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We investigate the twisted bilayer graphene by a two-orbital Hubbard model on the honeycomb lattice. The
model is studied near 1

4 -band-filling by using the singular-mode functional renormalization group theory. Spin-
triplet f -wave pairing is found from weak to moderate coupling limit of the local interactions, and is associated
with the Hund’s rule coupling and incommensurate spin fluctuations at moderate momenta.
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I. INTRODUCTION

Recently, there is considerable interest in twisted bilayer
graphenes (TBG). When two layers of graphenes are stacked
and mutually twisted by a specific small angle, periodic moiré
pattern appears. The unit cell can be enlarged significantly
(with respect to that in the parent graphene), containing tens
of thousands of atoms. Near the charge-neutral point (CNP),
the low-energy electronic states are mainly derived from those
near the parent Dirac points, scattered and recombined by
the interlayer coupling. Amazingly, at some magic twisting
angles, the four low-energy bands (near the Fermi level)
become essentially flat and detached from higher-energy ones
[1–6]. The dispersion remains linear near the CNP, but doping
becomes much easier since filling of the entire set of mini-flat-
bands amounts to adding just four electrons per unit cell in
the superlattice. The effect of interactions becomes important.
By the uncertainty principle the kinetic energy scales as 1/l2,
where l is the linear size of the unit cell, while the long-range
Coulomb interaction scales as 1/l and can overwhelm the
kinetic energy as l becomes large. Dielectric screening from
higher-energy bands (above or below the Fermi level) can
make the Coulomb interaction short ranged and consequently
also scale as 1/l2. Even under this circumstance, the effect
of interaction becomes important as the density of states
(DOS) at the Fermi level becomes large. Indeed, recent ex-
periments on TBG reveal Mott-type insulating states when
the mini-flat-bands are 1

4 - and 3
4 -filled [7,8]. The conductance

in magnetic field indicates that the insulating state is spin
unpolarized [8]. More interestingly, superconductivity (SC) is
observed slightly away from 1

4 -filling [9]. The SC transition
temperature Tc ∼ 1.7 K, and the Fermi energy EF ∼ 10 meV
in the lower narrow bands. The ratio Tc/EF is even higher
than that in high-Tc cuprates, suggesting that TBG can also be
taken as a high-Tc superconductor, and the SC therein is very
likely unconventional. More recently, SC is also observed near
3
4 -filling, but Tc is much lower [8].
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Theoretical consensus is not yet reached regarding the
mechanisms underlying the insulating and SC states. Since
the insulating gap at 1

4 - and 3
4 -fillings in the experiment is

about one order of magnitude smaller than the width of the
minibands, the gap may either come from symmetry breaking
[10] or from correlation effects on the verge of the Mott limit
[11–16]. The SC state has recently been discussed in terms
of correlation effects [17–30] as well as electron-phonon
coupling [31,32]. There are also hot discussions on the appro-
priate effective lattice model for the mini-flat-bands. Since the
density of low-energy states concentrates on the AA stacking
positions [2], a two-orbital Hubbard model on a triangular
lattice is proposed [22]. Alternatively, there are arguments, in
view of the band degeneracy at the CNP, in favor of a two-
orbital model on an effective honeycomb lattice [10,33–35].
Depending on the normal state band structure (and the type of
interactions), the proposed pairing symmetry in the SC state
varies from d + id ′, p + ip′ to more conventional s wave.

Here, we study a two-orbital Hubbard model on the honey-
comb described by Eq. (1) below. The model is similar to that
proposed in Refs. [33–35]. The difference in the particle-hole
asymmetry is introduced, which is known to be present and
causes asymmetric behaviors at 1

4 - and 3
4 -fillings [7]. We limit

ourselves to filling levels near 1
4 -filling, where SC is exper-

imentally found to be much stronger than that near 3
4 -filling

[8,9]. We investigate various electronic instabilities on equal
footing by using the singular-mode functional renormalization
group (SM-FRG) [36–41]. Here, we will not address the
Mottness at 1

4 -filling, which is beyond the realm of FRG that
requires a metallic normal state as the starting point.

Our main results are as follows. For quite general local
interactions, and from weak coupling to moderate coupling,
we find robust f -wave SC, related to incommensurate spin
fluctuations at moderate momenta. The pairing function de-
scribes local orbital-singlet and spin-triplet Cooper pairs.

The remainder of this paper is structured as follows. In
Sec. II we specify the model. In Sec. III we investigate the
electronic instabilities for moderately strong interactions by
SM-FRG. In Sec. IV we use the weak coupling theory to study
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FIG. 1. (a) The structure of honeycomb lattice. The green arrows
show fifth-neighbor bonds, with the f -wave sign f〈i j〉 for the hexag-
onal warping term. (b) Band dispersion along high-symmetry cuts
in the Brillouin zone. The momenta �, K , and M can be found in
the left inset of Fig. 3. (c) The normal state DOS. The horizontal
dashed lines in (b) and (c) highlight the Fermi level at 1

4 -band-filling,
or electron density ne = 1 (per site). The peak near and above
the Fermi level arises from the Van Hove singularity, where the filling
is 3

8 .

the model and compare the results with FRG theory. Finally,
in Sec. V we provide the conclusion and further remarks.

II. MODEL

The TBG is D3 symmetric. An effective free Hamiltonian
describing low-energy electrons on the moiré superlattice can
be written as [33–35]

H0 = −μ
∑

i

ψ
†
i ψi +

∑
m=1,2

∑
〈i j〉∈Nm

tmψ
†
i ψ j

+ t ′
5

∑
〈i j〉∈N5

ψ
†
i iτ2ψ j f〈i j〉. (1)

Here, μ is the chemical potential, ψi is a spinor composed of
ciaσ annihilating an electron at site i (the AB or BA stacking
position on the moiré superlattice) on orbital a ∈ (1, 2) with
spin σ ∈ (↑,↓), N1,2,5 denotes the (first, second, and fifth)
neighbor on all directions, iτ2 is the 2 × 2 antisymmetric
tensor in the orbital basis. The N5 bonds are shown in
Fig. 1(a), together with the f -wave factor f〈i j〉 = ±1. We set
t2 = 0.15t1 and t ′

5 = −0.02t1, and use t1 = 1 (corresponding
roughly to 1 meV) as the unit of energy henceforth. Note
H0 is invariant under spin SU(2) and time reversal (TR).
It can also be endowed with inversion symmetry if the in-
version operator also flips the sublattices and orbitals (see
Appendix). These symmetries make spin-singlet and spin-
triplet Cooper pairs sharply defined. Figure 1 shows the
band dispersion along high-symmetry cuts [Fig. 1(b)] and
the normal state DOS [Fig. 1(c)], in qualitative agreement to
that in Refs. [6,9]. The CNP is at the band-touching point
K , and corresponds to 1

2 -filling of the entire set of bands.

The dispersion near K remains linear, and the K point is
fourfold degenerate (aside from spin). We should stress that
in the case of TBG, the low-energy degrees of freedom are
not electrons on atomic orbitals. Rather, they are described by
very complicated molecular orbitals. Following Refs. [33,34],
the parametrization is meant to reproduce, at a qualitative
level, the band dispersion from first-principles calculation [6].
The hopping t2 is diagonal in both orbital and sublattice space,
and is used to break the particle-hole symmetry of the entire
band structure, as suggested by first-principles results. The
hopping t ′

5 is the correct warping term that breaks the band
degeneracy along �-M, but maintains the twofold degeneracy
along �-K-M [see Fig. 1(b)]. Interestingly, using t ′

2, t ′
3, and t ′

4
on the second-, third- and fourth-neighbor bonds, in the same
form of the t ′

5 term, would lead to a band structure inconsistent
with the above concerns. On the other hand, a first-neighbor
interorbital hopping t ′

1 (not included here) would also break
the degeneracy along �-K-M, resulting in quasinested Fermi
surface near 1

4 -filling [22].
Note that because of the two orbitals on each site, the

1
4 -band-filling corresponds to one electron per site (or two
electrons per unit cell). For clarity, we will henceforth use the
electron density ne (per site) to reflect the filling level, with
the understanding that ne > 1 (ne < 1) means electron (hole)
doping away from 1

4 -band-filling.
The interactions between the electrons are assumed local,

HI = U
∑

ia

nia↑nia↓ + J
∑

i,a>b,σσ ′
c†

iaσ cibσ c†
ibσ ′ciaσ ′

+U ′ ∑
i,a>b

nianib + J ′ ∑
i,a 	=b

c†
ia↑c†

ia↓cib↓cib↑, (2)

where nia = ∑
σ niaσ = ∑

σ c†
iaσ ciaσ , U is the intraorbital re-

pulsion, U ′ is the interorbital repulsion, J is Hund’s rule
coupling, and J ′ is the pair-hopping term. We assume the
Kanamori relations U = U ′ + 2J and J ′ = J to take (U ′, J )
as independent parameters, although such relations are exact
only in the case of rotationally invariant atomic limit.

III. SM-FRG RESULTS

Here, we treat the correlation effect by SM-FRG. The
idea of FRG [42] is to obtain the one-particle-irreducible
(1PI) four-point interaction vertices �1234 (where numerical
index labels the single-particle state) for quasiparticles above
a running infrared energy cutoff � (which we take as the
lower limit of the continuous Matsubara frequency). Starting
from � = ∞ where � is specified by the bare parameters in
HI , the contribution to the flow (toward decreasing �) of the
vertex, ∂�1234/∂�, is illustrated in Fig. 2. At each stage of
the flow, we decompose � in terms of eigenscattering modes
(separately) in the SC, spin-density wave (SDW), and charge-
density wave (CDW) channels to find the negative leading
eigenvalue (NLE). Notice that the NLE is a function of the
collective momentum. The divergence of the most negative
eigenvalue (MNE) signals an emerging order at the associated
collective momentum, with the internal microscopic structure
described by the eigenfunction. The technical details can
be found elsewhere [36–41], and also in the self-contained
Appendix.
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FIG. 2. One-loop diagrams contributing to ∂�1234/∂�, quadratic
in � itself (wavy lines, with incoming or outgoing fermions labeled
by the numerical indices). The spin is conserved along fermion
lines. The color of the wavy line indicates the scattering of fermion
bilinears in the pairing (blue), crossing (red), and direct (green)
channels. The loop integrations are to be differentiated with respect
to the running scale � that regulates the single-particle propagators.

Figure 3 shows the RG flow of the MNE SSC,SDW in the SC
and SDW channels, for ne = 1.106 and (U ′, J ) = (2.5, 0.8).
The CDW channel is weak during the entire flow and not
shown here. We see the SDW channel dominates in the high-
energy window. The collective momentum associated with the
MNE evolves with decreasing � (see the arrows). Attractive
MNE in the SC channel (with collective momentum Q ≡ 0)
emerges as � < 1, where the SDW channel is also enhanced.
This is a manifestation of the Luttinger-Kohn mechanism,
namely, fluctuations in the particle-hole (PH) channel have
projections in the particle-particle (PP) channel. FRG makes
this notion even sharper, namely, it is those enhanced PH
fluctuations (as the energy scale is lowered) that is related to
(or contribute to) attractive pair interactions. At lower-energy
scales, the SC channel flows faster and diverges eventually at
�c ∼ 1.55 × 10−2. From our SM-FRG, the associated pairing
function (the MNE scattering mode in the SC channel) is iτ2 in
the orbital basis. This describes pairing between two electrons
in an orbital singlet. By fermion antisymmetry the spin part
must be a triplet. Such a pairing is favored by the local Hund’s
rule coupling in Eq. (2). We will come back to this point
at the end of this section. The pairing function projected in
the band basis is shown on the Fermi surface (FS) in the left
inset, which is ±1 on the red/blue segment of the FS (up to
a global factor), showing f -wave symmetry. Note the f -wave
form belongs to the A1 representation of D3, invariant under
both C3 and C′

2. Further discussions on the pairing symmetry
can be found in the Appendix.

Several remarks are in order. First, the local pairing is
insensitive to FS nesting. Indeed, similar results are obtained

FIG. 3. FRG flow of the most negative eigenvalue SSC,SDW versus
the running energy cutoff � for (U ′, J ) = (2.5, 0.8) and ne = 1.106.
The texts associated with the arrows indicate the collective mo-
mentum Q, shown as Q/π , associated with SSDW. The collective
momentum in the SC channel is fixed at Q = 0. The left inset shows
the FRG-derived pairing function on the Fermi surface, which is ±1
where the color is red/blue, up to a global factor. The outer hexagon
is the Brillouin zone, with high-symmetry points indicated. The right
inset shows −SSDW ≡ |SSDW| in the momentum space. The signal is
strong (weak) where the color is red (deep blue).

for (t2, t ′
5) = (0.12,−0.036), although better quasinesting on

the FS arises. Second, the pairing function in the orbital basis
iτ2 is robust even if we get rid of the warping term. Third, the
crossing of FS pockets is protected by the D3 symmetry, but
breaking of D3 would generate anticrossing and gap nodes.
Spin-orbital coupling may also generate gap nodes, but is
expected to be weak in TBG. Fourth, from the right inset in
Fig. 3, we see that at the final stage of the RG flow, the NLE
SSDW in the momentum space peaks roughly at the midpoint
on �-K . This means that our f -wave triplet is tied to incom-
mensurate spin fluctuations at moderate momenta, instead of
the usual small-momentum spin fluctuations as in the case of
Sr2RuO4 [43–46]. Finally, our local f -wave pairing is made
possible by the multiorbital physics, to be compared to the
candidate f -wave pairing on second-neighbor bonds in an
effective one-orbital model for cobaltates [47,48].

FIG. 4. The phase diagram in the (U ′, J ) parameter space. The
electron density is (a) ne = 1.106, and (b) ne = 0.902. The diver-
gence scale �c < 10−4 in the blue regime.
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In Fig. 4 we present the phase diagram in the parameter
space, for electron density ne = 1.106 (a) and ne = 0.902
(b). These may be understood as electron and hole doping
away from 1

4 -band-filling. In both cases of electron and hole
doping, f -wave pairing is observed for intermediate values of
J with sizable divergence scale �c, but as J increases further,
the system enters the SDW phase. We note that local triplet
pairing is favorable even at the mean field level if J > U/3 for
two-orbital models [49,50]. This condition is further relaxed
in Fig. 4 since the charge screening effect captured by FRG
makes the ratio J/U effectively larger [51]. In agreement with
the experiment, SC arises from both electron and hole doping
away from the Mott limit.

IV. WEAK COUPLING LIMIT

In this section we investigate the weak coupling limit of
the model. On one hand, further approximations to FRG
can be made, providing clearer understanding of the pairing
mechanism. On the other hand, consistency from weak to
moderate coupling, if any, provides evidence of the robustness
of the f -wave SC state.

In the weak coupling limit, we may ignore the mutual
overlaps in the SC/SDW/CDW channels. Then, each chan-
nel flows independently, and can be solved exactly (see the
Appendix). This corresponds to the ladder approximation in
the SC channel, and random phase approximation (RPA) in
the DW channels. Eventually, we project interactions in all
channels onto the effective pairing interaction V (k, k′) on the
Fermi surface (with proper elimination of overcounting), and
solve the following Eliashberg equation:

−
∮

dl ′

(2π )2v(l ′)
V (l, l ′)	(l ′) = λ	(l ), (3)

to get the leading pairing function. Here, l is the momentum
path on the Fermi pockets, v is the Fermi velocity, and the
integration sums implicitly over Fermi pockets. The eigen-
value λ, or the coupling constant, is to be related to the
transition temperature as Tc ∼ 1.14�0e−1/λ, where �0 is the
energy scale (the temperature, e.g.) at which the ladder/RPA
is performed. This mechanism is referred to as fluctuation ex-
change (FLEX) [52] emphasizing the role of DW fluctuations
in triggering superconductivity for repulsive models. More
technical details of the FLEX for our case can be found in
the Appendix. Since divergence occurs too soon in RPA, this
approach is better justified in the weak coupling limit.

For comparison, we scale down the “strong” bare interac-
tions, in the same order as used in the previous section, by
a factor of g = 2.6. For ne = 1.106 and (U ′, J ) = (2.5, 1)/g,
we find the resulting pairing function is identical to that
shown in the left inset of Fig. 3. To understand this result, we
present the spin susceptibility in Fig. 5. Compared to the bare
susceptibility in Fig. 5(a), the renormalized one in Fig. 5(b) is
more concentrated at the six momenta Q1,...,6. This pattern is
closely similar to that of the NLE in the SDW channel shown
in Fig. 3 (right inset), and the associated spin fluctuations may
trigger the f -wave pairing according to FLEX. To single out
such an effect, we consider the contributions to V (k, k′) from
the SDW channel with collective momentum q ∼ Qi=1,...,6.
To filter away the interactions irrelevant to odd-parity pairing,

FIG. 5. The leading positive eigenvalue of the spin susceptibility
matrix (in the orbital basis) in the momentum space, in the weak
coupling theory, for ne = 1.106 and (U ′, J ) = (2.5, 1)/g, with the
artificial scaling factor g = 2.6 to avoid divergence in RPA. (a) Bare
susceptibility. (b) RPA-renormalized spin susceptibility. There are
peaks at six momenta Q1,...,6, with Q1 = (0.625π, 0).

we antisymmetrize V (k, k′) with respect to k → −k′ and/or
k′ → −k′. The resulting pair interaction V (k, k′) is shown in
Fig. 6 for k on the inner pocket [Fig. 6(a)] and outer pocket
[Fig. 6(b)]. In each case, we can find two positions of k′ with
V (k, k′) < 0, satisfying Qi + k′ − k = G for a specific Qi,
and G is a reciprocal vector. The pairing function should be
of the same sign on k and k′ if V (k, k′) < 0, and vice versa.
Inspection of Fig. 6 shows that this requires the nearby inner
and outer pockets to be antiphase. This sign structure is in full
agreement with the f -wave pattern discussed in the previous
section, showing spin fluctuations at (and near) the momenta
Qi’s tend to trigger the triplet f -wave pairing.

We should point out, however, in the above approximation,
the f - and d-wave pairings are close in eigenvalue λ, and the
leading one becomes d wave if U ′ is increased (with U =
U ′ + 2J fixed), as can be seen in Fig. 7, which is obtained by
FLEX performed at the energy scale �0 = 10−2. The insets
shows the pairing function on the Fermi surface. The SC Tc

is related to λ as Tc ∼ �0e−1/λ, and is seen to be tiny even
if λ = 0.25. To obtain a reasonable Tc, the interaction must
be stronger. This is beyond the weak coupling approach since
the RPA susceptibility would diverge too soon, but is better
addressed by our full-fledged SM-FRG, as in the previous
section.

FIG. 6. The pair interaction in the band basis V (k, k′) as a
function of k′ (on the FS), for a fixed k (open circle) on the (a) inner
pocket and (b) outer pocket. Here, V (k, k′) is constructed from
contributions by spin fluctuations at momenta Qi’s, hence, is nonzero
only on some discrete points of k′, with the sign indicated by ±. The
solid arrows represent Qi. The geometry shows k′ − k ± Qi = G
where G is a reciprocal vector.
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FIG. 7. The leading eigenvalue λ in the pairing channel ver-
sus U ′ = U − 2J , with U = 1.5 and ne = 1.106. The left (right)
inset shows the f -wave (d-wave) pairing function on the Fermi
surface, where the red/blue/light green color indicates maximally
positive/negative/zero value. The d-wave eigenvalue is twofold
degenerate, but only the dxy-like pairing function is shown in the right
inset.

V. SUMMARY AND DISCUSSION

We have applied functional renormalization group and
weak coupling theory to study the superconductivity in a
two-band Hubbard model of TBG near 1

4 -filling. The pairing
function is found to be f -wave spin triplet on both sides
of 1

4 -filling, from weak to moderate coupling limit of the
interactions. The pairing mechanism of the f -wave triplet
is due to effective attraction between two electrons in the
spin-triplet and orbital-singlet states on the same site. In the
weak coupling scenario, the SC is related to incommensurate
spin fluctuations at moderate momenta.

We remark that our f -wave pairing is time-reversal in-
variant, in contrast to p + ip′ or d + id ′ in previous studies
[17,20]. In experiment, the difference can be easily distin-
guished by μSR. In theory, the difference has much to do
with the starting model. For example, if we include interor-
bital hopping on first-neighbor bonds as in Ref. [22], our
FRG also yields d + id ′-wave SC. Therefore, more accurate
understanding of the normal state band structure is necessary.
On the other hand, we have also studied SC near 3

4 -filling, but
the critical scale is much smaller than that near 1

4 -filling. This
could be understood from the smaller DOS near 3

4 -filling, and
is consistent with the experiment. Finally, the way how the
f -wave SC and the incommensurate SDW fluctuations evolve
into the Mott insulating state at 1

4 -filling is an interesting but
open topic.
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APPENDIX

1. Symmetry of the normal state and pairing function

The single-particle part of H0 can be written as, for both
spin species and at momentum k,

hk = ε0(k) + ε1(k)s1 + ε2(k)s2 + ε3(k)τ2, (A1)

where si’s are Pauli matrices in the sublattice basis, identity
matrices are dropped without causing any ambiguity, and

ε0(k) = −μ + t2
∑
b∈N2

cos k · b, (A2)

ε1(k) = t1
∑

b∈N1A

cos k · b, (A3)

ε2(k) = −t1
∑

b∈N1A

sin k · b, (A4)

ε3(k) = −t ′
5

∑
b∈N5

fb sin k · b. (A5)

Here, N1A denotes the set of three first-neighbor bonds radiat-
ing from a site on the A sublattice of the honeycomb lattice,
N2 is the set of six second-neighbor bonds, N5 is the set of
six fifth-neighbor bonds, and fb is the f -wave sign factor
illustrated in Fig. 1(a). Note that ε0,1(k) is even, and ε2,3(k)
are odd, under k → −k. In fact, ε3(k) transforms as f wave
in k in the manner of the sign structure of fb. So, h−k 	= hk,
breaking the inversion symmetry in a naive manner. However,
we can endow the inversion symmetry for hk by combining
the actions

si → s1sis1, τi → τ1τiτ1. (A6)

The first operation means flip of sublattices upon inversion,
defining the symmetry center at the center of the holohexagon
in real space. The second operation means flip of orbitals.
(The action on the orbital by inversion can be generalized to
any action that causes τ2 → −τ2, but here we stick to orbital
flip for definiteness.) In this definition, the inversion operator
P acts on hk as

PhkP−1 = s1τ1h−ks1τ1 = hk. (A7)

So, inversion relates hk and h−k in a nontrivial way. In
addition, the TR invariance can be expressed as

T hkT −1 = h∗
−k = hk. (A8)

Note we defined the TR operator T irrespectively of spin. This
is possible because the spin SU(2) symmetry enables us to
treat spins separately. Finally, hk is symmetric under D3 acting
on k alone.

The band dispersion can be obtained straightforwardly:

E±(kν) = ε0(k) ±
√

ε2
1 (k) + ε2

2 (k) + ν|ε3(k)|, (A9)

094521-5



TANG, YANG, WANG, ZHANG, AND WANG PHYSICAL REVIEW B 99, 094521 (2019)

where ν = ±1 is the eigenvalue of τ2 fk, with fk =
sign[ε3(k)]. In this band labeling scheme, the band label, say
ν = 1, may correspond to the positive or negative eigenvalue
of τ2, depending on the sign of ε3(k). The advantage of
the this k-dependent band labeling is the band energy is
explicitly inversion symmetric. It is also the natural labeling
scheme according to the ordering of band energies at the same
momentum.

The Fermi level cuts the lower two bands described by
E−(kν). We now discuss these energy bands in more details,
and we drop the superscript on E for brevity. For a band state
|kν〉 satisfying

hk|kν〉 = E (kν)|kν〉, (A10)

we have

h−ks1τ1|kν〉 = E (kν)s1τ1|kν〉, (A11)

by inversion symmetry defined in Eq. (A7). This requires
s1τ1|kν〉 to be the eigenstate of h−k with energy E (kν), which
is identical to E (−kν) in our band labeling scheme. In other
words,

P|kν〉 = | − kν〉, (A12)

up to a phase. On the other hand, by TR symmetry defined in
Eq. (A8),

h−kK|kν〉 = E (kν)K|kν〉, (A13)

where K stands for complex conjugation. This implies

K|kν〉 = | − kν〉, (A14)

up to a phase.
The full matrix pairing function for the model studied in

the main text can be written as φ(k) ∼ iτ2 in the orbital basis.
(The spin component will be specified shortly. The absence of
k dependence follows from the local pairing.) Under inver-
sion, Pφ(k)P−1 = s1τ1φ(−k)s1τ1 = −φ(k), so the pairing
function is odd under inversion. To see the resulting gap
structure more transparently, we project the pairing matrix
onto the normal state band basis. We first recall that the field
operators in the band and orbital bases are related as

d†
kν =

∑
m

ψ
†
km〈m|kν〉, ψ

†
km =

∑
ν

d†
kν〈kν|m〉,

where m denotes a component of ψ
†
k or |kν〉. It is now

straightforward to make the transformation

ψ
†
kφ(k)ψ†,t

−k → d†
k	(k)d†,t

−k, (A15)

where t means transpose, and the matrix element of 	(k) is
given by

	νν ′
(k) = 〈kν|φ(k)K| − kν ′〉 = iνδνν ′ fk, (A16)

which is explicitly odd in k and actually transforms as fk. This
function is shown in Fig. 3 (left inset).

Finally, we include the spin content in the pairing func-
tion. By spin SU(2) and inversion symmetries, the odd-parity
Cooper pair has to be a spin triplet, and the resulting matrix
pairing function has to be in the form, for the lower two bands,

	(k) → iη3 fkd · �σ iσ2, (A17)

where η3 is the Pauli matrix in the band basis, d is a constant
vector, and �σ is the Pauli vector in the spin basis. The pairing
function is also explicitly TR invariant.

2. FRG flow equation

The idea of FRG [42] is to obtain the 1PI four-point
interaction vertices �1234, as in

H� = 1

2

∑
1σ,2σ ′,3σ ′,4σ

ψ
†
1σ ψ

†
2σ ′�1234ψ3σ ′ψ4σ , (A18)

for quasiparticles above a running infrared energy cutoff �

(which we take as the lower limit of the continuous Matsub-
ara frequency). The numerical subscript 1 = (k, a, s) labels
(momentum, orbital, sublattice). The spin σ is conserved
explicitly in the above form and drops out of � effectively.
Momentum conservation is assumed implicitly. Equivalently,
�1234 may be taken as the effective interactions on quasi-
particles below the scale �, in the spirit of pseudopotential.
Starting from � = ∞ where H� is specified by the bare
interaction HI , the contribution to the flow (toward decreasing
�) of the vertex ∂�1234/∂� is illustrated in Fig. 2 in the
main text. The SM-FRG is a realization of FRG in terms
of scattering between truncated fermion bilinears that are
sufficient to capture the potentially singular scattering modes
in the quantum many-body system [36–41] (see following).

Before proceeding, we notice that for a system with fea-
tureless Fermi surface(s), standard RG dimension-counting
reveals that all four-point interactions are marginal. This
means higher-order vertices and the frequency dependence in
the four-point vertex �1234 are irrelevant and can be dropped,
as long as instabilities occur at low-energy scales (to justify
the RG argument). In this approximation, the single-particle
self-energy correction is frequency independent and can be
absorbed in the normal state Hamiltonian. We will therefore
concentrate on the flow of �1234 only.

It turns out to be useful to view � as scattering matrices for
fermion bilinears,

�1234 = P12,43 = C13,42 = D14,32, (A19)

where P is the matrix in the pairing channel, C in the crossing
channel, and D in the direct channel. Then, the RG flow equa-
tion, shown schematically in Fig. 2, can be written compactly
as

∂�1234

∂�
= [(C − D)χ ′

phD]14,32 − [Pχ ′
ppP]12,43

+ [Dχ ′
ph(C − D)]14,32 + [Cχ ′

phC]13,42, (A20)

where the products within the square brackets are understood
as convolution in the bilinear labels (see Fig. 2), and χ ′

pp/ph are
differential susceptibilities, as matrices in the bilinear basis,

[χ ′
pp]12,34 = ∂

∂�

∫
dω θ (|ω| − �)

2π
G13(iω)G24(−iω),

(A21)

[χ ′
ph]12,34 = − ∂

∂�

∫
dω θ (|ω| − �)

2π
G13(iω)G42(iω),

(A22)
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where G12(iωn) = −〈ψ1(iωn)ψ̄2(iωn)〉 is the normal state
Matsubara Green’s function. In actual calculations, the loop
integration in Eq. (A20) is performed in momentum space.

3. Singular scattering modes in collective channels

For spin SU(2) invariant systems, there are three types of
collective scattering channels, namely, SC, SDW, and CDW.
The corresponding scattering matrices are given by

V SC = P, V SDW = −C, V CDW = 2D − C. (A23)

We will use (P,C, D) and V SC/SDW/CDW interchangeably in
the above sense. We now discuss how a diverging or singular
eigenmode of the above scattering matrices tells about the
emerging order. The basic idea is most easily explained by
ignoring the spin, orbital, and sublattice labels for the mo-
ment. Let us consider fermion bilinears limited to a set of
relative displacement r, say r ∈ (rm, m = 1, . . . ). We first
rewrite the effective interaction H� on quasiparticles as, up
to an unimportant global factor,

H� ∼
∑

ψ̄R0ψ̄R0+rmV SC
mn (R)ψR+R0+rnψR+R0

=
∑

ψ̄k+qψ̄−k fm(k)V SC
mn (q) f ∗

n (k′)ψ−k′ψk′+q. (A24)

Henceforth, summation over all repeated indices is implied
by a blind

∑
for brevity. The first (second) equality is in

the real (momentum) space, V SC
mn (R) ≡ V SC

(0,rm ),(R,R+rn ), and
fl (k) = eik·rl is a basic lattice harmonics, or form factor.
The matrix V SC(q) is Hermitian and can be decomposed as,
dropping q for brevity,

V SC
mn =

∑
α

φα
mSαφα∗

n , (A25)

where α labels the eigenstate φα with eigenvalue Sα . Suppose
there is a MNE S associated with an eigenfunction φ at q = Q,
we have

H� ∼
∑

k,k′,m,n

ψ̄k+Qψ̄−k fm(k)φmSφ∗
n f ∗

n (k′)ψ−k′ψk′+Q.

The divergence of S implies an emerging Cooper pairing at
collective momentum Q with the pairing function

φ(k) =
∑

m

φm fm(k), (A26)

with explicit summation over bilinear labels. By Cooper
mechanism, the most favorable collective momentum is Q =
0 for time-reversal-invariant systems. φ(k) forms an irre-
ducible representation of the little group at Q, and degeneracy
exists if it belongs to a multiplet irreducible representation.

Similarly, we can rewrite H� in terms of V DW (for DW =
SDW/CDW) as

H� ∼
∑

ψ̄R0ψR0+rmV DW
mn (R)ψ̄R0+R+rnψR0+R

∼
∑

k,k′,m,n

ψ̄k+Qψk fm(k)φmSφ∗
n f ∗

n (k′)ψ̄k′ψk′+Q,

where V DW
mn (R) = V DW

(0,rm ),(R,R+rn ). In the last step, we assume
the matrix V DW(q) has a MNE S associated with the eigen-
function φ at momentum q = Q. The divergence of S here

implies an emerging density-wave order in the PH channel.
The structure of the order parameter is described again by the
function φ(k) = ∑

m φm fm(k), but now for the PH pair. If it is
independent (dependent) of k, it describes site-local (bond-
centered) density-wave order. Coexistence of site-local and
bond-centered density wave can also be captured. Notice that
Q = 0 is not generally favorable in the PH channel (unless at
a vHS), and for Q 	= 0 there is degeneracy in Q’s related by
point-group symmetry.

We now include the other internal degrees of freedom.
To each rm we associate a pair of orbitals aa′, a pair of
spins σσ ′, and a pair of sublattices ss′ for the two fermions
within the fermion bilinear. (The two sublattice labels are not
independent since they are related by the displacement rm.)
We can group the (orbital, spin, sublattice) into a combined
label μ = (a, σ, s). The leading eigenfunction φμμ′

(k) now
becomes a matrix, providing additional information on pair-
ing of orbitals, spins, and sublattices in the order parameter
(applicable for both PP and PH channels).

4. Truncation of fermion bilinears

The flow equation in the form of Eq. (A20) is still not
useful if all fermion bilinears, the number of which diverges
in the thermodynamic limit, are to be included. We argue that
only a finite set of bilinears (in terms of the internal degrees
of freedom within the bilinear) are important in a potentially
diverging (or singular) scattering mode, the underlying idea
of SM-FRG. We observe that if only one out of P, C, and
D is retained in Eq. (A20), the flow equation reduces to the
ladder approximation for P, and to the RPA for C and D (see
following). One would be able to address instabilities in such
channels separately. Although subject to serious biases, these
approximations do help demonstrate how a generally marginal
four-point vertex could become relevant: by repeated and
coherent scattering of fermion bilinears. When an eigenscat-
tering mode becomes singular (or has a diverging eigenvalue),
it signals an instability of the normal state, and the associated
eigenfunction describes the emerging order, which is a linear
combination of the fermion bilinears. Since in all known
examples of ordered state the order parameter is local or
short-ranged, such as local s-wave pairing, d-wave pairing on
bond, site-local density-waves, etc., it is perceivable that the
most important fermion bilinears (in the respective scattering
channel) that would enter a singular scattering mode are local
or short ranged. (This is not withstanding possible long-range
correlations between fermion bilinears.) In fact, unless it is
attractive already at the tree level, a scattering channel could
become attractive and singular during RG only by its overlap
with the other channel, as is clear in the flow equation. If the
overlap is strong and very nonlocal, the donor channel must
have developed strong nonlocal correlations and hence may
diverge even faster. Therefore, we can truncate the relative
spatial range in the bilinears entering P, C and D, say up
to a length scale Lc. (The setback distance between fermion
bilinears is unlimited.) Figure 8 shows how in real space
a four-point vertex is ascribed to P, C, or D. A vertex is
overlapped if it can be ascribed to two or all of the truncated
scattering channels. In fact, limiting the fermion bilinears to
site-local spin-density and d-wave pairing on first-neighbor
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FIG. 8. Illustration of assignment of a four-point vertex �1234 into
the three scattering channels according to the truncation length Lc. A
vertex is an overlap if the assignment can be made in two or all of
the three channels.

bonds proved already successful for the Hubbard model de-
scribing cuprates [53].

Without truncation, P, C, and D are simply aliases of �.
With truncation they capture only parts of � which are most
important according to the above arguments. The overlaps
between them, shown schematically in Fig. 9, must be retained
to treat instabilities in PP and PH channels on equal footing.
This is achieved by integrating Eq. (A20) step by step and,
after each step, P, C, and D are reassigned by � according
to Eq. (A19) or Fig. 8. This scheme is asymptotically exact
for parametrization of � if the truncation range is enlarged.
A finite truncation makes the calculation feasible, and is
sufficient to capture general PP and PH order parameters
defined onsite and on short-ranged bonds up to Lc. Notice
that the loop integration is performed in momentum space,
but the overlaps between the scattering matrices are handled
most conveniently in real space since overlaps are restricted
by the truncation length in fermion bilinears (see Fig. 8).

The full matrix pairing function for the model studied in
the main text can be written as φ(k) ∼ iτ2 in the orbital
basis. This indicates that the dominant pairing occurs between
local orbitals, even though the truncation length Lc is chosen
as the length of the second-neighbor bonds, showing Lc is
sufficiently large for our purpose.

5. Nonlocal interactions

In the main text, we limited ourselves to local inter-
actions. To our knowledge, there is no consensus on the
concrete form of interactions. For example, only the SU(4)-

FIG. 9. The relation among truncated P, C, D and the full vertex
� in terms of set theory. Without truncation, P, C, and D are fully
overlapped and are simply aliases of �. After truncation, the overlaps
are partial but sufficient to deal with potentially singular scattering
modes in PP and PH channels.

FIG. 10. The divergence scale �c versus V1 for U = 4.1, J =
0.8, U ′ = U − 2J , and ne = 1.106. The Coulomb interactions
V0,1,2,3, with relative sizes 3 : 2 : 1 : 1, are shown in the inset, but
V0 is absorbed in U and U ′, leaving V1 as the only tuning parameter
for the main panel.

symmetric Hubbard interaction is considered in Ref. [20].
Local Coulomb interactions and Hund’s rule coupling are
considered in Ref. [22] and here. Nonlocal interactions are
even more complicated [34,54]. According to Ref. [34], the
strength of the Coulomb interactions would follow the relative
ratio

V0 : V1 : V2 : V3 = 3 : 2 : 1 : 1, (A27)

where V0, V1, V2, and V3 are the onsite, first-, second-, and
third-neighbor Coulomb interaction, respectively (see the in-
set of Fig. 10 for illustration). At the classical level, and if no
other interactions are present, a CDW order would happen if
V1/V0 > 1

3 . Quantum fluctuations could lift the critical value
of V1/V0 for CDW, but can hardly help if V1/V0 = 2

3 . Indeed,
we checked that using the above type of interactions, we find
no SC at all using our SM-FRG. To have a flavor of the
effect of nonlocal Coulomb interactions and yet to maintain
the SC instability, we absorb V0 in the local U and U ′, and add
tunable V1, V2, and V3 according to V1 : V2 : V3 = 2 : 1 : 1.
In the main panel of Fig. 10 we show the divergence scale
�c versus V1 for U = 4.1, J = 0.8 (with U = U ′ + 2J), and
ne = 1.106. The f -wave SC (red) is robust in a significant
range of V1 before the system enters the CDW state (green) at
a wave vector Q in-between K and M. Near the transition to
CDW, the SC is even enhanced, possibly because of additional
charge fluctuations enhanced near the transition.

6. FRG in the weak coupling limit

If the channel overlaps between P, C, and D are ig-
nored, Eq. (A20) reduces to three equations for these scat-
tering matrices, and they can be solved exactly in terms of
V SC/SDW/CDW. Since the starting interaction is local in real
space, we can also limit the fermion bilinears to be local ones.
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In this basis, we obtain, in matrix form,

V SC(q) = V SC
∞

1 + V SC∞ χpp(q)
,

V SDW(q) = V SDW
∞

1 + V SDW∞ χph(q)
, (A28)

V CDW(q) = V CDW
∞

1 + V CDW∞ χph(q)
.

Here, χpp/ph(q) = ∫ ∞
�0

d�χ ′
pp/ph(q,�) is the susceptibility

matrix in the local bilinear basis at the collective momentum
q, contributed by quasiparticles above the energy scale �0

[see Eq. (A22)]. We can solve P, C, and D as

P = V SC, C = −V SDW, D = 1
2 (V CDW − V SDW).

The effective interaction between Cooper pairs (k, 1; −k, 2)
and (k′, 4; −k′, 3) can be most conveniently written as, in the
bilinear basis,

V12,43(k, k′) = P12,43(0) + D14,32(k − k′)

+C13,42(k + k′) − 2[P∞]12,43(0), (A29)

where the last term subtracts overcounting. Notice that start-
ing from the second order in the bare interactions, P, C,
and D collect contributions from independent Feynman dia-
grams under the given approximation, and this is why they
all appear on the right-hand side of the above equation. To
see the connection to the usual expression for the one-band
Hubbard model, just substitute V SC

∞ = V CDW
∞ = −V SDW

∞ = U
in Eq. (A28). Equation (A29) reflects the fact that fluctuations
in the PH channel contribute (attractive or repulsive) effective
pair-pair interaction, a mechanism referred to as fluctuation
exchange (FLEX) [52]. We remark that even though the
bilinears are local in P, C, and D, Eq. (A29) effectively
reintroduces long-range bilinears for V from C and D (through
the setback displacement between fermion bilinears therein).

We can now project the above pair interaction onto the
band basis to form V (k, k′), and use the Eliashberg equation
to get the leading pairing function, as discussed in the main
text. Conceptually, this may also be termed a two-step FRG, in
the sense that the Eliashberg theory is equivalent to FRG flow
in the Cooper channel, using V (k, k′) as the initial pairing
interaction at the scale �0. For repulsive local interactions,
V SC/CDW is screened and unimportant in FLEX. However,
negative divergence may appear in V SDW too soon versus the
strength of the bare interaction (via the Stoner mechanism).
Consequently, FLEX works in the weak coupling limit where
no divergences appear in RPA.
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