.20 2.10 [39]

Z∗
33 (O) − 2.20 − 2.10

TABLE II. DFPT-calculated phonon frequencies (second col-
umn), IR intensity (third column), and phonon displacements (fourth
column) of polar ZnO at the zone center. The experimental results
on phonon frequencies are given in the parentheses in the second
column for comparison [42]. In the fourth column, the vibration
direction, i.e., the polarization direction of the phonon, is given as
the subscript, and the four components in |d〉 correspond to the
displacements of the Zn1, O1, Zn2, and O2 atoms in sequence.

Phonon ω (cm−1) IR Displacement |d〉
E2 86 0.0 (−0.536, 0.461, 0.536, −0.461)x

B1 258 0.0 (−0.677, −0.204, 0.677, 0.204)z

A1(TO) 394 (380) 17.3 (0.169, −0.687, 0.168, −0.686)z

E1(TO) 414 (410) 15.8 (−0.168, 0.687, −0.168, 0.687)x

E2 445 (438) 0.0 (−0.146, −0.692, 0.146, 0.692)x

B1 547 0.0 (0.052, −0.705, −0.052, 0.705)z

A1(LO) 554 17.3 (−0.168, 0.687, −0.168, 0.687)z

E1(LO) 566 15.8 (−0.168, 0.687, −0.168, 0.687)x

values, which are 380 cm−1 for A1(TO) and 410 cm−1 for
E1(TO) [42]. Furthermore, two notable observations can be
seen in Table II: (i) The low-frequency phonons, e.g., E2 at 86
cm−1 and B1 at 258 cm−1, have large contributions from Zn1
and Zn2 cation atoms, while the high-frequency phonons, e.g.,
A1(TO) and E1(TO), have large contributions from O1 and O2
anion atoms. (ii) E1(LO) and E1(TO) have nearly identical
phonon displacements in ZnO, showing that the LO and TO
modes have one-to-one correspondence. This is markedly dif-
ferent from the LO/TO phonons in ferroelectric perovskites
BaTiO3 and PbTiO3; in the latter case it is known that LO and
TO phonons do not have one-to-one correspondence [43,44],
and as a result, a rigorous definition of the LO/TO splitting
needs to be carefully formulated [37].

B. Electric equations of state: The E-λ and D-λ relations

To find whether ZnO is HFE, we need to determine whether
ZnO can retain ferroelectric polarization with nonzero atomic
off-center displacements under the OCBC (i.e., under the
condition in which electric displacement �D vanishes along
the polar direction). We therefore intend to determine the
electric equation of state, which is the relationship between
electric displacement and polarization. We use two atomic
configurations: One is the ground-state configuration of po-
lar ZnO where the optimal atomic positions are denoted as
�r opt

i , and the other is the centrosymmetric configuration of
nonpolar ZnO where atoms are located at high-symmetry
nonpolar positions (denoted as �r c

i ). We then construct the
intermediate configurations, controlled by the parameter λ as
�ri(λ) = �r c

i + λ(�r opt
i −�r c

i ). Each λ yields a different atomic
configuration with a different polarization. Obviously, the
nonpolar configuration and the optimal polar configuration are
just two special cases among all possible�ri(λ) configurations:
The former corresponds to λ = 0, while the latter corresponds
to λ = 1.

We begin with the free energy F (λ) when ZnO is under
an electric field E , which is applied along the polar direction.
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F (λ) is defined as [45]

F (λ) = U (λ) − 
(λ)
[
P(λ)E + 1

2ε0χ∞(λ)E2], (3)

where U (λ), P(λ), χ∞(λ), and 
(λ) are, respectively, the
DFT total energy per unit cell, the electric polarization, the
diagonal component χ33

∞ of high-frequency dielectric permit-
tivity along the polar direction, and the unit-cell volume of
ZnO when the bulk solid is at configuration λ. ε0 is the dielec-
tric constant of free space. Since the electric field is applied
along the polar direction of ZnO, the vector signs are dropped
in Eq. (3). The method of building free energy has also been
used in the interface design for enhanced ferroelectricity [46].

Equation (3) is essentially a second-order Taylor expansion
of F (λ) as a function of E at the configuration λ, with the
expansion coefficients U (λ), P(λ), and χ∞(λ) corresponding
to the quantities at zero macroscopic field. Therefore, U (λ),
P(λ), and χ∞(λ) need to be computed under the short-circuit
boundary condition (SCBC) with E = 0. On the other hand,
since the macroscopic field E in Eq. (3) may be either zero or
nonzero, the free energy F (λ) in Eq. (3) can thus describe the
situations of either SCBC or OCBC or circumstances other
than SCBC or OCBC.

For a given E field, the optimal λ should satisfy ∂F
∂λ

= 0,
namely,

∂U (λ)

∂λ
−

[
∂ (
P)

∂λ
E + 1

2
ε0

∂ (
χ∞)

∂λ
E2

]
= 0. (4)

Here it is worth mentioning that knowing how U (λ), P(λ), and
χ∞(λ) depend on λ (which can be computed from the DFT
and DFPT calculations), it is straightforward to determine,
using Eq. (4), the E ∼ λ relation. In contrast, it is generally
not a good idea to determine the inverse λ ∼ E relation, which
actually is not needed. Furthermore, Eq. (4) indicates that the
E field is determined only by the derivatives ∂U (λ)

∂λ
, ∂ (
P)

∂λ
, and

∂ (
χ∞ )
∂λ

, rather than by the magnitudes of U and P.
To obtain the D ∼ λ relation, we determine using

Eq. (3) the electric polarization as Ptot = − 1



∂F
∂E = P(λ) +

ε0χ∞(λ)E , where the first term accounts for the fact that
the electric field will cause ions to displace and the second
term accounts for the fact that the electric field will also
polarize the wave functions of valence electrons. The electric
displacement D then becomes

D = ε0E + Ptot = ε0 [1 + χ∞(λ)]E + P(λ). (5)

When combined with the E ∼ λ relation obtained from
Eq. (4), Eq. (5) leads to the D ∼ λ relation. Using this D ∼
λ relation, one can examine whether the atomic off-center
displacement λ vanishes under the OCBC (D = 0) to find out
whether ZnO is HFE. If polar displacement exists (i.e., λ �= 0)
when D = 0, then the solid is a HFE.

In principle, the free energy in the open-circuit (or short-
circuit) boundary condition can be obtained using the fixed-E
or fixed-D method [45]. However, the computation will be
intensive for the following reasons. (i) The electric field in
the fixed-E or fixed-D method couples the single-particle
states at different electron wave vectors �k, and the Berry-
phase calculation of polarization must be inside the charge
self-consistent process (not as a postprocess). Both make the
computation time-consuming. (ii) Atomic geometry needs to

FIG. 2. The total energy U (solid squares, using the left vertical
axis) and polarization P (open squares, using the right vertical axis)
as a function of λ. The inset shows the high-frequency dielectric
constant ε∞ (solid dots) at different λ. These quantities (U , P, and
ε∞) are calculated under SCBC. The total energy U (λ = 0) at λ = 0
is chosen to be the zero reference energy. Symbols are the direct DFT
calculation results, and lines are fitting curves using cubic splines.

be optimized for each electric field, which further increases
computation. In contrast, the current approach used here has
several advantages. First, all calculations are performed at
zero macroscopic field using common DFT methods, and the
approach can thus be widely applied. Further, the approach
offers important physics insight, as demonstrated analytically
in this paper. We should also mention that the nonlinear effect
is largely included in Eq. (3). Since λ depends implicitly on
the E field, as shown in Eq. (4), polarization P(λ) and high-
frequency dielectric susceptibility χ∞(λ) thus also depend on
E . Therefore, the coupling term 
(λ)[P(λ)E + 1

2ε0χ∞(λ)E2]
in Eq. (3) includes the nonlinear effect.

Our calculated U ∼ λ relation (obtained from DFT struc-
tural optimization and total-energy calculations) and the P ∼
λ relation (obtained from the Berry-phase calculations using
the modern theory of polarization) are shown in Fig. 2, while
the calculated ε∞ ∼ λ relation (obtained from the DFPT
linear response calculations) is depicted in the inset of Fig. 2.

From Fig. 2, we see the following: (i) Under the short-
circuit boundary condition, the U ∼ λ curve shows that the
nonpolar ZnO (at λ = 0) is not stable, and polar ZnO (at
λ = 1) is stable, as it should be. When λ is increased to
be larger than 1, U increases sharply, which is energetically
less favorable. The depth of the potential well �U = U (λ =
1) − U (λ = 0) is −0.609 eV. This �U is, in fact, comparable
to the well depths (typically ranging from −0.20 to −0.80 eV)
in the recently discovered ABC-type ferroelectrics [47]. (ii)
The polarization P depends on λ in a linear fashion, increasing
from zero at λ = 0 to 0.844 C/m2 at λ = 1. In other words,
P = 0.844λ, and λ is thus a direct measure of the magnitude
of polarization by being proportional to the latter. (iii) High-
frequency ε∞(λ) in the inset of Fig. 2 shows a nonmonotonous
dependence on λ, increasing from ε∞ = 4.37 at λ = 0 to
ε∞ = 5.09 at λ = 1 and then starting to decrease at λ � 1.
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FIG. 3. The D ∼ λ relation (black curve, using the left vertical
axis) and the E ∼ λ relation (red curve, using the right vertical axis)
for ZnO. The inset shows a schematic D ∼ λ relation which a HFE
should exhibit.

The E ∼ λ relation, determined from Eq. (4), and the
D ∼ λ relation, determined from Eq. (5), are shown in Fig. 3.
It is worth pointing out that the E ∼ λ and D ∼ λ curves
themselves are of considerable significance in terms of under-
standing the electrical properties, in addition to determining
whether a solid is HFE. In fact, electric D displacement was
shown to be a fundamental variable in electronic-structure cal-
culations [45,48]. Several marked observations can be made in
Fig. 3.

First, interestingly, we see in Fig. 3 that the E ∼ λ curve
has three roots at λ = 0 and λ = ±1. This does not occur by
accident and can be intuitively explained as follows. At the
above three λ values, energy U is either a minimum or a saddle
point, i.e., ∂U (λ)

∂λ
= 0. Meanwhile, it can be easily seen from

Eq. (4) that, when ∂U (λ)
∂λ

= 0, Eq. (4) has a solution of E = 0,
which explains why λ = 0 and λ = ±1 must be the roots of
the E ∼ λ curve.

However, the D ∼ λ curve in Fig. 3 reveals that it has only
one root at λ = 0, showing that only when λ is zero does
electric displacement D vanish. Since λ = 0 corresponds to
a nonpolar phase, the D ∼ λ curve in Fig. 3 thus demonstrates
that ZnO is nonpolar under the open-circuit boundary condi-
tion D = 0, or in other words, ZnO is not HFE. In order to be
HFE, the solid needs to exhibit a D ∼ λ relation, as shown in
the inset of Fig. 3, where the curve has three roots at A, B, and
B′. At B and B′, λ is nonzero.

It is important to understand why the D ∼ λ curve of ZnO
in Fig. 3 does not possess a nonzero root. We recognize from
the E ∼ λ curve in Fig. 3 that the electric field E at λ = 0.6
is negative and large in magnitude. Since D is directly related
to E , it raises an interesting question, that is, why the D value
near λ = 0.6 is not negative, which may otherwise lead to a
nonzero root for D. The question can be answered by Eq. (5).
Although the first term in Eq. (5) is negative, the P(λ) term
at λ = 0.6 is, nevertheless, positive and dominates, which
results in a positive D. We thus see that a large spontaneous
polarization could be detrimental to the occurrence of hyper-
ferroelectricity. This result is, interestingly, consistent with the

FIG. 4. Free energy F (λ) of ZnO under an open-circuit boundary
condition as a function of λ. The inset shows the free energy of
ZnO under an open-circuit boundary condition when the dielectric
constant of centrosymmetric ZnO is increased to ε∞ = 10.37.

general guideline proposed in Ref. [9] that a HFE needs to
have a deep double-potential well and a small polarization.

C. Free energy under the OCBC

An alternative (and efficient) approach to investigate
whether a solid is HFE is to determine the free energy under
the open-circuit boundary condition. When D vanishes, one
obtains, using Eq. (5),

E = − P(λ)

ε0[1 + χ∞(λ)]
. (6)

By substituting the above expression into Eq. (3), the free
energy F under the D = 0 condition can be determined as

F (λ) = U (λ) − 
(λ)

{
− P2(λ)

ε0[1 + χ∞(λ)

+ 1

2
χ∞(λ)

P2(λ)

ε0[1 + χ∞(λ)]2

}
. (7)

One distinctive feature of this free-energy approach is that
there is no need to determine the E ∼ λ and D ∼ λ relations
(which are often less accurate since they require numerical
derivatives). Instead, knowing the U (λ), P(λ), and χ∞(λ)
curves as computed in Fig. 2, we can directly calculate, using
Eq. (7), the free energy as a function of λ.

The free energy for ZnO under OCBC is depicted in
Fig. 4. Comparing the U (λ) curve in Fig. 2 and the F (λ)
curve in Fig. 4, we see two critical differences: (i) Although
the U (λ) curve has a minimum at λ = 1 (which forms one
of the two minima of the double-potential well), the F (λ)
curve nevertheless has only one minimum at λ = 0. (ii) U
is unstable at λ = 0 by being a saddle point, but F is stable
at λ = 0. Figure 4 thus reveals that, under the OCBC, the free
energy of ZnO is stable only in the nonpolar phase with λ = 0.
In other words, ZnO is nonpolar under the OCBC. Therefore,
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ZnO is not HFE, which is consistent with the results obtained
from the electric equation of state in the previous section.

From the point of view of free energy, the reason that ZnO
is not HFE can be understood as follows. Under the OCBC,
if ZnO is polar with nonzero polarization, then a nonzero
depolarization E field will be generated according to Eq. (6).
This strong and nonvanishing depolarization field increases
the contribution of the second term in Eq. (7) to the free
energy, which ultimately eliminates the polarization.

The theoretical finding that ZnO is not HFE is consis-
tent with available experimental observation. In experiment,
the polar surface of ZnO was found to be unstable, and it
undergoes surface reconstruction [49]. The observation is in
agreement with our result that ZnO is not polar under the
OCBC. Furthermore, according to our theory, the instability
of the ZnO polar surface is caused by the existence of a strong
depolarization field.

D. LO phonon in ZnO

When a hyperferroelectric solid is in its (unstable) cen-
trosymmetric phase, its longitudinal-optic (LO) phonon
should exhibit an imaginary frequency at the zone center
[1,9,10], which manifests the fact that ferroelectric instability
persists despite the existence of a depolarizing field. Here it is
worth pointing out that, when a solid is in the centrosymmetric
phase, whereas a soft transverse-optic (TO) phonon at the
zone center is quite common and indicates the existence of
ferroelectric instability [7], a soft LO phonon at the zone
center is rare, which explains why a HFE is unique and
special.

To determine whether ZnO possesses a soft LO phonon,
we have computed the TO and LO frequencies of the cen-
trosymmetric (nonpolar) ZnO, using the DFPT linear response
theory. We find ωTO = 243i cm−1, showing that nonpolar
ZnO is unstable with an imaginary ωTO frequency under the
short-circuit boundary condition of E = 0, as it should be.
Meanwhile, we find ωLO = 255cm−1, revealing that nonpolar
ZnO is stable with a large and positive ωLO frequency under
the open-circuit boundary condition of D = 0. This reveals
that ZnO is not HFE.

It is interesting to go one step further and explore why ZnO
is not HFE, although it has a wurtzite structure similar to the
ABC-type semiconductor LiZnAs; LiZnAs, on the other hand,
was discovered to be HFE [1]. We find that the difference may
be attributed to the small high-frequency dielectric constant
ε∞ in ZnO. To demonstrate this, we examine nonpolar ZnO
and numerically change its ε∞ value and then compute the
nonanalytic part Cna,αβ

i j of the dynamical matrix as well as the
frequency of the LO phonon. The obtained frequency squared
ω2

LO of the LO phonon is shown in Fig. 5 as a function of ε∞.
The DFT-computed value of ε∞ is 4.37 for nonpolar ZnO.
Figure 5 shows that, when ε∞ is artificially increased from
4.37, ω2

LO decreases sharply. As ε∞ is increased to a critical
value εc

∞ = 9.12, ω2
LO becomes negative, and ZnO becomes

a HFE. The result reveals that a moderate increase in ε∞
will turn ZnO into a HFE, signaling that a small ε∞ value
is indeed responsible for ZnO being non-HFE. Interestingly,
this discovery is consistent with LiZnAs and other ABC-type

FIG. 5. Frequency squared ω2
LO of the LO phonon in centrosym-

metric ZnO as a function of ε∞. The arrow marks the critical εc
∞

value at which ω2
LO becomes negative. The inset shows how the LO

frequency ωLO varies with ε∞. In the inset, imaginary frequencies are
plotted as negative values.

HFE semiconductors, which all have a fairly large ε∞ on the
order of ∼15 [1].

To further confirm that a larger ε∞ value will indeed turn
ZnO into a HFE, we change the ε∞ value of nonpolar ZnO
to 10.37 (which is larger than the critical value of εc

∞ = 9.12)
and calculate, using Eq. (7), the free energy under the OCBC
as a function of λ. The result is depicted in the inset of Fig. 4,
showing that the free energy now exhibits double minima
at nonzero λ = ±0.18. Therefore, ZnO indeed becomes a
HFE when ε∞ is increased. The fact that ZnO can be turned
into a HFE also suggests that, compared to LiZnAs, wurtzite
semiconductors may become hyperferroelectric without Li.

There are two possible routes in experiments to change the
ε∞ value in ZnO. One is by biaxial in-plane strain [29], and
the other is by doping. Both routes will alter the band gap
of ZnO and thus the high-frequency electronic contribution to
the dielectric constant.

Our theoretical study also provides a unified scheme link-
ing different explanations for the origin of hyperferroelectric-
ity [1,9–11]. From the point of view of a LO phonon, a large
high-frequency dielectric ε∞ constant will reduce the LO/TO
splitting and give rise to a soft LO phonon, which is consistent
with the explanation of Garrity et al. that a HFE is caused by
small LO/TO splitting [1] . Meanwhile, a large ε∞ constant
will also lead to metascreening, which is in agreement with
the explanation in Ref. [11]. From the point of view of the free
energy under the OCBC, a small spontaneous polarization, a
large high-frequency dielectric χ∞ susceptibility, and a deep
potential well all favor the emergence of double minima in
free energy [see Eq. (7)], which is consistent with the expla-
nation of Ref. [9]. Furthermore, a large dielectric ε∞ constant
will lead to a strong screening of the long-range interaction
and make the short-range interaction become prominent in
causing hyperferroelectricity, which is in line with the expla-
nation in Ref. [10].
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To confirm that our theory in Eq. (7) also works for other
materials, we apply it to LiBeSb, one of the hyperferro-
electrics in Ref. [1]. As shown in the inset of Fig. 4, in
order for a solid to be hyperferroelectric, the free energy F in
Eq. (7) should have double minima. In other words, the F ∼ λ

curve should have a negative curvature near λ = 0. By using
the computation data available in Ref. [1], we find that the
F ∼ λ relation for LiBeSb is F = −0.1686λ2 eV per unit cell,
showing that the curvature is, indeed, negative. Therefore,
LiBeSb is a hyperferroelectric according to Eq. (7), and our
theory is thus general and works for other materials.

IV. SUMMARY

Hyperferroelectricity is an interesting phenomenon, and
understanding whether a solid is HFE is a topic of importance.
We have described three approaches to investigate the hyper-
ferroelectric properties of ZnO, which include (a) determining
the electric equation of state, (b) calculating the free energy
under OCBC, and (c) determining the properties of a LO
phonon. The current study also provides a unified scheme
linking different explanations for the origin of hyperferroelec-
tricity. Our specific findings are summarized in the following.

(i) The E ∼ λ relation was shown to be determined only by
the derivatives ∂U (λ)

∂λ
, ∂ (
P)

∂λ
, and ∂ (
χ∞ )

∂λ
, as revealed in Eq. (4).

For a ferroelectric solid, we found that the E ∼ λ curve must
have three roots at λ = 0 and λ = ±1.

When ZnO is under the short-circuit boundary condition,
the depth �U of the double-potential well is found to be
0.609 eV, which is comparable to those in ABC-type semicon-
ductor ferroelectrics [47]. The polarization in ZnO was shown
to be directly proportional to λ as P = 0.844λ C/m2.

On the other hand, when ZnO is under the open-circuit
boundary condition, we found that its D ∼ λ curve exhibits
only one root at λ = 0, showing that ZnO possesses no
polarization when D = 0. ZnO is thus not a HFE. The absence

of a nonzero root in the D ∼ λ curve of ZnO can be attributed
to the large spontaneous polarization; namely, the second term
in Eq. (5) is detrimentally too large.

(ii) To predict whether a solid is HFE, we found that
an alternative (and more effective) approach is to calculate,
directly using Eq. (7), the free energy under the OCBC, which
bypasses the determination of the D ∼ λ relation. Using this
approach, we revealed that the free energy of ZnO under the
OCBC is most stable at λ = 0, and ZnO is thus not polar under
the OCBC, which is consistent with the result obtained from
the electric equation of state.

(iii) For centrosymmetric ZnO, our linear response cal-
culations yielded a soft TO mode with frequency ωTO =
243i cm−1, which shows that ZnO has a polar instability under
the short-circuit boundary condition. But the LO frequency
ωLO = 255 cm−1 does not have an imaginary frequency and
is not soft, revealing that ZnO is stable (and thus not a HFE)
under the open-circuit boundary condition.

Furthermore, the fact that ZnO is not a HFE originates from
its small high-frequency dielectric constant. We showed that,
when ε∞ of ZnO is increased beyond a critical value εc

∞ =
9.12, ZnO indeed becomes a HFE by possessing a soft LO
mode (as shown in Fig. 5) as well as double minima of the
free energy (as depicted in the inset of Fig. 4).

Considering that hyperferroelectricity is still at the begin-
ning and remains not adequately understood, we hope that our
study will stimulate more theoretical and experimental work
on this interesting phenomenon.
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