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We present an experimental demonstration as well as a theoretical model of an integrated circuit designed for
the manipulation of a microwave field down to the single-photon level. The device is made of a superconducting
resonator coupled to a transmission line via a second frequency-tunable resonator. The tunable resonator can be
used as a tunable coupler between the fixed resonator and the transmission line. Moreover, the manipulation of
the microwave field between the two resonators is possible. In particular, we demonstrate the swapping of the
field from one resonator to the other by pulsing the frequency detuning between the two resonators. The behavior
of the system, which determines how the device can be operated, is analyzed as a function of one key parameter
of the system, the damping ratio of the coupled resonators. We show a good agreement between experiments and
simulations, realized by solving a set of coupled differential equations.
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In quantum technology the interaction between quantum
states of light and various degrees of freedom of matter can be
controlled in a variety of systems. Among them, macroscopic
superconducting circuits cooled to millikelvin temperatures
are developing as a platform to manipulate microwave pho-
tons and artificial atoms. They are easy to engineer because
they are integrated electrical circuits. This forms the field of
circuit quantum electrodynamics (circuit-QED) [1,2].

Using electrical circuits for building quantum systems
allows for a precise design of Hamiltonian parameters within
a wide range [3]. Furthermore, some parameters can also be
made tunable in situ, for instance, the resonance frequencies
of resonators and the transition frequency of artificial atoms,
also known as quantum bits [4–7].

It is also essential for many experiments and applica-
tions to have tunable couplings, or equivalently, lifetimes
or linewidths. Tunable couplings have already been demon-
strated between qubits [8–13], between qubits and resonators
[14–18], and between resonators [19–21].

In this work we focus on the tunable coupling between a
resonator and a transmission line. This function is required
in several types of applications. First, in quantum commu-
nication [22], it is envisioned that “flying” qubits are sent
over long distances in the form of photons [23] propagating
between nodes acting as quantum memories and processors.
These nodes could be implemented as microwave resonators
coupled to qubits or other types of quantum systems. It has
been shown that the transfer efficiency can be increased if one
can adjust the couplings at both ends of the transmission chain
[24,25]. Adjusting the coupling between the transmission line
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and the terminating resonator to the temporal and spectral
properties of the incoming wave packet can result in full
absorption [26], which can be viewed as an impedance match-
ing condition for the resonator [27]. Inversely, a resonator with
tunable coupling can also be used to emit microwave photons
contained in an arbitrary wave packet. This has only been
achieved with more complex schemes so far [28]. Further-
more, it is becoming possible to simulate complex quantum
systems, such as many-body states of condensed matter, using
arrays of superconducting resonators and qubits. For this pur-
pose, tunable couplings are essential to implement arbitrary
Hamiltonians. Even more interestingly, dynamic processes
can be studied if the couplings can be tuned fast enough, on
the timescale of the processes under study.

Since resonators are either capacitively or inductively
coupled to transmission lines, a first approach to make the
coupling tunable is to use a tunable circuit element, such as
a tunable inductance, for instance a superconducting quantum
interference device (SQUID) [29]. To allow for more complex
manipulations of the microwave signals, a second approach is
based on a dual resonator architecture. A high quality factor
resonator, dedicated to the storage of microwave radiation,
which can be viewed as a quantum node, is connected to a
transmission line via a low quality factor resonator. This low
Q resonator permits the fast transfer, storage or retrieval, of
the quantum information encoded in the microwave radiation.
It has already been shown how parametric processes can be
used for the coherent manipulation of the microwave signals,
either by coupling the two resonators with a Josephson ring
modulator [30], a flux-driven Josephson junction circuit [31],
or with a superconducting qubit [32]. In our work, we use a
similar dual resonator architecture, but our approach for the
coherent control is different. We made the low-Q resonator
frequency-tunable, and the resonators are simply capacitively
coupled.
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In a previous article, we demonstrated the storage of mi-
crowaves in a superconducting resonator by switching on and
off this tunable coupler [33]. We showed that microwaves can
be released from the storage resonator through the frequency-
tunable low-Q coupling resonator at a varying rate. We pre-
sented a sample that was engineered to show a high on/off
coupling ratio. The goal of the current article is to extend this
work by presenting a generic model for this coupled-resonator
circuit, valid in a large range of parameters and supported
by experimental data in good agreement with the theory. We
show that the behavior of each sample is governed by a single
parameter, a ratio between coupling rates, which corresponds
to the damping ratio of the coupled resonator system. We
present an experimental comparison of two samples operating
in two distinct regimes. One of the sample corresponds to
the results already presented in our previous work [33]. It is
optimized for direct addressing of the storage resonator, which
is done in the off-resonant coupling of the two resonators.
For the second sample, we show that the storage resonator
can be addressed through a swapping procedure exploiting the
resonant coupling of the two resonators.

I. SYSTEM AND MODEL

A. The measured system

The system under study is composed of two microwave
resonators (see Fig. 1). The resonators are coupled through
a coupling capacitance Cc, permitting the transfer of energy
between them. One of the resonators features a tunable reso-
nance frequency. This allows to control the energy exchange
between the two resonators, by changing their detuning. The
frequency tunability is based on a superconducting quan-
tum interference device (SQUID). It behaves as a tunable,
nonlinear, and nondissipative inductance embedded in the
resonator [4,5].

The tunable resonator has been engineered so that its range
of reachable resonance frequency crosses the resonance fre-
quency of the second resonator, which is constant. In addition,
the tunable resonator is also coupled to a transmission line,
which allows us to excite the system and probe it through
microwave reflectometry. It will therefore be referred to as
the coupling resonator, or resonator B. The other resonator
contains no SQUID and thus has a fixed resonance frequency
and a long lifetime. It is therefore suitable for microwave
storage for instance [33], and will be referred to as the storage
resonator, or resonator A.

B. Theoretical model

The theoretical model of the system is depicted in Fig. 1(a).
In the rotating wave approximation, valid because the cou-
pling rate g between the resonators is much smaller than the
resonator resonance frequencies ωa and ωb, the Hamiltonian
of the coupled resonators is

Ĥ = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄g(âb̂† + â†b̂)

+ ih̄
√

κ
(
V ∗

in (t )b̂ − Vin(t )b̂†
)
, (1)

where â and b̂ are the field ladder operators for resonators
A and B, respectively, and Vin(t ) the input field driving the
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FIG. 1. (a) Model of the system under study. A storage resonator
with frequency ωa/(2π ) is coupled to a transmission line via a
coupling resonator with tunable frequency ωb/(2π ). (b) Optical
microscope image of the corresponding superconducting integrated
circuit (sample I).

system. Note that the Hamiltonian may be time dependent,
as, in addition to the time-dependent drive, the resonance
frequency of resonator B ωb can be rapidly tuned in the
experiment.

The coupling resonator is capacitively coupled to a trans-
mission line, which makes the system open and dissipative. In
addition, both resonators have finite intrinsic lifetimes, 1/κia

and 1/κib. To describe the evolution of the quantum state of the
system, we use the Lindblad master equation [34–36], which
gives the time evolution of the density matrix ρ = ρa ⊗ ρb:

ρ̇ = − i

h̄
[Ĥ, ρ] + κD[b̂]ρ + κiaD[â]ρ + κibD[b̂]ρ, (2)

where D denotes the Lindblad superoperator, defined as
D[x̂]ρ = x̂ρx̂† − 1

2 {x̂†x̂, ρ}. Solving this equation gives the
time evolution of the average photon number in each res-
onator, which cannot be measured directly in the experiment.
For instance, for the storage resonator,

〈na〉 = 〈â†â〉 = Tr(â†âρ). (3)

The classical response of the system to the input field Vin

is given by the equations of motion for the expectation values
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of the resonator fields A = 〈â〉 and B = 〈b̂〉. They are derived
using Ȧ = Tr(âρ̇) and Ḃ = Tr(b̂ρ̇ ).

dA

dt
= −iωaA − igB − κia

2
A, (4)

dB

dt
= −iωbB − igA − κ

2
B − κib

2
B − √

κVin. (5)

The output voltage, which can be measured on the transmis-
sion line, is computed using the input-output relation

Vout = Vin + √
κB. (6)

In practice, the system is driven at an angular frequency ωd

close to the resonator resonance frequencies. It is therefore
relevant to study its dynamics in a rotating frame. Natural
choices for the rotating frame reference frequency are, for
instance, the resonance frequency of the storage resonator
ωa, which is constant, or the frequency of the drive field.
Redefining the resonator and output fields with respect to a
reference frequency ωref by taking A = ae−iωreft , B = be−iωreft ,
and Vout = voute−iωreft , and writing the driving field with re-
spect to the driving frequency Vin = vine−iωd t , the equations
of motion become

da

dt
= −i(ωa − ωref )a − igb − κia

2
a, (7)

db

dt
= −i(ωb − ωref )b − iga − κ

2
b − κib

2
b

−√
κvine−i(ωd −ωref )t . (8)

We performed simulations of the system by numerically
solving either the differential equations of motion, Eq. (7)
and (8), or the Lindblad master equation, Eq. (2), using the
Python package QUTIP [37,38] dedicated to the study of open
quantum systems. In practice, the complex output voltage
is measured through heterodyne demodulation of the output
signal, which gives its quadrature components I and Q. They
are defined as vout = I + iQ. In order to directly reproduce
the experimental data, the reference frequency of the rotating
frame ωref has to be set to the frequency of the local oscillator
(LO) used to perform the demodulation (see Fig. 2). The
calculated output voltage is subsequently low-pass filtered,
to account for the finite bandwidth of the antialiasing filter
preceding the sampling step in the digitizer. We used a digital
Butterworth filter with a cutoff at 90 MHz.

FIG. 2. Schematics of the cryogenic microwave measurement
setup. The chip is located at the coldest stage of a dilution refrigerator
equipped with coaxial lines. The input of the device is probed with
a reflectometry setup: a microwave signal is routed to the device
via a circulator and the reflected signal is amplified with low noise
amplifiers, both at 4 K and room temperature. The output signal
is down-converted and then numerically demodulated and sampled
with a vector signal analyzer. The control port of the chip is driven
with an arbitrary waveform generator (AWG). The input lines are
equipped with attenuators and filters in order to prevent room tem-
perature thermal noise from heating the device. The output line is
equipped with a circulator acting as an isolator.

C. Microwave field oscillation

In order to get an insight to the free evolution of the system,
i.e., in absence of a driving field, it is useful to separate the
variables a and b in Eqs. (7) and (8). We choose ωref = ωa.
Neglecting the intrinsic losses (κia, κib � κ , see Table I), this
yields, for the storage resonator field,

d2a

dt2
+

(κ

2
+ i�

)da

dt
+ g2a = 0. (9)

TABLE I. Parameters for the two samples under study: ωa resonance frequency of the storage resonator, ω0
b bare resonance frequency of

the coupling resonator, γ inductive ratio for the coupling resonator, EJ maximum Josephson energy of the SQUID, g coupling between the
resonators, κ coupling rate of the coupling resonator to the transmission line, ξ damping ratio, κia dissipation rate of the storage resonator, and
κib dissipation rate of the coupling resonator.

Sample ωa/2π ω0
b/2π γ EJ g/2π κ ξ κia κib

(GHz) (GHz) (%) (meV) (MHz) (MHz) (MHz) (MHz)

I 5.416 5.844 4.8 3.1 21.2 5.0 0.0094 0.40 0.125
II 5.186 5.810 8.4 2.0 18.3 280 0.61 0.054 1.8
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When the resonators are set on resonance, i.e., � = ωb −
ωa = 0, the system behaves as a damped harmonic oscillator
characterized by the angular frequency g and the damping
ratio ξ = κ/(4g). The field in the storage resonator oscillates
in time, as the energy is periodically transferred back and forth
between the two resonators. It also decays to the transmission
line. The decay regime depends on ξ . Note that ξ cannot be
tuned in situ in the experiment; it is a fixed property of each
sample.

For an underdamped system (ξ < 1), which corresponds to
the experiments shown in this article, the decay is slower than
the oscillation, and

a(t ) = e− κ
4 t

(
α1eig

√
1−ξ 2t + α2e−ig

√
1−ξ 2t

)
, (10)

where α1,2 are determined by the initial conditions. The
energy, which scales as |a|2, oscillates between the resonators
at an angular frequency of 2g

√
1 − ξ 2. In this strong coupling

regime of the two resonators [39], the effective coupling rate
of the storage resonator to the transmission line is κeff = κ/2.
It is half of that of the coupling resonator, because, due to
the oscillation, the energy is on average only half of the time
in the coupling resonator from which it is released to the
transmission line. It is only for a critically damped system
(ξ = 1) that the energy is directly released from the storage
resonator to the transmission line at the rate κ/2 without
oscillation. For an overdamped system (ξ > 1), corresponding
to a weak coupling of the two resonators, the decay is more
complex, but it is eventually limited by the coupling rate
κeff = κ

2 (1 −
√

1 − 1/ξ 2). For a given g, the fastest release of
the energy stored in the storage resonator is achieved at the
critical damping.

At nonzero detuning, the general solution of Eq. (9) is

a(t ) = α1eλ+t + α2eλ−t . (11)

Again, α1,2 are determined from the initial conditions, and

λ± = −1

2

(
1

2
κ + i�

)
± 1

2

√(
1

2
κ + i�

)2

− 4g2. (12)

The two resonance modes of the system are involved in the
release process, hence the two terms in the general solution.
The real part of λ± indicates the decay of the field whereas
their imaginary part corresponds to the field oscillation.

In underdamped systems, the field oscillation between the
two resonators becomes faster when the detuning is increased,
but only a decreasing fraction of the energy is transferred back
and forth, so that the storage resonator is less and less coupled
to the transmission line. The first term of the solution is the
most relevant when � � g. The effective coupling rate can
be approximated to

κeff = −2 Re(λ+) ≈ κ
g2

�2 + 2g2
. (13)

II. DEVICES AND EXPERIMENTAL SETUP

A. Samples

The devices under study are superconducting coplanar
waveguide resonators fabricated on the surface of a silicon
wafer. The microwave circuit is primarily made of niobium.

Only the SQUID, which is located in the middle of the
coupling resonator and enables it to be tunable, is made of
aluminum. The fabrication process, which has already been
described elsewhere [33], was specially designed to obtain the
longest possible intrinsic lifetime for the resonators, with only
two electron-beam lithography steps.

Two samples with two distinct ξ have been studied. The
parameters of the model described in the previous section
corresponding to these samples are shown in Table I. They
have been extracted from the different experiments we per-
formed. Note that some results on sample II have already been
presented [33].

B. Measurement setup

The measurement setup is displayed in Fig. 2. The sample
is kept below 25 mK in a dilution refrigerator, wired with
coaxial lines. The one-port setup at the sample input is trans-
formed into a two-port measurement setup using a circulator
to route the microwave signals. This allows one to properly
attenuate the input signal, which is necessary for keeping the
sample cold and reaching the few-photon level. The reflected
signal is amplified with a cold 4–8 GHz low-noise amplifier
from Low Noise Factory.

The input signal, with an RF frequency up to 6 GHz,
can be arbitrarily modulated both in phase and magnitude
with a vector signal generator. The output signal undergoes
heterodyne demodulation. The resulting quadratures I and Q
are sampled at a maximum rate of 200 Msample/s using a
vector signal analyzer. Both equipments are from Aeroflex
and can be synchronously triggered.

The flux in the SQUID loop, which determines the fre-
quency of the coupling resonator, is controlled both by a coil
located close to the chip for static biasing and by current
pulses applied on-chip. The stability of the system is ensured
by magnetic field shielding at low temperature.

C. Characterization of the devices with continuous wave
spectroscopy

The resonance modes of the system are probed by analyz-
ing the reflection coefficient of the devices. Its magnitude is
shown for sample I in Fig. 3(b) as a function of frequency and
the magnetic flux, �, in the SQUID loop. This experiment
is done by measuring the transmission of a signal between
the two ports of the setup with a vector network analyzer
(VNA, not shown in the experimental setup in Fig. 2). The
reflection coefficient at the input of the device is obtained
from the raw measurement by subtracting the part of the signal
which comes from the transmission of the coaxial lines and
the microwave components. This background is directly mea-
sured for half-integer values of the flux quantum, for which
the coupling resonator is detuned away from the measurement
band and the storage resonator is strongly undercoupled and
therefore not seen in the measurement.

1. Resonance mode frequency tuning

Two resonance modes can be seen for each value of
the flux. The resonance frequency of the coupling resonator
evolves periodically with the flux, because of the periodic
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FIG. 3. Spectroscopy measurements on sample I. (a) Magnitude
and phase of the reflection coefficient for � = 0.3�0, i.e., when the
two resonators are on resonance. Two resonance lines are observed,
corresponding to the coupled modes of the two resonators. They are
fitted separately with the model given by Eq. (16). (b) Magnitude of
the reflection coefficient as a function of the frequency and the flux
in the SQUID loop. The frequency of the two resonance lines evolve
periodically with the flux. The dashed line indicates the cut shown in
panel (a).

modulation of the SQUID inductance and critical current. It
follows that [6]

ωb(�) = ω0
b

1 + γ∣∣ cos
(
π �

�0

)∣∣ , (14)

where �0 = h/2e denotes the flux quantum, ω0
b is its bare

resonance frequency (i.e., without the SQUID), and γ is the
inductive participation ratio, defined as the ratio of the SQUID
inductance at zero flux over the inductance of the coupling
resonator. The eigenvalues of the Hamiltonian of the system
give the resonance frequencies of the two observed resonance
modes:

ω±(�) = 1

2
[ωa + ωb(�)] ±

√
g2 +

(
�(�)

2

)2

. (15)

They differ from the uncoupled resonance frequencies of the
two resonators when they are tuned in resonance, at around
±0.3�0 in sample I for instance. A positive detuning is
obtained for fluxes around integer number of flux quanta,
whereas a negative detuning is obtained around half-integer
multiples of flux quanta.

0.01

1
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−2000 −1000 0

1/
κ

e
ff

(μ
s)

Detuning Δ/(2π) (MHz)

sample I

sample II

FIG. 4. Effective coupling time of the storage resonator as a
function of the detuning for both samples. The data points come
from the fit with Eq. (16) of the reflection coefficient. The plain lines
show the model given by Eq. (13) without adjustable parameters.
The horizontal dashed lines indicate the intrinsic lifetime 1/κia of
the storage resonators. In both samples the storage resonator can be
set to the over- or undercoupled regimes.

In underdamped samples, the splitting between the two
modes (2g) is larger than their widths, which is of the order
of κ/2 when the two resonators are on resonance. Therefore,
the two modes can be treated separately, as if each mode
corresponds to a single resonator mode, with a resonance
angular frequency ωr , an effective coupling rate κe, and an
effective loss rate κi. The equations of motion [Eqs. (4) and
(5)] and the input-output relation [Eq. (6)] can be adapted for
such a single resonator, and their resolution in the frequency
domain gives the reflection coefficient

� = Vout

Vin
= κi − κe − 2i(ω − ωr )

κi + κe − 2i(ω − ωr )
. (16)

Figure 3(a) shows the magnitude and the phase of the reflec-
tion coefficient at zero detuning. The two resonance modes are
fitted separately with Eq. (16). Note that the phase measured
with the VNA follows the electrical engineering rather than
the physics convention, thus the substitution i ↔ − j had to
be done in Eq. (16). Repeating the fitting procedure for every
value of the flux allowed us to determine the evolution of the
mode resonance frequencies with the flux, as well as their
effective coupling rate and loss rate.

The evolution of the extracted resonance frequencies is
fitted with Eqs. (14) and (15). This gave us ωa, ω0

b, γ , and
g for both samples. These values are shown in Table I. This
also gave the evolution of the detuning � with the flux.

2. Resonance mode linewidth tuning

In addition, the fit of the reflection coefficient gives access
to the intrinsic dissipation rate and the coupling rate to the
transmission line for each of the resonance modes. Figure 4
shows that the effective coupling rate of the storage resonator,
plotted against the detuning for every value of the flux, can be
varied over several orders of magnitude for both samples. Fur-
thermore, this modulation allows to put the storage resonator
in the overcoupled (κeff > κia) or undercoupled (κeff < κia)
regime at will. For both samples, the evolution of the effective
coupling rate with the detuning is well fitted by Eq. (13), at
least when the detuning is not too negative. The model is less
accurate at large negative detuning.
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FIG. 5. Direct release of microwaves from the storage resonator. (a) Output voltage measured for sample I at several detunings. As the
detuning is reduced, the decay becomes faster. Beating is observed for low detunings. (b) Same experiment for sample II. (c) Magnitude and
quadrature signals for sample I for a detuning of 41 MHz at −0.266�0. Blue line: fit; black line and dots: measurement. The model contains
two decaying and oscillating components (see text).

Clearly, much larger coupling rates can be achieved with
sample II because of a larger κ , while the same decoupling as
in sample I can be obtained, which makes it very suitable for
storage and release applications [33].

D. Comparison of the behavior of the devices in the resonant
coupling regime with time domain spectroscopy

The continuous wave spectroscopy measurements shown
in Fig. 4 suggest that the release rate of microwaves stored
in the storage resonator can be controlled. To study this, we
performed a free decay experiment. In this experiment, the
digitizer performing the output signal heterodyne demodula-
tion is set to the frequency of the storage resonator.

Figure 5 shows a comparison of the behavior of samples
I [Fig. 5(a)] and II [Fig. 5(b)]. Initially, in both cases, the
storage resonator is loaded and the coupling resonator is
detuned. At t = 0, the detuning is suddenly reduced. The
traces shown corresponds to different final detunings. Overall,
both samples show similar behavior: the smaller the detuning
the faster the release of the stored energy is. A noticeable
difference is that a much faster release can be achieved with
sample II, which simply comes from its larger coupling κ

between the coupling resonator and the transmission line. This
can also be seen in Fig. 4 through the larger range of the
effective coupling κeff.

The interesting difference lies in the beating that appears
for sample I when the detuning is decreased to values of the
order of g or smaller. This occurs because ξ � 1 for this
sample. Many oscillations of the field take place during the
release, thus both coupled modes of the system get populated
and decay to the transmission line. The beating of the mag-
nitude of the output signal originates from the interference of
their two frequencies. The faster beating is observed at zero
detuning, where the difference between the frequency of the
coupled modes is the smallest. The beating is not observed
at too large detunings because one of the two modes is out
of the bandwidth of the digitizer. In other words, in the time

domain, the beating is faster than the sampling time in this
case.

This effect is better seen on the quadratures of the output
signal, which clearly show the superposition of two oscilla-
tions at two different frequencies. This can be proven by fitting
the quadratures with a two-component model,

Vout(t ) = I (t ) + iQ(t ) = A1e−t/τ1 e−i(ω1t+ϕ1 )

+ A2e−t/τ2 e−i(ω2t+ϕ2 ), (17)

as suggested by Eq. (11). This has been done for all traces,
and the excellent agreement is shown in Fig. 5(c) for � =
41 MHz.

III. MICROWAVE SWAPPING

A. Principle

The two-resonator configuration under consideration al-
lows to tune the effective coupling of the storage resonator
to the transmission line. This gives the ability to excite the
storage resonator from a resonant incoming wave, at a tunable
rate. This can be done only at a moderate detuning between
the two resonators. The detuning must be larger than g so that
the field builds up only in the storage resonator. It should not
be too large, especially when it is negative, as the resonator
should be in the overcoupled regime for the energy transfer
to be efficient (see Fig. 4). The range of suitable detuning is
nevertheless rather large, in particular for sample II. However,
in this mode, the coupling rate can only be smaller than κ/2,
which limits the energy transfer speed.

We now present a different scheme, which utilizes the
coupling resonator for transferring microwaves to the storage
resonator. Whereas this scheme is only possible in samples
with ξ � 1, typically sample I, it allows both faster energy
transfer times and incoming waves with various frequencies
(detuned from the storage resonator).

The transfer is realized in two steps (see Fig. 6). Starting
with a large detuning, the coupling resonator is first excited by
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FIG. 6. Capture and release through field swapping for sample I. (a) Principle of the experiment. A microwave pulse on resonance with
the initially detuned (zero flux) coupling resonator is sent to the input port. The detuning is then quickly reduced to zero, leading to a transfer
(swapping) of the energy to the storage resonator. After a delay, the swap is repeated, such that the energy is transferred to the coupling
resonator from which the microwaves can leak out to the transmission line. (b) Measurement sequence showing the RF input and the detuning.
Note that the detuning pulses are 10 times shorter than sketched, for clarity reasons. (c) Magnitude, phase and quadratures of the measured
output voltage for an excitation at the input of the resonator of −139 dBm. Red lines: simulation. The phase of the measured trace, which
has a random reference, has been compensated to match the phase obtained with the simulation. (d) Same experiment and simulation for an
excitation of −119 dBm, driving the coupling resonator to a nonlinear regime. The signal power is a hundred times higher, hence the reduced
noise. (e) Color map of the output voltage traces for different duration of the swapping pulses. The swap is effective only for certain pulse
widths, where the signal is minimum after the first swap pulse, and maximum after the second pulse. For other values, the energy transfer is
only partial.

a resonant incoming microwave pulse with a square envelope.
Then, when the incoming pulse is turned off, we apply a
quick swap operation to transfer the field from the coupling
resonator to the storage resonator. This operation is orders of
magnitude faster than the decay rate of the coupling resonator,
thus a negligible amount of energy is lost instead of being
transferred.

The swap operation is realized by bringing the two res-
onators on resonance. The theory developed in Sec. I C pre-
dicts that a periodic energy transfer between the two res-
onators should occur. Letting the resonators on resonance for
a half integer number of transfer cycles results in a net energy
transfer from one resonator to the other.

B. Experimental demonstration

In practice, a 5-μs-long square microwave pulse at
5.580 GHz is applied at the input of the experimental setup.
The power at the input capacitor of sample I is estimated to
be −139 dBm, which corresponds to 17 photons in the pulse.
This power has been chosen low enough to ensure a linear
response of the coupling resonator. At the end of the pulse,
the detuning is quickly decreased, kept at zero for 12 ns, and
then brought back to its initial value. After a delay of 2 μs
(storage time), the same detuning pulse is repeated. The output
signal, measured after heterodyne demodulation and sampling
at 200 MS/s, is shown in Fig. 6(c). Its magnitude, its phase,
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and its quadratures are shown. In this experiment, the digitizer
performing the output signal heterodyne demodulation is set
to the frequency of the coupling resonator, in contrast with
the time domain spectroscopy experiment described in the
previous section, where it was set to the frequency of the
storage resonator.

The initial rising pattern corresponds to the response of
the coupling resonator to the input microwave pulse. Since
only a rising exponential pulse can be fully absorbed [26],
a part of the pulse is reflected. Its exact shape depends on
the coupling regime (κ/κib) of this resonator. At t = 5 μs,
the signal goes quickly towards zero, which proves that most
of the energy is removed from the coupling resonator after
the detuning pulse. The low-amplitude exponential decay
corresponds to the release to the transmission line of energy
swapped from the storage resonator, which got excited due to
an insufficient detuning during the loading step. What happens
when the detuning pulse is applied cannot be probed with the
experiment, first because it is too quick to be seen with the
detection sampling rate, and more importantly because both
resonators are detuned away from the detection bandwidth
during the pulse. When the second detuning pulse is applied,
the signal shows a fast rise followed by an exponential decay,
which proves that this pulse transfers back some energy stored
in the storage resonator to the coupling resonator.

The red line in Fig. 6(c) corresponds to a simulation of
the experiment. Equations (7) and (8) are solved using the
parameters given in Table I, which were extracted from the
continuous wave measurement. The result is superimposed
on the measured traces. Only the amplitude of the traces has
manually been adjusted, without any physical significance
since the system is in the linear regime. The intrinsic loss
rate of the coupling resonator, which is difficult to probe in
a spectroscopic experiment because it is much lower than its
coupling rate, has also been adjusted to obtain the right shape
for the output signal in the loading step. The good agreement
of the recovered amplitude (after the second detuning pulse)
means that the losses, in particular in the storage resonator,
are well described by our model. The recovered signal phase
is extremely sensitive to the delay between the two pulses,
which therefore has been adjusted to obtain the proper dis-
tribution of the signal on I and Q. The good agreement of
the simulation gives us access to new information which
cannot be probed in the experiment, for instance the resonator
populations.

Figure 6(d) shows the same experiment performed with an
input power of −119 dBm, corresponding to 1700 photons
in the pulse. This much higher power drives the coupling
resonator to a nonlinear regime, of Duffing type, which arises
from the intrinsic nonlinearity of the Josephson junctions
of the SQUID. The response to the microwave pulse now
shows an oscillating pattern. This behavior can be simulated
by adding a nonlinear, cubic term −ib|b|2 to Eq. (8) [40].
The slight shift of the nonlinear resonator frequency has been
accounted for in the simulation, which explains the winding
of the phase in the release step.

Figure 6(e) shows that the duration of the detuning pulse
must be chosen very precisely. Each horizontal trace corre-
sponds to the output trace of an experiment similar to the one
shown in Fig. 6(d), but performed with a variable detuning

pulse width, ranging from 0 ns (no detuning pulse) to 150 ns.
Note that the delay between the two pulses is only 1 μs.
We observe that the detuning pulse alternatively succeeds
and fails to transfer the energy between the resonators. This
proves that the mechanism of the energy transfer is a coherent
oscillation of the field between the resonators. Therefore,
when the pulse duration is a full period of this oscillation, the
energy simply ends up in the resonator where it was located
before the swap pulse. On the other hand, a half-integer
number of periods results in swapping the field between the
coupling resonator and the storage resonator. The behavior
of the output voltage at the second detuning pulse is easily
understood: when the first pulse keeps the energy into the
coupling resonator, it is released to the transmission line
directly after, and thus no output signal is observed when the
second pulse is applied.

This experiment allows us to determine the optimal detun-
ing pulse width, which is 12 ± 1 ns. This is in excellent agree-
ment with the predicted value, given by 2π/4g ≈ 11.8 ns.

IV. CONCLUSION

We designed, fabricated, and studied superconducting mi-
crowave circuits in which we coupled a superconducting
resonator to a transmission line through a frequency-tunable
resonator. The detuning between these two resonators can be
controlled, which enables one to tune the effective coupling of
the fixed storage resonator to the transmission line. Moreover,
the additional resonance mode introduced by the coupling res-
onator can get occupied when the two resonators are brought
close to resonance. Controlling the detuning therefore also
enables the coherent manipulation of microwaves between the
two coupled resonators.

The behavior of the system results from the interplay
between the oscillation of the field between the coupled
resonators and its decay to the transmission line. It depends
on a single dimensionless parameter ξ which is the damping
ratio of the field oscillation. This parameter can be easily
engineered when the circuit is designed by adjusting the
coupling capacitances.

This microwave oscillation can be used for catching or
releasing microwaves to the transmission line, exploiting the
resonant coupling of the two resonators. For samples where
ξ � 1, we showed an efficient strategy for storing microwaves
in the system, first loading them into the coupling resonator
and then swapping them to the storage resonator. The latter
is done by accurately controlling the detuning in time. This
strategy allows to catch or release microwaves within a large
range of frequencies since the coupling resonator is tunable,
while they are stored at a fixed frequency.

In contrast, the off-resonant coupling of the two resonators
allows to release (or catch) microwaves only at the frequency
of the storage resonator, but with an effective coupling rate
which can be tuned. The tuning range is especially large
when ξ is not too small. For ξ � 1, we showed that the two
modes of the system are involved in the release process. This
could be useful for creating states of the field with a quantum
superposition of frequencies.

Numerical simulations of the system showed excellent
agreement with the experimental data, demonstrating proper
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modeling of the system. Whereas at low power, close to the
single photon level, linear equations could be used, the mod-
eling is also working at higher photon level by introducing a
nonlinear term to account for the nonlinear behavior of the
coupling resonator originating from the nonlinearity of the
SQUID.

Although we performed experiments with classical signals,
it is known that superconducting circuits are suitable for the
manipulation of non-classical states of the field [41]. It is
likely that the coherent microwaves manipulation which we
demonstrated can also be performed with such non-classical
states, for instance single photons. The devices described in

this article could therefore be implemented as a part of a larger
quantum circuit.
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