PHYSICAL REVIEW B 99, 094514 (2019)

Spectral properties and quantum phase transitions in superconducting junctions
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We study theoretically the spectral and transport properties of a superconducting wire with a magnetic
defect. We start by modeling the system as a one-dimensional magnetic Josephson junction and derive the
equation determining the full subgap spectrum in terms of the normal-state transfer matrix for arbitrary length
and exchange field of the magnetic region. We demonstrate that the quantum phase transition predicted for
a short-range magnetic impurity, and associated with a change of the total spin of the system, also occurs in
junctions of finite length. Specifically, we find that the total spin changes discontinuously by integer jumps when
bound states cross the Fermi level. The spin can be calculated by using a generalization of the Friedel sum rule for
the superconducting state, which we also derive. With these tools, we analyze the subgap spectrum of a junction

with the length of the magnetic region smaller than the superconducting coherence length and demonstrate how
phase transitions also manifest as a change of sign of the supercurrent.
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I. INTRODUCTION

The study of Josephson magnetic junctions and magnetic
impurities in superconductors has attracted a great deal of
attention in past years. The research is mainly motivated by
the search of a topological superconducting state in magnetic
impurity chains and clusters embedded in a superconductor
[1-5]. In this context it is essential to understand the spec-
tral properties around the magnetic region. In a quasi-one-
dimensional setup this is equivalent to studying the spectrum
of a superconductor-ferromagnet-superconductor (SFS) junc-
tion.

Ballistic SFS junctions have been widely explored in the
past, mainly in two limiting cases. One of them is the semi-
classical limit, in which the Fermi energy, u, is assumed to
be much larger than any other energy involved in the sys-
tem, including the superconducting gap, A, and the Zeeman
splitting, & [6—10]. In this limit, one can directly apply the
Bohr-Sommerfeld semiclassical quantization condition [11]
and demonstrate that, in the absence of interface barriers, the
spectrum consists of two double-degenerate Andreev bound
states with opposite energies. This degeneracy of the bound
states reflects the degeneracy of the +kr Fermi momentum
valleys, which remain uncoupled in the absence of normal
reflection, as schematically shown in Fig. 1(b).

The second widely studied limiting case is when the spin-
splitting field is very large, 4 > u, and concentrated in a re-
gion much smaller than k' [12-15]. This has been described
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as §-like magnetic impurity that strongly couples both prop-
agation directions to form two nondegenerate bound states
within the gap with opposite energies. These states, known
as the Yu-Shiba-Rusinov (YSR) states, may cross the Fermi
level at a certain strength of the exchange energy. At this
crossing, the system undergoes a quantum phase transition
(QPT) [16,17] that has been widely studied within the §-like
impurity model. However, the discussion of whether such a
QPT may take place beyond the impurity model is an open
question. To address it, one needs to understand how these
two known limiting cases are connected.

The goal of this work is twofold. On the one hand, we
derive a general equation, Eq. (6), that determines the sub-
gap spectrum of a one-dimensional junction in terms of the
normal-state transfer matrix for an arbitrary spin-dependent
potential describing the F region, assuming that A = 0 within
F. For the particular case of a collinear (unidirectional) mag-
netization in the F region, we derive a generalized Friedel sum
rule, Eq. (11), adapted for the superconducting state. This rule
states that every time a bound state crosses the Fermi energy,
the total electronic spin changes by the amount of /i/2. Im-
portantly, this sum rule is valid not only for one-dimensional
systems, but applies universally to any dimension, size, and
shape of a localized magnetic region.

On the other hand, in Sec. III, we use these findings to
provide a complete analysis of the subgap spectrum of a
ballistic one-dimensional SFS junction for an arbitrary ho-
mogeneous exchange field 4. We focus on the short junction
regime, where the ferromagnetic region is shorter than the
superconducting coherence length, £. In this case, the pres-
ence of a superconducting gap in the ferromagnet due to the
proximity effect has no effect on the subgap spectral prop-
erties of the junction, so we set A = 0 in F. For this system
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FIG. 1. (a) The SES junction under consideration. (b) Possible
processes taking place in a Josephson junction: In the absence of
normal reflection only Andreev reflections within the same propaga-
tion valley can occur (purple line). If normal backscattering is present
valleys at +ky are coupled (green lines).

we obtain the normal-state transfer matrix and, from it, we
determine all spectral properties of the system from the central
expression, Eq. (6). We recover the well-established limiting
cases, i.e., deltalike and semiclassical magnetic region, but
also the subgap spectrum for all intermediate situations. We
identify the values of 4 and L at which zero-energy crossings
of bound states occur. As in the YSR case, these crossings
are associated with a QPT, which manifests as a change of the
total electronic spin of the system, in accordance with the sum
rule derived in Sec. II. We finally demonstrate that this change
of the total spin at the QPT is associated with the change of
sign of the supercurrent in the SFS junction or, equivalently,
to a change of the ground-state phase difference between the
superconductors from O to 7.

II. MODEL AND GENERAL PROPERTIES

We consider a one-dimensional geometry consisting of a
superconducting wire interrupted by a ferromagnetic region,
as sketched in Fig. 1(a). The Bogoliubov—de Gennes (BdG)
Hamiltonian of the system reads

A(x)

A R —_v
H(x>=< R ) M
0w+ V()

A*(x)

Here p is the chemical potential, A(x) is the superconducting
gap that is only finite on the S electrodes, A(|x| > L/2) =
|Ale*/2, the length of the F region is labeled by L, and
+¢/2 is the superconducting phase, where the plus (minus)
sign stands for the right (left) superconductor. The potential
V(x) = Vo(x) + h(x) - o is only finite, but arbitrary, within the
region |x| < L/2 and it consists of a scalar component V; and
a spin-dependent one k(x) - a. The “bar” denotes time-reverse
conjugation such that V = 6,V *6,.

We focus on the subgap spectra, ¢ < |A|, which deter-
mines the main transport features at zero voltage and low
temperatures. For such energies, the decaying wave functions

into the left (L) and right (R) superconducting leads for each
spin component read

v x < _—L i AZ . ekrx
L 2 Age“"e_""/2
By ik
i (Bze—fae—wﬂ)e “le
ol x > E = ¢ /¢ Ak eikrx
K 2 Agemiaeivl?

Bz —ikpx

where the upper (lower) element of the Nambu spinors stand
for electrons (holes), the index o = =+ labels components of
the spin spinor, & = Aivp/+/A? — €2 is the decaying length
of the wave function into the superconductor, and kr and
vp stand for the Fermi wave number and the Fermi velocity,
respectively. The quantity « is the phase associated with each
Andreev reflection at the S/F interface and it is given by
coso = 4.

The coefficients A7 ) and Bf ) in Egs. (2) and (3) are the
constants of integration at the left (right) superconductor for
the quasiparticles consisting of right-moving (those multiplied
by e*#¥) and left-moving (those multiplied by e~*7¥) elec-
trons, respectively. At this stage it is convenient to define the
fqur vectors Cpry = (Azr(R), BZF(R),AZ(R), BL_(R))T for the left
(right) superconductor.

The wave functions on opposite sides of the F region are
connected via the normal-state electronic 7' matrix, 7':

Cr=TC, “

for the electrons and

v

Cr = e %eTe9Cy, 5)
for the holes. In Egs. (4) and (5), ¢ is a diagonal matrix with
elements [¢'*, €', e7'*, e7'*]. Notice that time conjugation
also implies to change the sign of the quasiparticle energy
(€ — —e¢), so that T(e) = 6,T*(—€)5,.

After substitution of Cg from Eq. (4) into Eq. (5) and mul-
tiplication by 7! from the left one obtains a homogeneous
equation for C, that leads to the condition determining the
bound states:

det(e’ — T~ ¥Tel®) = 0. 6)

This expression is a generalization of Beenakker’s equation
for the Andreev spectrum of a SNS junction derived from the
scattering matrix [18]. The second term inside the determinant
describes an “Andreev loop.” Namely, from right to left, first
an electron from F is Andreev reflected as a hole at one F/S
interface. The hole propagates to the opposite interface and it
is converted again into an electron via the Andreev reflection.
The electron is finally transferred back to the origin. After this
cycle, the wave function accumulates a phase equal to ¢.

Sum rule for spin in gapped systems

Before using Eq. (6) to calculate the subgap spectrum in a
one-dimensional geometry, we can anticipate changes of the
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total spin of the system associated with bound states crossing
the Fermi level. Note that the derivation presented here is
valid for any dimension, so that the result that we obtain is
not restricted to the one-dimensional problem described by
Eq. (D).

We start by considering the retarded Green’s function (GF)
for the BdG equations,

GR(e)=(e —Hy—V +i0")7", (7

where Hj is the unperturbed BAdG Hamiltonian of the system
and V is a general perturbation potential operator, as intro-
duced in Eq. (6). The component i = {x,y, z} of the total
electronic spin is given by

S; = _i /oo de fF(e)Im[Tr{éiGR(E)}], (8)
4 J_o

where fr(e) = (e/*T 4+ 1)7! is the Fermi distribution func-
tion, &; is the ith Pauli matrix, and the trace runs over the
whole coordinate x Nambu X spin space.

The full GF in Eq. (8) can be also written in terms of the
unperturbed GF, Gy, and the potential V via Dyson’s equation,
GR = GR + GRV GR. Solving it for GX and substituting it back
into the right-hand side, we obtain the expression determining
the exact GR,

GR = G + GEV (1 — GEV) ' GE. ©)

As the total spin of the unperturbed system is zero, only the
second term of GX in Eq. (9) contributes to the trace in Eq. (8).

Let us now assume that V is an energy-independent local
perturbation, and its magnetic part is collinear with the z axis
(i.e., it commutes with &,). Noticing that (Gg)2 = —%, one
can use the cyclic property of trace to obtain from Eq. (8) the
z component of the total spin:

s=m [T oL 5 10
—5/_06 Z.fF(G)E[ -(€) =d4(e)], (10
where 8, (e) = ImIn[det(I — GE(€)V,)] is a generalized
phase shift. Notice that V can have any spatial distribution and
that the determinant inside the logarithm is the quantization
condition coming from the Lippmann-Schwinger equation. In
particular, zeros of this determinant determine the spectrum
of the bound states. Therefore, in a one-dimensional case, it
has to be proportional to the left-hand side of Eq. (6). At zero
temperature (7 = 0), Eq. (10) becomes especially simple,

1
25/h = 5-[5-(0) = 5, (0)]. (11)
T

This result is analogous to the well-known Friedel sum rule
that relates the charge/spin induced by a local perturbation to
the phase shifts at the Fermi level.

The important feature of the superconducting state is its
gap at the Fermi level (¢ = 0), where the unperturbed Green’s
function is real (and, therefore, det[/ — aég (0)V]is real too).
Thus, 8,(0)/7 can only take integer values, which will only
change discontinuously by +1 when a spin-polarized bound
state crosses the middle of the gap, as the determinant changes
its sign. The electron-hole symmetry requires that the spin-
up/down polarized states cross zero simultaneously while

moving in opposite directions. As a result, at every crossing
event the normalized spin 25/7 jumps by one [19].

In the above derivation we only assume that the pertur-
bation V is localized in space and has a collinear magnetic
structure. Therefore our sum rule relating the total induced
spin to the in-gap spectrum applies to any dimension and any
size and shape of a finite magnetic region. For example, it can
be directly used to analyze the behavior of the total spin in a
magnetic chain on top of a superconductor, as the one studied
in Ref. [20].

III. ONE-DIMENSIONAL SFS JUNCTION

We now apply the results of the previous section to com-
pute the spectral properties of a one-dimensional SFS junc-
tion. We assume that the scattering F region is described by
the potential V(x) = hé. for |x| < L/2. In such a case, the T
matrix in Eq. (6) has a block-diagonal structure in spin space,

T+ 0 ?} Fff g 8
- 0y _ |7 T
T= < 0 T—) o o 1, 1| 12
0 0 T =
This considerably simplifies the problem, since we only need
to calculate the normal-state transfer for each spin orientation,
o = =, separately (see Appendix A for details). The elements
of T in Eq. (12) read

IQU+QO

T° L
V= [cos(q )~|—2 —

sm(qGL)]e_iq“L,
i L] QO
T = 5 g
do40

where g, (€) = kg, /1 + % and go(€) = kr, /1 + % are the

momentum of the electron in the ferromagnet and the normal
metal, respectively, and u stands for the Fermi energy. Due to
the symmetry of the problem, one can verify that other com-
ponents of 77 are related to the ones in Eq. (13) by complex
conjugation, T7_ = (T ) and T?_ = (T° ) The diagonal
terms, 7,7, describe a dlrect transmlssron (forward scattering)
within one valley, whereas the off-diagonal terms represent
backscattering events that couple the opposite valleys at kg
[see Fig. 1(b)].

The solution of Eq. (6), after substitution of Eq. (13) in it,
determines the full subgap spectrum of the SFS junction. For
analytic results, we focus on the semiclassical limit where u is
the largest energy, so that €, A, h < . In this case the quasi-
particle momenta in the F and S regions are approximated
by g, (€) ~ kr + E*"h and go(€) ~ kr + 5, respectively. To
the leading order i m the semiclassical approx1matlon the oft-
diagonal elements of the 7" matrix in Eq. (13) are negligible

and the diagonal terms are given by 77, ~ ¢°'®, where ® =
% is referred to as the magnetic phase. This expression for
the T matrix has a simple physical interpretation: within the
semiclassical approach the incoming electrons have an energy
of the order of u, much larger than the scattering potential
height, 4. Hence, incoming particles have a unit probability to
be transmitted through the F region. Propagation through the

F region results only in the additional phase ®. Clearly, the

sin(g,L), (13)
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FIG. 2. Energy of the bound states (solid lines) and the total spin 25// (dashed line) of a SFS junction as a function of L for three different
values of @, and /A = 100. Red and blue colors correspond to spin projections of the electronic states.

spectrum obtained from Eq. (6) in this limit coincides with
the result of the Bohr-Sommerfeld quantization condition for
the spectrum:

L oo I 4 (14)
_— o — arccos — — =T7n,
FlUF A 2

where 7 is an integer. Equation (14) determines the spectrum
of Andreev bound states(ABS) [9,10]. In a short junction,
L K &y, where &) = hvp /A is the superconducting coherence
length, one obtains €, = +A cos (0 ® + £). It follows that by
changing the magnetic phase, the energy of the ABS can be
tuned between = A. In particular, zero-energy single states can
be created by proper choice of ® and ¢.

The other widely studied limiting case is the YSR limit
in which the F region is described by a §-like potential, i.e.,
its length tends to zero, L — 0, while @ is kept finite. One
can read directly from Egs. (13) that, within this limit, 77, ~
1+ oi® and the off-diagonal elements are nonzero, T7_ ~
oi®. This means that, in the presence of a §-like potential,
the backscattering probability is finite. The latter leads to a
coupling between the +kp valleys [see sketch in Fig. 1(b)].
Such coupling lifts the degeneracy at ¢ = 0 and “pushes” one
of the states to energies closer to the continuum. By solving
Eq. (6) in this limit for a general value of ¢, one obtains four
bound states [15]:

A 1 —cosg 14 cosg
=+ Pt —— TPy —
o2+ 1[ T Tt
1/2
j:<I>\/2<I>2(1 +cos¢) + sinzgo] . (15)

Here the + signs are mutually independent and the bound
states have to appear inside the gap, |e| < A. For a zero phase
difference, ¢ = 0, there are only two states inside the gap,
which correspond to the well-known YSR solution:

E_iAl-{-CDZ' (16)
The other two states remain at the gap edges, € = £A,
independently of the value of ®. Whereas the YSR are
nondegenerate, ABS states, Eq. (14), are double degenerate.
Moreover, with increasing ® the ABS cross zero energy every
time ® = (2n + 1)7 /2. In contrast, YSR states cross the zero
only once at & = 1, where, as explained below, a quantum
phase transition takes place [2,16,17].

A. Spectrum in an intermediate range of parameters

We address now the question about the spectrum in an
intermediate case, between the semiclassical and the YSR
limits. This may correspond to a cluster of magnetic atoms or
a small ferromagnetic island with a large but finite exchange
field. The expression determining the bound states can be
obtained from Egs. (6) and (13) and it is explicitly shown
in Appendix B, Eq. (B2). In Fig. 2 we show with solid lines
the subgap spectrum of the SFS structure as a function of the
normalized length of the magnetic region, kgL, for ¢ = 0. Dif-
ferent panels correspond to different values of the magnetic
phase ®. For small kL < 1 there are only two nondegenerate
states within the gap. These are the YSR states. Figures 2(a)
and 2(b) correspond, respectively, to the situations before and
after the YSR states cross at zero energy. Further increase of ®
pushes the states toward the gap edges. In contrast, for longer
junctions, kgL > 1, two pairs of bound states can be found
within the gap. These pairs of states are nondegenerate (except
at certain values of krpL) and their energy oscillates with a
period 27 /kp around the semiclassical value determined by
Eq. (14). The oscillations stem from interference effects that
are ignored in the semiclassical limit. Further increase of the
junction length toward L ~ &, will bring additional bound
states into the gap, which are not considered here.

It is worth noticing that Figs. 2(b) and 2(c) show zero-
energy crossings for finite length junctions at ¢ = 0. At each
crossing the total spin of the system changes by one, as
calculated from Eq. (10) and shown by dashed black lines in
Fig. 2. In other words, Fig. 2 demonstrates that a QPT also
takes place beyond the YSR limit. Moreover, a sequence of
QPTs with a stepwise change of the total spin may exist in a
finite length junction.

The number of zero-energy crossings as a function of
L grows with increasing ®. As follows from Eq. (14), in
a short junction within the semiclassical limit, k;l LKL«
&y, the ABS cross zero periodically at values of the mag-
netic phase ® = (2n + 1) /2. Each of these “asymptotic”
crossings should be accompanied with, at least, two addi-
tional zero-energy crossings at intermediate values of kgL
[Figs. 2(b) and 2(c)]. Fast oscillations of the bound-state
energies as a function of L may increase further the number
of zero-energy crossings by an even number [Fig. 2(c)].

B. Josephson current

The subgap spectrum can be measured by means of tun-
neling spectroscopy [1,4,21-23]. In addition, measurements
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FIG. 3. (a) Phase diagram of the SFS Josephson junction in terms
of the length of the junction L and the magnetic phase ®. The
horizontal white dashed lines indicate the values of @ chosen in
Fig. 2. (b) Total electronic spin of a SFS junction of length krL = 10
[white dashed line in panel (a)] when one imposes 0 phase (dashed
light) or w phase (dashed dark). The red solid line shows the total
spin when the junction stays in its ground state. Calculations have
been done for /A = 100.

of the Josephson current in SFS junctions can also shed
light on the spectral properties [24,25], in particular on the
ground state of the junction. In conventional SNS junctions
the Josephson energy is minimized when the phase difference
vanishes, ¢ = 0. However, it is known that, in SFS junctions,
this minimum can also be found at ¢ = 7 by tuning the
exchange field or the length of the F region [26-30]. In
the context of a deltalike magnetic impurity the connection
between the zero-energy YSR state and the O-7 transition has
been recently discussed in Ref. [15]. As we discuss next, the
transition between the 0- and m-junction behavior is closely
related to the QPTs described above for arbitrary junctions.

For this sake, we compute the ground-state energy of the
junction as a function of the phase difference ¢. If the energy
has a unique minimum at ¢ = 0 or ¢ = 7, one says that the
junction is in the 0 or & phase, respectively. If the Josephson
energy has minima both at ¢ = 0 and at ¢ = m, then the
ground state is denoted as 0 or 7" depending on the location
of the global minimum [31-33].

In Fig. 3(a) we show the phase diagram in the L-® plane.
This diagram provides an interesting connection: the QPTs

associated with the zero-energy crossings shown in Figs. 2(b)
and 2(c) [horizontal dashed lines in Fig. 3(a)], correspond to
transitions between the (0, 0, /) states and the 7 state.

Finally, in Fig. 3(b) we show the dependence of the total
spin of the system on ® for a junction with kL = 10. The
dashed light line (dashed dark line) shows the spin if the
junction is forced to stay in the O(w) state. The solid red
line shows the spin of the system if the junction always stays
in the true ground state, i.e., if it follows the global energy
minimum when the parameters are changed. Notice that,
whenever the ground state corresponds to ¢ = 0 (¢ = ), the
total electronic spin of the system is even (odd).

IV. CONCLUSIONS

In conclusion, we present a complete study of equilibrium
properties of a superconducting wire with a magnetic defect.
We derive a general expression, Eq. (6), that determines the
full subgap spectrum provided that the 7 matrix of the F
region in the normal state is known. We also demonstrate
in Egs. (10) and (11) that the total spin of a SFS junction
undergoes integer jumps in units of /i/2 associated with zero-
energy crossings of the bound states. Specifically, we analyze
the spectrum of a one-dimensional ballistic SFS Josephson
with an F region smaller than the superconducting coherence
length but arbitrary strength of the exchange field. Our the-
oretical analysis bridges nicely two previously disconnected
limiting cases: the YSR and the semiclassical ones. We
demonstrate that the QPT predicted by the YSR model can
be also found for SFS junctions of finite length L. Such phase
transitions are associated not only to the integer jumps of the
total spin described by our generalized Friedel sum rule, but
also to a change of the sign of the supercurrent.
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APPENDIX A: T MATRIX OF THE F REGION

Here we derive the normal-state 7 matrix of a ferromag-
netic region of length L and Zeeman splitting / centered at
the origin between two metallic electrodes. This matrix enters
Eq. (6) and hence it is pivotal to obtain the the bound states.
In the normal state electrons and holes are decoupled, so we
will only focus on the electrons. The wave function reads

AJ 1" + BSe~¥  if  x < —LJ2
Y(x) = { Co¢¥o* 4 D¢™4o% if —L/2 <x <L/2
A% ®* + BGe~ v if x> L/2,
(AD)
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where g, = kp,/1 + % and qo = kp /1 + i are the wave
numbers at the ferromagnet and the normal metal, kr is the

Fermi wave number, and o = = stands for the spin orienta-
tion. From the continuity of the wave function in Eq. (A1) and
its first derivative, we obtain a set of four equations that we
have to solve. First writing C® and D? in terms of A7 and Bf,
and substituting them into the expressions for write Az and
Bpg, we finally get a connection between the wave function at
the left and right superconductors,

A% % TS\ [AY
By Iy T,)\B}
where
) 2
+ . i
T = [cos(qaL) +-3T% sm(qaL)]e Wk (A3)

2 do 40
iq—q .

TS = - ———sin(g,L), (A4)
2 ds490

and the remaining two components are related to these by
complex conjugation, 7,5 = (71])* and T;] = (T\3)*. As de-
fined in Eq. (4), the matrix in Eq. (A2) is the normal-state
transfer matrix of the ferromagnetic region.

APPENDIX B: THE SFS SUBGAP SPECTRA

Here we obtain the spectrum of a homogeneous SFS junc-
tion, whatever the values of the width and the exchange field

strength of the magnetic region are. We start from the secular
equation (6) and assume that 7° is a generic 2 x 2 matrix,
like the one in Eq. (A2). After some algebra and exploiting
the relations between the elements of the transfer matrix, we
get a rather simple equation

0

cosg — Re[T3TT, + T T1,] =0, (BI)

from which, substituting the expressions for the elements of
the T matrix in Egs. (A3) and (A4), we obtain

2cos ¢ — 2cos(2a) cos(q, L) cos(g,L)

k2 :
- £ |:2<:os(2a) + <#> sin? ai| sin(gy L) sin(g, L)

do40
2 k2
_ 9o TR G 2a) sin(g L) cos(@oL)
qakF
— 2
o +kp . .
4 sin(2a) cos(gy L) sin(gzL) = 0. (B2)
qakF
In Eq. (B2), g, = kp,/1 — % is the time conjugate of

the electron wave number in F and we have approximated
qo ~ kp, which is totally justified by the fact that A < i
is fulfilled in any superconductor and that gy did not appear
in any trigonometric function [where the accumulated phases
along long distances would eventually be non-negligible,
(e/m)kpL ~ 2m].
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