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Acoustic flat lensing using an indefinite medium
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Acoustic flat lensing is achieved here by tuning a phononic array to have indefinite medium behavior in
a narrow frequency spectral region along the acoustic branch in the irreducible Brillouin zone (IBZ). This is
confirmed by the occurrence of a flat band along an unusual path in the IBZ and by interpreting the intersection
point of isofrequency contours on the corresponding isofrequency surface; coherent directive collimated beams
are formed whose reflection from the array surfaces create lensing. Theoretical predictions using a mass-spring
lattice approximation of the phononic crystal (PC) are corroborated by time-domain experiments, airborne
acoustic waves generated by a source with a frequency centered about 10.6 kHz, placed at three different
distances from one side of a finite PC slab, constructed from polymeric spheres, yielding distinctive focal
spots on the other side. These experiments evaluate the pressure field using optical feedback interferometry
and demonstrate precise control of the three-dimensional wave trajectory through a sonic crystal.
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The band spectra of photonic [1,2] and phononic [3] crys-
tals can be interpreted to predict a rich array of interesting
physical effects, for instance, anomalous refraction [1,4] and
all-angle-negative refraction [5], among many others; under-
standing these spectra underpins advances in electronic prop-
erties, wave transport in photonics and acoustics, as well as in
interference phenomena throughout many fields of physical
and engineering sciences.

Here, we report experimental results where an image of a
volumetric source through a three-dimensional (3D) phononic
crystal (PC) forms according to the physics of indefinite
media [6] (see Fig. 1). The image is not created by tilting
the crystal as in acoustic superlenses [8], or at low frequen-
cies using effective media [9], nor by negative refraction
acoustic flat lenses using metamaterials [10,11]. Instead, we
identify critical points on the isofrequency surfaces, for a
simple cubic array of rigid spheres, where beamlike trajec-
tories are formed, and use these beams and their reflections
to create lensing; this is using the properties of indefinite
media [6].

The first experimental proof of a three-dimensional flat
acoustic lens in 2004 [8] used 0.8-mm tungsten carbide beads
surrounded by water, with the beads closely packed in a
face-centered-cubic crystal structure along the body diagonal
(�R crystal direction); the lensing function was above the
phononic band gap of the PC and at 1.57 MHz with the pres-
sure waves focused into a tight spot (about 5 mm). We give
an alternative design to this PC lens, based upon a different
physical mechanism, also exhibiting focusing reminiscent of
the Veselago-Pendry convergent flat lens [12,13] (see Fig. 1).

Superlensing can be also achieved with hyperbolic media
[14,15].

As in Ref. [8] we use an array of sound-hard spheres,
although now in air, take a primitive cubic array, and image
pressure waves by optical feedback interferometry (OFI) [16]
to verify our predictions experimentally. This methodology
was developed to perform pressure wave imaging through
the monitoring of the refractive index changes in transparent
media; the OFI system has advantages over optical imaging
systems based on the optoacoustic effect [17,18] of compact-
ness and simplicity of the optical configuration. We operate
on the acoustic branch at 10.6 kHz, and we take a cubic array
of 40 polymer spheres 1.38 cm in diameter with a center-to-
center spacing a = 1.5 cm. The spheres do not touch, and
hence we do not consider contact issues or elastic waves.
Clearly, in the experiments themselves, the spheres have to
be connected, and this is done via extremely thin ligaments
to minimize any contact effects; this is the opposite situation
to that of, say, Ref. [19]. Notably, we operate below the
band gap, on the acoustic branch, but not at low frequencies
where conventional long-wavelength effective media approx-
imations hold.

Powerful numerical methods, e.g., the plane-wave and
multipole expansions, have been developed that solve the
Schrödinger [20], Maxwell [21,22], and Navier [3,23] equa-
tions, even in three dimensions for scattering by arrays of
elastic spheres [24,25]. Although such methods are versatile
and effective, they remain computationally expensive, and
we use a simple spring-mass model to gain insight: Perhaps
remarkably, one observes that the isofrequency surfaces [and
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FIG. 1. Envelope of pressure amplitude measured at time
t = 1.1 ms for three source positions: (a) 6.4 cm, (b) 4.8 cm, and
(c) 3.2 cm. The wavelength in air is 3.2 cm at 10.3 kHz for a sound
velocity of 330 m/s. Schematics show the distance between the
source (not in the field of view) and the lens and a dotted ellipse
surrounds the focal spot on the left side of the lens. The linear color
scale is in arbitrary units (same calibration for the three experiments).
See Supplemental Material [7] for a movie showing the dynamics of
the lens for t ∈ [0.624, 2.176] ms.

not merely the dispersion curves along the edges of the Bril-
louin zone (BZ)] found numerically using finite elements for
the PC, for the acoustic branch, are almost identical to those
from a mass-spring system [see Fig. 2(a) that shows these
surfaces overlain]. Moreover, for the mass-spring system,
highly directive anisotropy occurs at critical points in the BZ,
and these are associated with effective anisotropic media [26],
akin to indefinite media [15]. Given the striking similarity of
the isofrequency surfaces vis-à-vis the discrete and continuous
models, we draw conclusions from the discrete model and
transfer them to the continuum model.

It is well known for two-dimensional photonic and
phononic crystals that self-collimation into distinct beams
occurs when, for a square lattice, the isofrequency contour
is also square; this effect has been successfully utilized for
beam splitting and wave manipulation [27,28] and underlies
many negative refraction effects [5]. In three dimensions one
can also obtain square contours, but now overlain upon the

FIG. 2. Dispersion curves and isofrequency surfaces: (a) Band
diagram for the continuum model (black solid from finite-element
simulation) of a cubic array of rigid spheres, 1.38 cm in diameter with
a center-to-center spacing d = 1.5 cm, vs the discrete spring-mass
model (blue dotted), with the red dashed line showing frequency
fI = 10.6 kHz. (b) Superimposed isofrequency surfaces for both
continuous (transparent outer surface) and discrete (inner surface)
models at frequency fI , with the position of the critical point I shown.
(c) IBZ used in (a).

isofrequency surface, that lead to collimated beams but now
in three dimensions.

We also highlight that identifying the critical points, and
the nature of the modes, responsible for the focusing effect,
from the standard band diagram [see Fig. 2(a)] going around
the edges of irreducible Brillouin zone (IBZ) is not sufficient
for an accurate interpretation or identification of the frequen-
cies of interest. The complexity of the complete band structure
of a 3D PC is only appreciated by looking at the isofrequency
surfaces [see Fig. 2(b)]: The full dispersion surfaces live in
four dimensions, so they cannot be plotted as such.

For the physical model we use the acoustic pressure field
p that satisfies the wave equation p̈ = c2∇2 p, where c is
the sound speed in air (taken as 330 m/s), ∇2 is the spatial
Laplacian, and the dot decoration denotes time differentiation.
We operate in the frequency domain where f is the wave
frequency in Hz.

We begin by considering an infinite PC, and invoking
Bloch’s theorem [29,30] to consider a single cubic cell of
side length a, containing a sound-hard sphere (the polymeric
spheres are effectively rigid) with Bloch conditions applied
to the cell faces. The Bloch wave vector κ = (κ1, κ2, κ3)
characterizes the phase shift going from one cell to the next,
and dispersion curves for the continuum case in Figs. 2 and
3 are computed with finite-element methods using COMSOL

MULTIPHYSICS; the discrete analog is a three-dimensional
mass-spring lattice of identical masses placed upon a cubic
lattice, and the dispersion relation is explicit,

f ∼ ( fX /
√

2)
√

3 − cos(aκ1) − cos(aκ2) − cos(aκ3). (1)
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FIG. 3. Supercell dispersion curves in the folded IBZ (�X ′M ′R′)
for (a) the continuum model of eight spheres and (b) the discrete
lattice approximation of eight masses: A flat mode highlighted by
the red dashed rectangle appears between R′X ′ that is absent in the
conventional path [Fig. 2(a)]. The folded BZ is shown in blue in
Fig. 2(c).

At point X the standing wave frequency of the continuum
model is fX that provides the comparison in Fig. 2(a); the
acoustic branch of the continuum acoustic model is captured
very well by this simple discrete model (to within a multi-
plicative rescaling).

We give both continuum and discrete dispersion curves
and construct two sets of curves: the conventional ones using
the standard IBZ [Fig. 2(a), �XMR] and a second set using
a supercell which highlights a flat band that is not seen in
the conventional approach and for which we use the path
�X ′M ′R′ from Fig. 2(c).

At first sight it is not clear that there is any advantage in
using a supercell and folding the BZ. The conventional path
can, under some rather exotic circumstances, miss important
details such as the stop band minima/maxima not occurring
at the edges of the BZ [31,32], but this is not our current
focus. Instead, we note that one can, in 2D, miss flat bands
inside the BZ that lead to strong anisotropy [33]. We will
operate at 10.6 kHz, which looks to be a completely innocuous
frequency in the conventional band diagram of Fig. 2(a), but
in the folded band diagram of Figs. 3(a) and 3(b) we see a
nearly flat or completely (for continuous and discrete cases,
respectively) flat band connecting R′X ′ at that frequency. Fur-
ther exploring this frequency, we show isofrequency surfaces
for the discrete and continuous cases in Fig. 2(b) with the flat
lines unfolded, where they form square contours, and placed
upon the surface. These squares intersect at eight points, one
of which we label I for future reference, and for which the
direction �I points along �R to the corners of the BZ. This
point I , lying midway along �R, is where three lines cross,
and for which the group velocity directed along those lines
is zero. Clearly, the group velocity itself is not completely
zero, but this intersection creates a critical point and energy
is preferentially directed along �I; the discrete theory is given

by Ref. [26]. Since the full isofrequency surfaces are captured
by the discrete model [see Fig. 2(b)], then by extension so is
the physics. With this insight we could simply use the discrete
model henceforth, but we also computed full finite-element
(FE) simulations for the continuum model at the frequency
fI = 10.6 kHz that we have identified; the effect is robust in
the sense that one needs to operate at a frequency on the quasi-
flat band of Fig. 3(a). Computations of large finite cubic arrays
of spheres show that indeed much of the energy is directed to
the corners, along the path predicted, and concentrated rays
form (see Ref. [26] for discrete computations). These rays are
reflected from the faces of the large finite experimental array,
perpendicular to the source, and then refocused at the other
side, as seen in Fig. 1.

The strongly anisotropic directionality of the highly con-
centrated rays is suggestive that the underlying character of
the equations has changed from elliptic to hyperbolic, with
the rays being characteristics. This interpretation is confirmed
using high-frequency homogenization [34] to generate an
effective medium equation, local to the point I , characterized
by a tensor that shows, in frequency, when the equations
become hyperbolic. The long-scale pressure envelope field P
satisfies

T∇2P − (
f 2 − f 2

I

)
P = 0, (2)

where T is a diagonal matrix and we see immediately that
entries T11, T22, T33 with the same sign lead to an elliptic
equation, and conversely opposite signs lead to a hyperbolic
equation. We draw upon Ref. [26] where the discrete effec-
tive medium is created, and the coefficients at frequency fI

have T11 = T22 = −8.6 and T33 = 17.2, showing the effective
medium to have indefinite medium behavior at point I in the
IBZ �XMR (notably, by reflections there are eight such points
in the overall BZ, all of which share the same T values up to
a permutation). We note that in Ref. [26], such an effective
medium is termed a hyperbolic medium, but it differs from
the physics described in Ref. [15].

To validate these model predictions, the experimental PC,
as shown in the inset of Fig. 4, was built using 1.38-cm-diam
polylactid polymer spheres machined with a 3D printer and
connected to form a 10 × 10 × 4 cubic array with 1.5-cm
lattice spacing. Each sphere is attached to its neighbors by six
small cylinders 0.2 cm in diameter.

The pressure field is measured point by point with a broad-
band interferometric laser probe based on the OFI sensing
scheme [35,36]. The laser light is emitted towards a distant
target and is partially backreflected towards the laser cavity
where it produces interferences with the inner cavity light.
These intracavity interferences generate variations of the laser
emitted power that can be recorded using any photodetector
or directly by monitoring the laser diode voltage [37]. The
pressure variations are sensed using the optoacoustic effect
that induces changes of the refractive index [38] and thus of
the optical path between the laser diode and the reflector in the
so-called external cavity where the sound wave propagates.
Bertling et al. [16], who first proposed this measurement
technique, stated that, under the condition that the optical
path change remains weak with regards to the laser half
wavelength, the variation of the laser power P (t ) follows a
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FIG. 4. Top view of the experimental setup with a photograph
as the inset. The interferometric sensor consists of a commercial
laser diode with a packaged monitoring photodiode, focusing optics,
custom-made laser driver, and signal amplification circuits. Raster
scanning uses two long-range translation stages.

simple relationship with the refractive index variation such as

P (t ) = P0 cos

(
2πν

∫ L

0

2δn(z, t )

c
dz + φ

)
, (3)

where P0 is the power variation amplitude, L is the length
of the external cavity (i.e., the distance from the laser to the
reflector), ν is the laser frequency, δn(z, t ) is the variation of
the refractive index, c is the celerity of light in vacuum, and φ

is a constant phase term.
The reflector consists of a rigid metallic surface covered

by a retroreflective tape and the sensor is a commercial laser
diode emitting a single wavelength of 1310 nm associated
with an in-package monitoring photodiode whose amplified
current is the sensor signal. An aspheric lens focuses the
laser beam on the reflector located at 180 mm so that the
phononic crystal structure of total length 150 mm fits in
between the sensor and the reflector. The speaker is driven
by a function generator producing bursts with 12 periods of a
sinusoidal signal at 10.6 kHz and with a maximum achievable
power of 96 dBA. Under these conditions, the changes of
the optical path in the external cavity are much less than the
half wavelength of the laser diode, and the sensor signal is an
image of the changes of the refractive index integrated along
the light round-trip in the external cavity [16].

The loudspeaker and crystal are mounted on a metallic rod
assembly, so the wave propagation axis is perpendicular to
the crystal surface at its center. The assembly moves along a
150 mm × 210 mm grid in steps of 1.5 mm using two long-
range translation stages while the interferometer remains in
a fixed position. To reconstruct the spatiotemporal pressure
distribution, each measurement is synchronized with the func-
tion generator signal for phase reference. The acoustic burst
generation, the scanning displacement, and the acquisition
with a sampling rate of 1 MS/s are controlled using a National
Instrument multifunction data acquisition card. The data are
spectrally filtered to obtain the acoustic response to a narrower
Gaussian pulsed excitation with a chosen central frequency

FIG. 5. Experimental measurements: (a) Spectrum at the focus
point (red solid line) for a source 6.4 cm from the lens. The black
dotted line shows the Gaussian window used to filter the time-
dependent signal [centered at 10.3 kHz, full width at half maximum
(FWHM) of 5.2 kHz]. The normalized filtered time trace is shown in
the inset. (b) Longitudinal profiles (along the x axis) of the pressure
field envelope at time t = 1.1 ms. The profiles cut through the focal
point for the three source positions: 2λ, 1.5λ, and 1λ, respectively.
Experimental data (open circles) and a polynomial fit of the fourth
degree (dotted lines) are shown for each source position. Black
arrows depict the center of the focal spot. The position axis is relative
to the left side of the lattice.

and bandwidth. This postprocessing allows us to explore the
spectral region of interest in the band diagram and validate
the discrete spring-mass model predictions. In addition, a
median filter is applied to remove spatial coarse noise. The
spectrum at the focal spot on the other side of the lens is
presented in Fig. 5(a), and it shows maximum transmitted
power around 10.3 kHz. The inset shows the time trace at the
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same location once the Gaussian window centered at 10.3 kHz
is applied to the signal. This experimental observation of the
focusing effect (Fig. 1) confirms the theoretical prediction of
the dynamic anisotropy of the rigid sphere medium leading to
the physics of indefinite media [6].

A strong amplitude of the pressure field can be seen on
the source side of the lens. This corresponds to the reflection
of the wave vectors with a small incident angle, as expected
from the directional stop band (Fig. 2). This effect is partially
responsible for the weak contrast observed between the focal
point and other diffraction artifacts. One interesting aspect
of the focusing effect through this indefinite medium is the
specific conjugation relation between the source and the focal
point. As for negative index lenses, one expects to preserve the
distance between the source and the image while moving
the source closer to the lens [12,13]. In order to discriminate
the focusing effect from the diffraction signature of the finite-
size structure, we repeat the initial experiment with a point
source located at 4.8 cm (1.5 wavelength) and 3.2 cm (1
wavelength) away from the spheres. Figure 1 presents three
snapshots of the envelope of the pressure amplitude at time
t = 1.1 ms for the three source positions. Identical Gaussian
filtering centered at 10.3 kHz is applied to every measurement.
A dotted ellipsoid is superimposed on the results to denote the
position of the focal spot. A schematic depicts the position of
the source in every case. To be more quantitative, we present
longitudinal profiles of the envelope at the focal point in
Fig. 5(b). The position of the focal spot is moved farther away
from the spheres as the source is brought closer. Moreover,
the distance between the source and image is almost kept
constant in the three experiments. This distance corresponds

to three times the thickness of the lens (±4%). Finally, it
is important to point out that in each of these experiments,
the lateral resolution of the focal spot verifies the Abbe
diffraction limit. This observation confirms the connection
between the focusing effect observed through this lattice of
rigid spheres and the indefinite medium behavior predicted by
the dispersion relation.

In conclusion, acoustic pressure waves, interacting with an
array of solid spheres surrounded by air, are shown to have
highly anisotropic directivity leading to a lensing effect for
a source placed outside, thereby opening different avenues
in indefinite medium-type metamaterial physics [6]. Experi-
mental results are in excellent agreement with numerical and
asymptotic results. We observe a focusing effect reminiscent
of that found in 2D with all-angle negative refraction [5]
by tilting an array, or in 3D [8] where again the array is
tilted, i.e., oriented as a face-centered-cubic crystal. Here,
we take advantage of a critical point, hidden in the usual
IBZ dispersion curves, that provides highly directional energy
propagation along rays; thus the array need not be tilted for
lensing. This highly directional behavior is related to a radical
change of the character of the underlying effective equation
from elliptic to hyperbolic which exemplifies both the high
degree of wave control available in phononic crystals and the
importance of a simple predictive model.
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