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We work out a microscopic theory describing complete statistics of voltage fluctuations generated by quantum
phase slips (QPS) in superconducting nanowires. We evaluate the cumulant generating function and demonstrate
that shot noise of the voltage as well as the thir d and all higher voltage cumulants differ from zero only
due to the presence of QPS. In the zero-frequency limit voltage fluctuations in superconducting nanowires
are described by Poisson statistics just as in a number of other tunnelinglike problems. However, at nonzero
frequencies quantum voltage fluctuations in superconducting nanowires become much more complicated and are
not anymore accounted for by Poisson statistics. In the case of short superconducting nanowires we explicitly
evaluate all finite-frequency voltage cumulants and establish a nontrivial relation between these cumulants and
the current-voltage characteristics of our system.
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I. INTRODUCTION

Superconducting fluctuations play a prominent role in a
reduced dimension [1]. Such fluctuations become particu-
larly pronounced in quasi-one-dimensional superconductors
[2] whose properties drastically differ from those of bulk sys-
tems. For instance, small fluctuations of the superconducting
phase are converted to soundlike plasma modes [3,4] which
can propagate along superconducting nanowires forming an
effective dissipative environment for electrons inside the wire.
Interaction with this environment yields smearing of the gap
singularity in the electron density of states and generates a
nonvanishing tail of states at subgap energies for any nonzero
temperature [5,6].

In addition to small phase fluctuations, at low enough
T quasi-one-dimensional superconducting wires host another
type of fluctuations called quantum phase slips [2,7–12]
(QPS). In the course of a QPS event the superconducting order
parameter temporarily drops down to zero at some point of
the wire and, hence, the superconducting phase there becomes
unrestricted. Later on the order parameter gets restored and
its phase can change by ±2π as compared to its initial value.
In accordance with the Josephson relation such phase jumps
yield voltage pulses. Breaking the symmetry between +2π

and −2π pulses by applying a bias current one generates
nonzero average voltage across the wire. Thus, in the pres-
ence of QPS quasi-one-dimensional superconductors acquire
nonzero resistance [7].

Note that at T = 0 sufficiently thick wires demonstrate
(almost) superconducting behavior meaning that their lin-
ear resistance tends to zero. In contrast, thinner wires turn
insulating. This nontrivial behavior is fully controlled by
quantum phase slips which can formally be viewed as loga-
rithmically interacting vortices in space-time. It follows im-
mediately that there exists a quantum phase transition corre-
sponding to unbinding of QPS-anti-QPS pairs at some critical
value of the wire thickness [7]. This superconductor-insulator

transition (SIT) belongs to the same universality class as the
Berezinskii-Kosterlitz-Thouless phase transition in classical
2D systems.

Yet another fundamental property of the systems under
consideration is the duality between the phase and the charge
spaces [13–17]. This property allows one to establish a duality
relation between Cooper pairs and quantum phase slips. In
particular, the latter can be viewed as effective quantum parti-
cles with the topological charge equal to the superconducting
flux quantum �0 = π/e, where e is the electron charge. Such
particles tunnel back and forth through the superconducting
wire causing not only nonzero average voltage, but also
voltage noise [18]. In particular, recently we demonstrated
the existence of QPS-induced nonequlibruim shot noise of
the voltage in both long and short superconducting nanowires
[18–22].

In this work we will proceed further and construct a
theory describing full counting statistics (FCS) of interacting
quantum phase slips in superconducting nanowires. The paper
is organized as follows. In Sec. II we describe the system
under consideration and define its effective Hamiltonian in the
dual representation. In Sec. III we derive the FCS generating
function for QPS that allows one to recover all cumulants
of the voltage operator in superconducting nanowires. The
Poissonian nature of the zero-frequency cumulants is demon-
strated in Sec. IV. Sections V and VI are devoted to evalu-
ation of shot noise and higher voltage cumulants at nonzero
frequencies. In Sec. VII we briefly discuss and summarize our
key observations. The applicability of our results derived for
short superconducting nanowires also to resistively shunted
Josephson junctions is demonstrated in the Appendix.

II. THE MODEL

Below we will address the system depicted in Fig. 1.
It consists of a superconducting nanowire of length L and
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FIG. 1. The system under consideration.

cross section s connecting two big superconducting reservoirs
which are in turn attached to external leads. The system is
biased by a constant current I and the voltage V across the
wire is measured by a detector. As usually, superconductivity
inside the wire is described by the fluctuating order
parameter field �(x, t ) = |�(x, t )| exp[iϕ(x, t )], where t
denotes real time and x is the coordinate along the wire
(−L/2 < x < L/2).

In what follows we will assume that all relevant energy
scales, such as, e.g., the frequency I/e, temperature T , and
others remain much smaller than the mean-field value � of the
order parameter field |�(x, t )| inside the wire. In this case it
becomes possible [2,7,8,23] to separate low-energy dynamics
of �(x, t ) from QPS-related tunneling processes accompanied
by local temporary suppression of the order parameter field
inside the wire. As before [20–22], it will be convenient for us
to describe the system dynamics in terms of the so-called dual
variables χ̂ (x) and �̂(x) related to charge density and phase
operators Q̂ and ϕ̂, respectively, as

Q̂(x) = 1

�0
∇χ̂ (x), ϕ̂(x) = 2e

∫ x

0
dy �̂(y). (1)

These dual field variables obey the standard canonical com-
mutation relation

[�̂(x), χ̂ (x′)] = −i�0δ(x − x′). (2)

In the absence of quantum phase slips our superconducting
nanowire behaves as a transmission line described by the
Hamiltonian

ĤT L =
∫ L/2

−L/2
dx

(
[∇χ̂ (x)]2

2�2
0Cw

+ �̂2(x)

2Lkin

)
, (3)

where Lkin is the wire kinetic inductance and Cw is the
wire capacitance per unit length. The QPS-related effects are
accounted for by the term

ĤQPS = −γQPS

∫ L/2

−L/2
dx cos(χ̂ (x)), (4)

which follows directly from the commutation relation
[χ̂ (x), ϕ̂(x′)] = 2π iθ (x′ − x). Here and below

γQPS ∼ (gξ�/ξ ) exp(−agξ ), a ∼ 1 (5)

is the QPS tunneling amplitude [8], gξ = 2πσN s/(e2ξ ) � 1
is the dimensionless normal-state conductance of the wire

segment of length equal to the superconducting coherence
length ξ , and σN is the Drude conductivity of the wire.

The total Hamiltonian of our system “wire + leads” can be
expressed in the form

Ĥ = ĤT L + ĤQPS + Ĥenv, (6)
where the last term Ĥenv accounts for an external circuit (envi-
ronment) as well as for its coupling to the wire. For simplicity
we will assume that both the external environment and its
coupling to the wire degrees of freedom are linear. Hence, in
the absence of quantum phase slips (i.e., for γQPS → 0) the
problem remains Gaussian and can be handled exactly. The
task at hand is to include QPS effects into our consideration.
As the QPS amplitude always remains sufficiently small, this
task can be accomplished by employing a regular perturbation
theory in γQPS. This approach is appropriate either at not
very low energies or on the superconducting side of SIT. The
corresponding analysis is developed below in the next section.

III. CUMULANT GENERATING FUNCTION

In order to fully describe voltage fluctuations in the system
under consideration it is in general necessary to evaluate
all cumulants of the voltage operator. This goal can be ac-
complished by deriving the cumulant generating function W
defined as a logarithm of the so-called “partition function” Z ,

W[J] = ln(Z[J]) = ln〈ei
∫

dtJ (t )v(t )〉, (7)

where

v = 1

�0Cw

[∇χ (−L/2) − ∇χ (L/2)] (8)

is a voltage drop across the wire and 〈· · · 〉 denotes the
quantum average fulfilled with the total Hamiltonian Ĥ (6).
By taking the N th variational derivatives of W[J] with respect
to J (t ) one recovers the N th cumulant of the voltage operator
(see below).

The function Z[J] can be conveniently evaluated by ex-
pressing it in terms of a path integral on the Keldysh con-
tour. As usually, all variables of interest are defined on both
forward and backward time branches of the Keldysh contour,
e.g., χF,B, giving rise to “classical” and “quantum” variables,
respectively, χ+ = (χF + χB)/2 and χ− = χF − χB (and sim-
ilarly for all other operators of interest). In order to evaluate
quantum correlators for any physical quantity it is in general
necessary to specify proper time ordering for the correspond-
ing product of operators. Such ordering becomes insignificant
only in the zero-frequency limit. Below in this work we will
only be interested in evaluating fully symmetrized cumulants
of the voltage operator equivalent to the cumulants of the
“classical” variable v+(t ) in our path integral formalism. For
example, for n = 2 we have

〈v+(t1)v+(t2)〉 = 1
2 〈v̂(t1)v̂(t2) + v̂(t2)v̂(t1)〉, (9)

while for n = 3 one finds [19,24]

〈v+(t1)v+(t2)v+(t3)〉 = 1
8 {〈v̂(t1)[T v̂(t2)v̂(t3)]〉 + 〈[T̃ v̂(t2)v̂(t3)]v̂(t1)〉 + 〈v̂(t2)[T v̂(t1)v̂(t3)]〉 + 〈[T̃ v̂(t1)v̂(t3)]v̂(t2)〉
+ 〈v̂(t3)[T v̂(t1)v̂(t2]〉 + 〈[T̃ v̂(t1)v̂(t2)]v̂(t3)〉 + 〈T v̂(t1)v̂(t2)v̂(t3)〉 + 〈T̃ v̂(t1)v̂(t2)v̂(t3)〉}, (10)

094516-2



FULL COUNTING STATISTICS OF QUANTUM PHASE … PHYSICAL REVIEW B 99, 094516 (2019)

where T and T̃ are, respectively, the forward and backward
time-ordering operators and v̂(t ) is the voltage drop operator.

With this in mind the function Z[J] can be expressed as

Z[J] = 〈eiSQPS[χ+,χ−]ei
∫

dt J (t )v+(t )〉0, (11)

where [18]

SQPS = −2γQPS

∫
dt

∫ L/2

−L/2
dx sin(χ+) sin(χ−/2) (12)

is the action corresponding to the Hamiltonian part (4) which
accounts for the effect of QPS and 〈· · · 〉0 denotes averag-
ing with the Gaussian effective action corresponding to the
Hamiltonian Ĥ0 = ĤT L + Ĥenv. The function (11) generates
voltage correlators

〈v+(t1)v+(t2) . . . v+(tn)〉 = 〈
v+(t1)v+(t2) . . . v+(tn)eiSQPS

〉
0.

(13)

In order to proceed let us eliminate the second exponent
in Eq. (11) by making a linear substitution χi = λi + χ̃i and
imposing the condition〈

χ̃ie
i
∫

dt J (t )v+(t )
〉
0

= 0 (14)

implying that

λ+(x, t ) = χ0(x, t ) −
∫

dt ′GK
χv (x; t, t ′)J (t ′), (15)

λ−(x, t ) = −
∫

dt ′GA
χv (x; t, t ′)J (t ′). (16)

Here we denoted χ0 ≡ 〈χ+〉0 and introduced both Keldysh
and advanced Green’s functions (GFs), respectively,

GK
χv (x; t, t ′) = −i〈χ+(x, t )v+(t ′)〉0 (17)

and

GA
χv (x; t, t ′) = −i〈χ−(x, t )v+(t ′)〉0. (18)

The latter function coincides with the transposed version of
the retarded GF

GR
χv (x; t, t ′) = −i〈χ+(x, t )v−(t ′)〉0. (19)

As a result of the above simple manipulations, we obtain

Z[J] = e−(i/2)
∫

dt dt ′J (t )GK
vv (t,t ′ )J (t ′ )〈eiSQPS[λ++χ̃+,λ−+χ̃−]〉0, (20)

where Keldysh GF GK
vv (t, t ′) is defined analogously to that in

Eq. (17). The remaining average can be performed with the
aid of the Wick’s theorem and expressed via the two GFs,

GK
χχ (x, x′; t, t ′) = −i〈χ̃+(x, t )χ̃+(x′, t ′)〉0, (21)

GR
χχ (x, x′; t, t ′) = −i〈χ̃+(x, t )χ̃−(x′, t ′)〉0, (22)

while all averages of the type 〈χ̃−χ̃−〉0 vanish identically due
to causality.

Let us now employ the perturbation theory and evaluate
the cumulant generating function by expanding Z[J] up to the
second order in γQPS. In this way we get

W[J] = − i

2

∫
dt dt ′J (t )GK

vv (t, t ′)J (t ′)

+ i〈SQPS[λ+ + χ̃+, λ− + χ̃−]〉0

− 1

2

〈
S2

QPS[λ+ + χ̃+, λ− + χ̃−]
〉
0

+ 1

2
〈SQPS[λ+ + χ̃+, λ− + χ̃−]〉2

0. (23)

Substituting the QPS action SQPS (12) into Eq. (23) after a
simple algebra we observe that the first-order contribution in
γQPS vanishes and we obtain

W[J] ≈ − i

2

∫
dt dt ′J (t )GK

vv (t, t ′)J (t ′) + γ 2
QPS

∫ L/2

−L/2
dx dx′

∫
dt

∫ t

dt ′[P(x, x′; t, t ′) − P(x′, x; t ′, t )]

× sin(λ+(x, t ) − λ+(x′, t ′)) sin

(
λ−(x, t )

2

)
cos

(
λ−(x′, t ′)

2

)
− γ 2

QPS

2

∫ L/2

−L/2
dx dx′

∫
dt

∫
dt ′[P(x, x′; t, t ′) + P(x′, x; t ′, t )]

× cos(λ+(x, t ) − λ+(x′, t ′)) sin

(
λ−(x, t )

2

)
sin

(
λ−(x′, t ′)

2

)
, (24)

where the function P(x, x′; t, t ′) is defined as [18]

P(x, x′; t, t ′) = 〈ei[χ̃+(x,t )−χ̃+(x′,t ′ )−χ̃−(x,t )/2−χ̃−(x′,t ′ )/2]〉0 = 〈ei[χ̃+(x′,t ′ )−χ̃+(x,t )+χ̃−(x,t )/2+χ̃−(x′,t ′ )/2]〉0

= eiGK
χχ (x,x′;t,t ′ )−iGK

χχ (x,x;t,t )/2−iGK
χχ (x′,x′;t ′,t ′ )/2+iGR

χχ (x,x′;t,t ′ )/2−iGA
χχ (x,x′;t,t ′ )/2. (25)

Equation (24) enables one to directly evaluate all (sym-
metrized) voltage correlators by taking variational derivatives
of W with respect to J (t ). The structure of this result actually
allows one to make an important conclusion even prior to this
calculation: It follows immediately from Eq. (24) that in the
absence of QPS (i.e., for γQPS → 0) all voltage cumulants
except for the second one [describing Gaussian noise of

the transmission line (3)] vanish identically. In other words,
at low enough temperatures only quantum phase slips give
rise to both shot noise of the voltage [18–22] and to all
higher cumulants of the voltage operator in superconducting
nanowires.

We also note that in the considered case of a con-
stant in time current bias I we have χ0(x, t ) = I�0t and
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the function P depends only on the time difference, i.e.,
P(x, x′; t, t ′) = P(x, x′; t − t ′). This property will signifi-
cantly simplify our subsequent calculations.

IV. VOLTAGE CUMULANTS IN THE
ZERO-FREQUENCY LIMIT

To begin with, we employ the above general results in
order to evaluate all cumulants of the voltage operator, the
zero-frequency limit. Proliferation of QPS yields a nonva-
nishing expectation value V of the voltage operator across
our superconducting nanowire [2,7,8] which depends on the
external bias current I , i.e., V = V (I ). At the same time an
instantaneous voltage value v(t ) fluctuates in time due to a
sequence of voltage pulses produced by QPS. Let us define
the time average

v̄ = 1

τ

∫ τ/2

−τ/2
dτ v(τ ), (26)

with τ being larger as compared to any relevant timescale
for our problem. It is easy to observe that the cumulants of
v̄ are identical to the corresponding cumulants of the voltage
operator evaluated in the zero-frequency limit. For example,
for the first two cumulants one readily finds

〈v̄〉 = 〈v(t )〉 = V (I ), (27)

〈(v̄ − 〈v̄〉)2〉 = 1

τ

∫
dt (〈v(t )v(0)〉 − V 2) = 1

τ
S0(I ). (28)

Here and below Sω(I ) denotes the frequency-dependent volt-
age noise power for our wire [18–22].

In order to evaluate the cumulant generating function of v̄

w( j) = ln〈ei jv̄〉, (29)

it suffices to employ Eq. (24) and set J (t ) = j/τ for −τ/2 <

t < τ/2 and J (t ) = 0 otherwise. At large enough values of τ

the combination λ+(x, t ) − χ0(x, t ) becomes practically inde-
pendent of both x and t implying that λ+(x, t ) − λ+(x′, t ′) ≈
I�0(t − t ′). Making use of the equation of motion(

∂2
t − Lkin

Cw

∇2

)
χ̂ (x, t ) = 0 (30)

we conclude that

lim
ω→0

GA
χv (x; ω) = lim

ω→0
GR

vχ (x; ω) = �0 (31)

and, hence, λ−(x, t ) ≈ −�0 j/τ . As a result we obtain

w( j)

τ
= − i j2

2τ 2
GK

vv (0) − γ 2
QPS

2
sin

(
�0 j

τ

)∫ L/2

−L/2
dx dx′

×
∫ ∞

0
dt[P(x, x′; t ) − P(x′, x; −t )] sin(I�0t )

− γ 2
QPS sin2

(
�0 j

2τ

) ∫ L/2

−L/2
dx dx′

×
∫ ∞

0
dt[P(x, x′; t ) + P(x′, x; −t )] cos(I�0t ).

(32)

Performing the Fourier transformation

P(x, x′; ω) =
∫ ∞

0
dt eiωt P(x, x′; t ) (33)

and defining

�(ω) = γ 2
QPS

4

∫ L/2

−L/2
dx dx′[P(x, x′; ω) + P∗(x′, x; ω)] (34)

we cast the above expression for w to a simple form

w( j)

τ
= − i j2

2τ 2
GK

vv (0) + �(I�0)(ei�0 j/τ − 1)

+ �(−I�0)(e−i�0 j/τ − 1), (35)

which fully describes the statistics of QPS-related volt-
age fluctuations in superconducting nanowires in the zero-
frequency limit.

It follows immediately from Eq. (35) that this statistics is
Poissonian in the above limit [19,25]. In particular, combining
Eqs. (29) and (35) and evaluating the first and the second
derivatives of w with respect to j, for the first two voltage
cumulants we get

V (I ) = �0[�(I�0) − �(−I�0)], (36)

S0(I ) = iGK
vv (0) + �2

0[�(I�0) + �(−I�0)]. (37)

Equation (36) coincides with the well-known result [7]
and allows one to identify �(I�0) as a QPS tunneling rate.
Equation (37) reproduces our previous result for the voltage
noise [18]. Employing the detailed balance condition �(ω) =
eω/T �(−ω), this result can also be rewritten as

S0(I ) = iGK
vv (0) + �0V (I ) coth

(
I�0

2T

)
. (38)

The two terms in the right-hand side of this formula describe,
respectively, equilibrium Nyquist noise and QPS-induced shot
noise [18]. Note that in the case of the transmission line (3)
GK

vv (0) = 0 and, hence, Nyquist noise vanishes in the zero-
frequency limit. Nevertheless, here we keep this term for the
sake of generality as it can differ from zero in some other
models.

Higher voltage cumulants in the zero-frequency limit can
be found analogously. Let us define them as

CN (I ) = (−i)NτN−1 ∂N
j w( j)

∣∣
j→0

. (39)

After a simple algebra all zero-frequency cumulants can be
expressed through the current-voltage characteristics for our
system. In particular, for odd cumulants one has

C2N+1(I ) = �2N
0 V (I ), (40)

whereas for even ones we obtain

C2N (I ) = �2N−1
0 V (I ) coth

(
I�0

2T

)
. (41)

The results derived in this section demonstrate that in the long
time limit the effect of interacting QPS reduces to that of in-
dependent sharp voltage pulses which occur with the effective
rate �(I�0) and are described by Poisson statistics. Note that
essentially the same result was previously derived at higher
T for thermally activated phase slips (TAPS) [27]. At first
sight this similarity can be considered as curious since here we
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are dealing with quantum interacting objects—QPS—which
strongly differ from noninteracting classical TAPS. On the
other hand, we note that Poisson statistics for QPS holds only
on the superconducting side of SIT where quantum phase slips
are bound in pairs which practically do not interact with each
other. With this in mind the similarity between the results
derived here and in Ref. [27] does not appear very surprising.

In any case, the above simple physical picture applies only
in the zero-frequency limit. At nonzero frequencies the system
behavior becomes more involved and the statistics of voltage

fluctuations deviates from Poissonian, as will be demonstrated
in the next section.

V. NOISE POWER IN THE SHORT WIRE LIMIT

The general expression for the noise power is defined as

Sω(I ) = −
∫

dt eiωt δ2W[J]

δJ (t )δJ (0)

∣∣∣∣
J→0

. (42)

With the aid of Eq. (24) we obtain

Sω(I ) = iGK
vv (ω) + γ 2

QPS

2

[ ∫ L/2

−L/2
dx dx′GK

vχ (x; ω)GR
vχ (x′; ω)

∫ ∞

0
dt[P(x, x′; t ) − P(x′, x; −t )] cos(I�0t )(eiωt − 1)

+ 1

4

∫ L/2

−L/2
dx dx′GR

vχ (x; ω)GR
vχ (x′; −ω)

∫ ∞

−∞
dt[P(x, x′; t ) + P(x′, x; −t )] cos(I�0t )eiωt + {ω → −ω}

]
. (43)

By virtue of the fluctuation-dissipation theorem this general
result can be transformed to that already derived in our previ-
ous work [18] where we merely addressed the long wire limit.
Here, in contrast, we will specify the expression for the noise
power for shorter wires. This limit also covers the case of
Josephson junctions and other types of short superconducting
contacts.

In order to proceed we observe that each term in the
square brackets in Eq. (43) contains the combination of the
form factors P(x, x′; ω) describing intrinsic dynamics of a
superconducting nanowire during the phase slippage process,
as well as two GFs of the vχ type demonstrating how the
detector “feels” voltage fluctuations inside the nanowire. Pro-
vided the wire is short enough one can ignore the dependence
of these GFs on spatial coordinates and account only for their
frequency dependence as

GR
vχ (x; ω) ≈ �0(1 − iωτR + · · · ), (44)

where τR is the effective RC time of the system. Accordingly,
the Keldysh GF can be approximated as

GK
vχ (x, ω) ≈ −iωτR coth

(
ω

2T

)
(45)

Employing these approximations, from Eq. (43) we obtain

Sω(I ) = iGK
vv (ω) − i�2

0τRω coth

(
ω

2T

)
[�R(ω + I�0)

+ �R(ω − I�0) + �R(−ω + I�0) + �R(−ω − I�0)

− 2�R(I�0) − 2�R(−I�0)] + 1

2
�2

0[�(ω + I�0)

+ �(ω − I�0) + �(−ω + I�0) + �(−ω − I�0)],

(46)

where we introduced the function

�R(ω) = γ 2
QPS

4

∫ L/2

−L/2
dx dx′[P(x, x′; ω) − P∗(x′, x; −ω)]

(47)

related to �(ω) (34) by means of the following equation:

�R(ω) =
∫

dz

2π i

�(z) − �(−z)

z − ω − i0
. (48)

In order to illustrate the above results let us consider a short
superconducting nanowire embedded in a linear dissipative
external circuit which can, for simplicity, be modeled by an
Ohmic shunt resistor RS . As we demonstrate in the Appendix,
this situation is equally relevant, e.g., for resistively shunted
Josephson junctions in the limit of large Josephson coupling
energies EJ . In this limit one has

GR
χχ (x, x′; ω) ≈ − 2π iμ

ω + i0
, (49)

where μ = RQ/RS is the shunt dimensionless conductance
and RQ = π/(2e2) is the resistance quantum. The QPS tun-
neling rate then equals to

�(ω) = γ 2
QPS(2πT τR)2μeω/2T �

(
μ + iω

2πT

)
�
(
μ − iω

2πT

)
8πT �(2μ)

,

(50)

where �(y) is the Euler gamma function and τ−1
R plays the

role of effective high-energy cutoff frequency. Evaluating
the corresponding integrals in the short wire limit ω, T,

I�0 
 τ−1
R and also for 1 < μ < 3/2, we obtain

�R(ω) = const − i�(ω)e−ω/2T sin
(
πμ + iω

2T

)
cos(πμ)

. (51)

These expressions can be simplified in some limits. For in-
stance, by setting 0 < μ − 1 
 1 we get

�(ω) ≈ γ 2
QPS(2πT τR)2μe(ω/2T )−2C(μ−1)

√
ω2+4π2T 2(μ−1)2

16πT 2�(2μ)
√

sin
(
πμ + iω

2T

)
sin

(
πμ + iω

2T

) ,

(52)

where C is the Euler-Mascheroni constant. Also the expres-
sions for the QPS tunneling rate are simplified greatly for
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|ω| � T . One has

�(ω) ≈ πγ 2
QPSθ (ω)

(ωτR)2μ

2ω�(2μ)
, (53)

�R(ω) ≈ const + πγ 2
QPS

|ωτR|2μe−iπμ sgn(ω)

4ω�(2μ) cos(πμ)
. (54)

Accordingly, in the zero-temperature limit one finds

CN (I ) = πγ 2
QPSsgnN (I )

�
N+2μ−1
0 τ

2μ
R

2�(2μ)
|I|2μ−1. (55)

Note that the above results are consistent with those derived
in [28].

VI. HIGHER VOLTAGE CUMULANTS

Let us now turn to higher voltage cumulants at nonzero frequencies. It is instructive to define a general expression for the
frequency-dependent N th voltage cumulant as

Sω1,...,ωN−1 (I ) =
∫

dt1 . . . dtN−1eiω1t1+···+iωN−1tN−1 (−i)N δNW[J]

δJ (tN−1) . . . δJ (t1)δJ (0)

∣∣∣∣
J→0

. (56)

Note that from the definition it follows that

S00...0︸ ︷︷ ︸
N

(I ) = CN (I ). (57)

In the limit T, ω 
 τ−1
R or, in other words, provided the detector immediately “feels” voltage fluctuations generated by quantum

phase slips, one can set τR → 0 and explicitly evaluate all voltage cumulants at nonzero frequencies. In this case for the cumulant
generating function we get

W[J] ≈ − i

2

∫
dt dt ′J (t )GK

vv (t − t ′)J (t ′) − γ 2
QPS

∫ L/2

−L/2
dx dx′

∫
dt

∫ t

dt ′[P(x, x′; t − t ′) − P(x′, x; t ′ − t )]

× sin(I�0(t − t ′)) sin

(
�0J (t )

2

)
cos

(
�0J (t ′)

2

)
− γ 2

QPS

2

∫ L/2

−L/2
dx dx′

∫
dt

∫
dt ′[P(x, x′; t − t ′) + P(x′, x; t ′ − t )]

× cos(I�0(t − t ′)) sin

(
�0J (t )

2

)
sin

(
�0J (t ′)

2

)
. (58)

It is straightforward to observe that the second term in Eq. (58) can only contribute to odd cumulants, whereas the last term,
in contrast, determines all even cumulants. After some algebra we arrive at the following expressions for both even and odd
voltage cumulants, respectively,

Sω1,...,ω2M (I ) = �2M+1
0

22M (2M )!

∑
p∈perm

2M∑
m=0

(
2M

m

){
�R

(
I�0 − (−1)m

[
ωp1 + · · · + ωpm

]) − �R
(−I�0 − (−1)m

[
ωp1 + · · · + ωpm

])}

(59)

and

Sω1,...,ω2M+1 (I ) = �2M+2
0

22M+1(2M + 1)!

∑
p∈perm

M∑
m=0

(
2M + 1

2m + 1

){
�

(
I�0 + [

ωp1 + · · · + ωp2m+1

]) + �
(−I�0 + [

ωp1 + · · · + ωp2m+1

])

+ �
(
I�0 − [

ωp1 + · · · + ωp2m+1

]) + �
(−I�0 − [

ωp1 + · · · + ωp2m+1

])}
. (60)

Here the sum is taken over all permutations of frequencies.
The above results allow one to extend the relation between the voltage cumulants and the current-voltage characteristics of

our device to nonzero frequencies. For the odd cumulants one finds

Sω1,...,ω2M (I ) = �2M+2
0 I

22M−1(2M )!

∫
dI ′

2π i
V (I ′)

∑
p∈perm

2M∑
m=0

(
2M

m

)
1(

I ′�0 + (−1)m
(
ωp1 + · · · + ωpm

) − i0
)2 − (I�0)2

, (61)

whereas the expression for the even cumulants reads

Sω1,...,ω2M+1 (I ) = �2M+1
0

22M+1(2M + 1)!

∑
p∈perm

M∑
m=0

(
2M + 1

2m + 1

)[
coth

(
I�0 + (

ωp1 + · · · + ωp2m+1

)
2T

)
V

(
I + ωp1 + · · · + ωp2m+1

�0

)

+ coth

(
I�0 − (

ωp1 + · · · + ωp2m+1

)
2T

)
V

(
I − ωp1 + · · · + ωp2m+1

�0

)]
. (62)
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FIG. 2. Real and imaginary parts of the third voltage cumulant at
T → 0 and μ = 1.1.

These expressions can be evaluated numerically making
use of Eqs. (50)–(54) for �(ω) and �R(ω) derived in the
previous section. The corresponding results for the third volt-
age cumulant as a function of two frequencies are displayed
in Figs. 2 and 3, respectively, in the limits of low and high
temperatures. We observe that the third voltage cumulant
consists of real and imaginary parts

Sω1,ω2 (I ) = ReSω1,ω2 (I ) + i ImSω1,ω2 (I ). (63)

Both these functions become considerably smoother at
higher T .

VII. DISCUSSION AND CONCLUSIONS

In this work we developed a microscopic theory enabling
one to fully describe statistics of voltage fluctuations gener-
ated by quantum phase slips in superconducting nanowires.
For this purpose we evaluated the cumulant generating func-
tion that contains complete information about all voltage
correlators in such nanowires. Already from the form of this
function it is easy to observe that the third and all higher
voltage cumulants differ from zero only due to the presence
of QPS and vanish identically should the effect of quantum
phase slips be neglected. Likewise, quantum phase slips are
responsible for the presence of shot noise of the voltage in
superconducting nanowires [18–22].

Note, that previously various aspects of fluctuation statis-
tics have been addressed by a number of authors in the case
of normal mesoscopic conductors (see, e.g., [24,29,30], and
further references therein) as well as for superconducting

FIG. 3. The same as in Fig. 2 at T = I�0.

structures, such as quasi-one-dimensional wires [27] and
resistively shunted Josephson junctions [31,32]. It is worth
pointing out that the authors [27,31,32] restricted their anal-
ysis to thermal fluctuations and, hence, their results remain
applicable at not too low temperatures. Here, in contrast, we
set up a fully quantum-mechanical treatment of the problem
that essentially operates with interacting quantum phase slips
and allows one to fully describe statistics of voltage fluctua-
tions at any temperature down to T → 0.

Proceeding perturbatively in the QPS tunneling rate we
demonstrated that at long times or, equivalently, in the zero-
frequency limit the statistics of voltage fluctuations in super-
conducting nanowires reduces to a Poissonian one similarly to
the situation encountered in a number of other tunnelinglike
problems. Furthermore, it is straightforward to show that in
this limit all (symmetrized) cumulants of the voltage operator
can be expressed in a simple manner through the current-
voltage characteristics of the system V (I ) [cf. Eqs. (40)
and (41)]. At nonzero frequencies, however, quantum volt-
age fluctuations in superconducting nanowires are no longer
described by Poisson statistics. This is because inter-QPS
interaction produced by an effective environment (due to
the wire itself and/or an external dissipative circuit) starts
playing a more important role at shorter timescales making
the whole problem much more involved. Remarkably, also
in this case it is possible to establish a relation between the
voltage cumulants and the current-voltage characteristics of
our device V (I ), though in a much more complicated form as
compared to that in the zero-frequency limit [cf. Eqs. (61) and
(62)]. The latter observation could be important for possible
experimental verification of our theoretical predictions.
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APPENDIX

Consider a current-biased resistively shunted Josephson
junction described by the Hamiltonian [33]

Ĥ = Q̂2

2CJ
− EJ cos(ϕ̂) − Iϕ̂

2e
+ ĤR[ϕ̂], (A1)

where CJ and EJ are, respectively, the junction capacitance
and the Josephson coupling energy. The charge and the phase
operators Q̂ and ϕ̂ obey the standard commutation relation
[Q̂, ϕ̂] = −2ie. Finally, the term ĤR accounts for an external
resistor which can be routinely described, e.g., within the stan-
dard Caldeira-Leggett model. As before, the voltage operator
is defined as V̂ = ∂t ϕ̂/(2e) = Q̂/CJ .

In the limit of large EJ � EC = e2/2CJ the junction phase
dynamics is determined by quantum tunneling between the
minima of the cosine potential −EJ cos ϕ. Let us derive an
effective low-energy Hamiltonian for our junction in the limit
of large EJ . For this purpose it will be convenient for us to
extend the Hilbert space for our system by introducing an
extra pair of canonically conjugated variables φ̂, q̂ obeying
the commutation relation [q̂, φ̂] = −2ie. Consider the Hamil-
tonian

Ĥext = (Q̂ + q̂)2

2CJ
− EJ cos(φ̂) − Iϕ̂

2e
+ ĤR[ϕ̂], (A2)

where the variable φ is treated as compact implying that the
eigenvalues of q̂ are proportional to integer numbers. It is
straightforward to observe that the operator φ̂ − ϕ̂ commutes
with the Hamiltonian. Hence, the whole Hilbert space for
our system can be split into subspaces with fixed values of

φ̂ − ϕ̂ and the system dynamics described by the extended
Hamiltonian Ĥext coincides with that governed by the initial
Hamiltonian within the subspace φ̂ = ϕ̂ mod 2π .

Now let us recall that in the limit EJ → ∞ the variables
q̂, φ̂ can be treated as fast ones in contrast to Q̂, ϕ̂ which repre-
sent slow variables. Let us trace out the two fast variables and
then build up a special basis by introducing the eigenvectors
Q̂|Q〉 = Q|Q〉 and(

(q̂ + Qx )2

2CJ
− EJ cos(φ̂)

)
|n, Qx〉 = En(Qx )|n, Qx〉. (A3)

The last vector is just the Bloch state. In the limit of large EJ

only the value n = 0 matters and, hence, one can project the
Hamiltonian onto the corresponding subspace. This procedure
is performed with the aid of the projector

P =
∫

dQ|Q〉〈Q| ⊗ |0, Q〉〈0, Q|. (A4)

As a result we obtain

ĤJJ = E0(Q̂) − Iϕ̂

2e
+ ĤR[ϕ̂]. (A5)

Making use of translational invariance we conclude that
the energy E (Qx ) is a 2e-periodic function of the charge
Qx. Introducing new variables �̂ = ϕ̂/(2e), χ̂ = −πQ̂/e and
setting E0(Qx ) ≈ −γ cos(πQx/e) we arrive at the effective
Hamiltonian

ĤJJ,sc = −I�̂ − γ cos(χ̂ ) + ĤR[2e�̂] (A6)

very similar to ĤT L + ĤQPS if one neglects the spatial depen-
dence of χ̂ (x) and �̂(x). Hence, all our results derived here
for short superconducting nanowires can equally be applied
to Josephson junctions in the limit of large EJ by replacing
γQPS → γ and formally considering the proper GK

χχ corre-
sponding to an external bath described by the Hamiltonian
ĤR[2e�̂].

[1] A. I. Larkin and A. A. Varlamov, Theory of Fluctuations in
Superconductors (Clarendon Press, Oxford, 2005).

[2] K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep.
464, 1 (2008).

[3] J. E. Mooij and G. Schön, Phys. Rev. Lett. 55, 114 (1985).
[4] B. Camarota, F. Parage, F. Balestro, P. Delsing, and O. Buisson,

Phys. Rev. Lett. 86, 480 (2001).
[5] A. A. Radkevich, A. G. Semenov, and A. D. Zaikin, Phys. Rev.

B 96, 085435 (2017).
[6] K. Yu. Arutyunov, J. S. Lehtinen, A. A. Radkevich, A. G.

Semenov, and A. D. Zaikin, J. Magn. Magn. Mater. 459, 356
(2018).

[7] A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimanyi,
Phys. Rev. Lett. 78, 1552 (1997).

[8] D. S. Golubev and A. D. Zaikin, Phys. Rev. B 64, 014504
(2001).

[9] A. Bezryadin, C. N. Lau, and M. Tinkham, Nature (London)
404, 971 (2000).

[10] C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M.
Tinkham, Phys. Rev. Lett. 87, 217003 (2001).

[11] M. Zgirski, K. P. Riikonen, V. Touboltsev, and K. Y. Arutyunov,
Phys. Rev. B 77, 054508 (2008).

[12] O. V. Astafiev, L. B. Ioffe, S. Kafanov, Yu. A. Pashkin, K.
Yu. Arutyunov, D. Shahar, O. Cohen, and J. S. Tsai, Nature
(London) 484, 355 (2012).

[13] S. V. Panyukov and A. D. Zaikin, J. Low Temp. Phys. 73, 1
(1988).

[14] D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).
[15] A. D. Zaikin, J. Low Temp. Phys. 80, 223 (1990).
[16] J. E. Mooij and Yu. V. Nazarov, Nat. Phys. 2, 169 (2006).
[17] A. G. Semenov and A. D. Zaikin, Phys. Rev. B 88, 054505

(2013).
[18] A. G. Semenov and A. D. Zaikin, Phys. Rev. B 94, 014512

(2016).
[19] A. G. Semenov and A. D. Zaikin, Fortschr. Phys. 65, 1600043

(2017).

094516-8

https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1016/j.physrep.2008.04.009
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.55.114
https://doi.org/10.1103/PhysRevLett.86.480
https://doi.org/10.1103/PhysRevLett.86.480
https://doi.org/10.1103/PhysRevLett.86.480
https://doi.org/10.1103/PhysRevLett.86.480
https://doi.org/10.1103/PhysRevB.96.085435
https://doi.org/10.1103/PhysRevB.96.085435
https://doi.org/10.1103/PhysRevB.96.085435
https://doi.org/10.1103/PhysRevB.96.085435
https://doi.org/10.1016/j.jmmm.2017.08.026
https://doi.org/10.1016/j.jmmm.2017.08.026
https://doi.org/10.1016/j.jmmm.2017.08.026
https://doi.org/10.1016/j.jmmm.2017.08.026
https://doi.org/10.1103/PhysRevLett.78.1552
https://doi.org/10.1103/PhysRevLett.78.1552
https://doi.org/10.1103/PhysRevLett.78.1552
https://doi.org/10.1103/PhysRevLett.78.1552
https://doi.org/10.1103/PhysRevB.64.014504
https://doi.org/10.1103/PhysRevB.64.014504
https://doi.org/10.1103/PhysRevB.64.014504
https://doi.org/10.1103/PhysRevB.64.014504
https://doi.org/10.1038/35010060
https://doi.org/10.1038/35010060
https://doi.org/10.1038/35010060
https://doi.org/10.1038/35010060
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevB.77.054508
https://doi.org/10.1103/PhysRevB.77.054508
https://doi.org/10.1103/PhysRevB.77.054508
https://doi.org/10.1103/PhysRevB.77.054508
https://doi.org/10.1038/nature10930
https://doi.org/10.1038/nature10930
https://doi.org/10.1038/nature10930
https://doi.org/10.1038/nature10930
https://doi.org/10.1007/BF00681741
https://doi.org/10.1007/BF00681741
https://doi.org/10.1007/BF00681741
https://doi.org/10.1007/BF00681741
https://doi.org/10.1016/0375-9601(89)90934-1
https://doi.org/10.1016/0375-9601(89)90934-1
https://doi.org/10.1016/0375-9601(89)90934-1
https://doi.org/10.1016/0375-9601(89)90934-1
https://doi.org/10.1007/BF00683632
https://doi.org/10.1007/BF00683632
https://doi.org/10.1007/BF00683632
https://doi.org/10.1007/BF00683632
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1103/PhysRevB.88.054505
https://doi.org/10.1103/PhysRevB.88.054505
https://doi.org/10.1103/PhysRevB.88.054505
https://doi.org/10.1103/PhysRevB.88.054505
https://doi.org/10.1103/PhysRevB.94.014512
https://doi.org/10.1103/PhysRevB.94.014512
https://doi.org/10.1103/PhysRevB.94.014512
https://doi.org/10.1103/PhysRevB.94.014512
https://doi.org/10.1002/prop.201600043
https://doi.org/10.1002/prop.201600043
https://doi.org/10.1002/prop.201600043
https://doi.org/10.1002/prop.201600043


FULL COUNTING STATISTICS OF QUANTUM PHASE … PHYSICAL REVIEW B 99, 094516 (2019)

[20] A. G. Semenov and A. D. Zaikin, J. Supercond. Nov. Magn. 30,
139 (2017).

[21] A. G. Semenov and A. D. Zaikin, Low Temp. Phys. 43, 805
(2017).

[22] A. G. Semenov and A. D. Zaikin, J. Supercond. Nov. Magn. 31,
711 (2018).

[23] A. van Otterlo, D. S. Golubev, A. D. Zaikin, and G. Blatter,
Eur. Phys. J. B 10, 131 (1999).

[24] A. V. Galaktionov, D. S. Golubev, and A. D. Zaikin, Phys. Rev.
B 68, 235333 (2003).

[25] Strictly speaking, the second line of Eq. (35) repre-
sents the cumulant generating function corresponding to
the so-called bidirectional Poisson (or Skellam) distribution
[26].

[26] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete
Distributions, 3rd ed. (Wiley-Interscience, Hoboken, 2005).

[27] D. S. Golubev and A. D. Zaikin, Phys. Rev. B 78, 144502
(2008).

[28] D. V. Averin, Yu. V. Nazarov, and A. A. Odintsov, Physica B
(Amsterdam) 165-166, 945 (1990).

[29] K. E. Nagaev, arXiv:cond-mat/0302008.
[30] M. Kindermann, Yu. V. Nazarov, and C. W. J. Beenakker,

Phys. Rev. B 69, 035336 (2004).
[31] D. S. Golubev, M. Marthaler, Y. Utsumi, and G. Schön,

Phys. Rev. B 81, 184516 (2010).
[32] M. Zonda, W. Belzig, and T. Novotny, Phys. Rev. B 91, 134305

(2015).
[33] G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).

094516-9

https://doi.org/10.1007/s10948-016-3783-9
https://doi.org/10.1007/s10948-016-3783-9
https://doi.org/10.1007/s10948-016-3783-9
https://doi.org/10.1007/s10948-016-3783-9
https://doi.org/10.1063/1.4995629
https://doi.org/10.1063/1.4995629
https://doi.org/10.1063/1.4995629
https://doi.org/10.1063/1.4995629
https://doi.org/10.1007/s10948-017-4316-x
https://doi.org/10.1007/s10948-017-4316-x
https://doi.org/10.1007/s10948-017-4316-x
https://doi.org/10.1007/s10948-017-4316-x
https://doi.org/10.1007/s100510050836
https://doi.org/10.1007/s100510050836
https://doi.org/10.1007/s100510050836
https://doi.org/10.1007/s100510050836
https://doi.org/10.1103/PhysRevB.68.235333
https://doi.org/10.1103/PhysRevB.68.235333
https://doi.org/10.1103/PhysRevB.68.235333
https://doi.org/10.1103/PhysRevB.68.235333
https://doi.org/10.1103/PhysRevB.78.144502
https://doi.org/10.1103/PhysRevB.78.144502
https://doi.org/10.1103/PhysRevB.78.144502
https://doi.org/10.1103/PhysRevB.78.144502
https://doi.org/10.1016/S0921-4526(09)80058-6
https://doi.org/10.1016/S0921-4526(09)80058-6
https://doi.org/10.1016/S0921-4526(09)80058-6
https://doi.org/10.1016/S0921-4526(09)80058-6
http://arxiv.org/abs/arXiv:cond-mat/0302008
https://doi.org/10.1103/PhysRevB.69.035336
https://doi.org/10.1103/PhysRevB.69.035336
https://doi.org/10.1103/PhysRevB.69.035336
https://doi.org/10.1103/PhysRevB.69.035336
https://doi.org/10.1103/PhysRevB.81.184516
https://doi.org/10.1103/PhysRevB.81.184516
https://doi.org/10.1103/PhysRevB.81.184516
https://doi.org/10.1103/PhysRevB.81.184516
https://doi.org/10.1103/PhysRevB.91.134305
https://doi.org/10.1103/PhysRevB.91.134305
https://doi.org/10.1103/PhysRevB.91.134305
https://doi.org/10.1103/PhysRevB.91.134305
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V

