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Emergence of dxy-wave superconductivity in a doped two-leg diagonal ladder
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We propose a doped two-leg spin-1/2 diagonal ladder model (or a composite spin model) to simulate a doped
spin-1 chain. By using the density matrix renormalization group method for an open chain, we find that the
ground state hosts a dominant singlet dxy-wave superconducting correlation with features similar to those of
the spin-1 Haldane phase. Meanwhile, we apply the renormalized mean-field theory to the model and obtain
a dxy-wave superconducting state. The superconducting order exhibits a domelike shape as a function of hole
concentration δ. Our work provides a physical understanding of the origin of dxy pairing symmetry, which
originates from antiferromagnetic Heisenberg interaction in the diagonal direction, and the intrachain hopping
term makes it stable.
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I. INTRODUCTION

It is well known that the ground state of the antifer-
romagnetic spin-1 Heisenberg chain is the Haldane phase
with symmetry-protected gapless edge states [1–3]. If a fi-
nite hole density is introduced, the resulting model with
kinetic energy and antiferromagnetic interaction exhibits sim-
ilar topological properties [4]. The spin sector is gapped,
and the charge sector is gapless in the large-(t/J) regime.
The gapless Haldane phase was also found in a topological
superconducting chain recently [5]. To further explore the
doped spin-1 chain, it is instructive to study an equivalent two-
leg spin-1/2 ladder model. Quasi-one-dimensional (quasi-
1D) systems such as a two-leg ladder have been of great
interest because they serve as a good platform to further
study two-dimensional models [6,7]. Although they are es-
sentially 1D systems, two-dimensional (2D) characteristics
can emerge because the interchain degrees of freedom ap-
pear. In addition, these systems are much easier to solve
than 2D models, especially using the density matrix renor-
malization group (DMRG) method [8,9]. For example, the
t-J model on a two-leg square ladder has been attracting
continuous attention for both theoretical and experimental
reasons [6,10–13].

A typical example to simulate a spin-1 chain is a spin-1/2
ladder model with a strong interchain ferromagnetic Heisen-
berg interaction in addition to an intrachain antiferromagnetic
interaction [14]. When doped with holes, this model will
exhibit an exotic ground state, which is a symmetry-protected
topological Luttinger liquid with a power-law decaying super-
conducting (SC) pair correlation [15,16]. The superconductiv-
ity exhibits dxy orbital symmetry in this model, and the spin
sector of the Cooper pair is a singlet. This pairing symmetry
was found in some ladder models previously [17–19], but its
physical origin remains unclear.

To further investigate the properties of the doped Haldane
phase and dxy superconductivity, in this paper we study a
doped two-leg spin-1/2 diagonal ladder model, as depicted
in Fig. 1. The undoped spin system is called a diagonal ladder
model or a composite spin model [20,21]. The low-lying states
are identical to those of a spin-1 chain. When the doped holes
are allowed to move along the chain, we find that the ground
state hosts features similar to those of the Haldane phase,
including the spin gap, edge states, and twofold degeneracy
in the entanglement spectrum. In addition, it belongs to the
Luther-Emery phase [22] and the Luttinger parameter Kρ > 1
at low doping levels. This diagonal ladder model has negative
binding energy and a power-law decaying dxy-wave-dominant
superconducting correlation, which is the same as that ob-
tained in the previous studies [15,16] with ferromagnetic ver-
tical interchain interaction but in the absence of antiferromag-
netic diagonal interchain interaction. This pairing symmetry
seems to be more natural in our model because the paired
electrons have direct Heisenberg interaction.

To understand the above DMRG results with more insight,
we use the renormalized mean-field theory (RMFT) [23] to
solve this problem. RMFT method is based on the Gutzwiller
approximation of the projected BCS wave function (Ander-
son’s resonating valence bond (RVB) variational wave func-
tion [24]), which has been widely employed to study 2D and
quasi-1D t-J models [11,23,25–28]. By using this method, we
find that the pairing symmetry is also a singlet dxy wave. The
superconducting order parameter exhibits a domelike shape
as a function of hole doping level. By analyzing the bond and
pair mean fields, our work provides a physical understanding
of the origin of dxy-wave pairing symmetry. The dxy-wave
pairing directly comes from the Heisenberg interaction J in
the diagonal direction. Meanwhile, it is the hopping term that
stabilizes such pairing symmetry.
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FIG. 1. The structure of the two-leg diagonal ladder model. We
have both t and J terms on the intrachain bonds (blue lines), with
only the J term on the interchain bonds (red lines).

The Hamiltonian of the doped two-leg diagonal ladder
model is

H = −t
∑
i,α,σ

(c†
α,i,σ cα,i+1,σ + H.c.) + J

∑
i,α,α′

Sα,i · Sα′,i+1. (1)

Here the operator c†
α,i,σ creates a fermion with spin σ at site

i on chain α (α = 1, 2). Sα,i denotes the spin-1/2 operators.
The Hamiltonian contains the intrachain hopping term as well
as the horizontal and diagonal antiferromagnetic Heisenberg
interaction terms. In the Hilbert space, one site occupied with
two electrons is prohibited by imposing

∑
σ c†

α,i,σ cα,i,σ � 1.
In this paper we set t = 1 and J = 0.3 unless noted otherwise.
The doping level is defined as δ = Nh/N , Nh is the number of
holes, and N is the number of lattice sites. In our ladder system
N = L × 2, and L is the length of the system.

This paper is organized as follows. In Sec. II we show the
ground-state properties found in DMRG, including the spin
gap, edge state, binding energy, charge density oscillations,
and pair-pair correlations. After that, in Sec. III the supercon-
ductivity is calculated and analyzed in detail using RMFT.
Section IV includes some discussion of our results. Finally,
our conclusions are presented in Sec. V.

II. DMRG RESULTS

The DMRG calculation is performed with ITENSOR library
[29] based on matrix product state formalism. The system size
is up to L = 240, and the hole density is up to δ = 0.40. Open
boundary conditions (OBCs) are always used. We keep up
to m = 3000 states with a truncation error less than 10−7 in
most calculations. During the sweeping process, the total Sz is
fixed at zero except for the calculation of the spin gap. In some
quantitative analysis, we extrapolate the result to the m = ∞
limit, which corresponds to an exact wave function.

A. Spin and charge properties

Figure 2 illustrates the spin-1 and spin-2 excitation gaps
(�S=1,�S=2) for several L at δ = 0.05 hole doping. Here
�S = E0(Sz = S) − E0(Sz = 0), and E0(Sz ) is the ground-
state energy of the system with total Sz. We can see that
�S=1 = 0 and �S=2 has a finite value when 1/L → ∞. The
inset displays the expectation value of Sz

i = Sz
1,i + Sz

2,i and
hole density nh

i = 1 − n1,i (n1,i = n2,i) in a 200 × 2 lattice
with two holes (δ = 0.005) in the ground state of the sector
Sz

tot = 1. It is easy to see the existence of edge spin S = 1/2 at
two ends of the system. When the doping level is higher (up

FIG. 2. The spin gap �S with δ = 0.05 hole doping for different
ladder lengths L. The blue (red) symbols mark the spin-1 (spin-2)
excitation gap. �S=1 = 0, and �S=2 has a finite value. Inset: The
distribution of nh

i (red symbols) and Sz
i (blue symbols) in a 200 × 2

system with two holes (doping level δ = 0.005) in the sector Sz
tot = 1.

Gapless edge states appear at both ends.

to 0.40), we find that the edge states still exist (Fig. 14 below
shows the δ = 0.15 result). Therefore, in Fig. 2 �S=1 = 0 is
the result of two gapless edge states, and �S=2 represents the
bulk spin gap. These results confirm that the spin sector of our
two-leg model is very similar to the doped Haldane phase in
previous work [15,16]. In Fig. 3 we show the values of the
spin gap as a function of doping in the left axis. The system
size is L = 80, and the state kept is m = 1000. �S=1 = 0
always holds, and the bulk spin gap �S=2 exists in this wide
doping range. It gradually decreases with δ, probably because
more charge fluctuations are introduced with the increasing of
holes.

As for the charge sector, it is known that the doped Haldane
phase is a Luttinger liquid [15]. Here we use several ways to
support this picture and extract the Luttinger parameter Kρ

FIG. 3. Spin gap �S=1,�S=2 (left axis) and binding energy Eb

(right axis) as a function of doping in an 80 × 2 system. �S=1 =
0 and �S=2 > 0 in this doping range. The binding energy Eb < 0
shows the existence of pairing tendency.
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FIG. 4. Local electron density of sites 1–80 on one chain in a
160 × 2 system at doping levels δ = 0.05 and 0.125. The scatter
points are from DMRG results. The blue and red lines are the fit
curves using Eq. (2). The wavelength λ is around 1/δ.

[30,31]. The OBC in DMRG naturally leads to charge density
oscillations in the ground state, namely, Friedel oscillations.
We find that the charge density wave (CDW) on either chain
behaves as A(r) cos(Q · r + θ ), with the wave vector Q = 2πδ

and the wavelength λ = 1/δ. For example, the distribution of
the charge density in the inset of Fig. 2 shows a λ = 200
wavelength because the doping level δ = 0.005. The reason
is that the hole density δ determines kF for a Luttinger liquid.
The amplitude of CDW decays away from the boundaries with
a power law. Considering the finite-size effect, the electron
density in the left or right half of the system can be described
by [30,32]

n(r) = n0 + Acos(Q · r + θ )

(
2L

π
sin

πr

L

)−Kρ/2

. (2)

In Fig. 4 we show the local electron density of the sites
1–80 on one chain in a 160 × 2 system at doping levels δ =
0.05 and 0.125 by keeping m = 2000 state. The scatter points
represent the calculated charge density, and the blue and red
lines are the fitting curves. The wavelength of the CDW is
about 20 for δ = 1/20 and 8 for δ = 1/8, as expected. We
obtain the Luttinger parameter Kρ from these fittings and then
extrapolate to the limit of truncation error ε = 0(m → ∞). Kρ

at different doping levels is shown in Table I (CDW row). It is
larger than 1 and decreases with doping.

TABLE I. Kρ at different dopings extracted from the CDW and
SC pair correlations. Kρ > 1 means that the SC correlation plays a
dominant role.

Doping
0.05 0.10 0.125 0.142

CDW 1.51 1.38 1.34 1.31
SC 1.47 1.34 1.23 1.16

FIG. 5. The absolute value of pair-pair correlations along the
rung and diagonal direction as a function of r in a 200 × 2 system
with two holes. The diagonal singlet channel is the most prominent.
Inset: The diagonal singlet pair correlations at different doping levels
in a 100 × 2 system. The nearly straight line at a log-log scale
exhibits the power-law decaying behavior.

B. Superconducting properties

To explore the pairing tendency, we first calculate the two-
hole binding energy Eb =EG(N ) + EG(N − 2) − 2EG(N−1),
where EG(M ) denotes the ground-state energy of the system
with M electrons. Figure 3 shows the binding energy in
the right axis at several doping levels with L = 80. Eb < 0
represents the tendency of the fermion pair formation in this
wide doping range. With the increase in δ, its magnitude first
increases, then drops continuously, indicating that the pairing
strength achieves a maximum at moderate doping.

To further investigate the superconducting properties, we
calculate the singlet and triplet Cooper pair correlation func-
tions. The correlation function is defined as

�s,t
ab (r) = 〈

�̂s,t
a (i)�̂s,t

b (i + r)†
〉
, (3)

where the pair operators in the singlet and triplet channels are
defined as

�̂s
a(i) = 1√

2

∑
σ

σ ĉi,σ ĉi+a,−σ ,

�̂t
a(i) = 1√

2

∑
σ

ĉi,σ ĉi+a,−σ , (4)

where a = y, (x ± y) denote the sites along the rung and diag-
onal directions, respectively. In Fig. 5 we show the local rung
(a = y, b = y) and the diagonal (a = x ± y, b = x ± y) pair-
ing correlations in a 200 × 2 system doped with two holes. It
is found that the singlet diagonal pairing is decreasing slowly
and the triplet rung or triplet diagonal channel is decaying
exponentially. Furthermore, the correlations in the diagonal
direction with a = x + y, b = x + y and a = x + y, b = x − y
have opposite signs with the same absolute value, which
corresponds to the feature of dxy-wave pairing symmetry.
This result is similar to the model [15,16] without diagonal
antiferromagnetic interaction. In the inset of Fig. 5 we show
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FIG. 6. Pair-pair correlation as a function of the system size on
a log-log plot at several doping levels. The straight line shows the
power-law decaying behavior. In the inset, we show the spin-spin
correlation function on a log-linear plot. The straight line shows the
exponential decaying behavior.

the singlet diagonal pair-pair correlations as a function of
r in the log-log scale at several doping levels in a 100 × 2
system. The nearly straight lines further confirm the power-
law decaying behavior of the correlations. To minimize the
influence of the OBCs, we calculate the correlation functions
in the middle range of the system (L/4 to 3L/4) and show the
average value for a fixed r [33].

The determination of Kρ from the decay of the correlation
functions is expected to be less reliable than from local
densities [32]. To calculate the Luttinger parameter carefully,
we extract the correlation function at given sites in systems
with different sizes [31]. Note that the pair-pair correlation
function should decay as

�(r) ∝ r−1/Kρ . (5)

In practice we calculate �( L
2 ) = 〈�̂( L

4 )�̂( 3L
4 )†〉 and extrapo-

late to the ε = 0 limit for a fixed system. Then we use different
system sizes to obtain the corresponding correlation functions.
Doping level and system size are carefully chosen to ensure
that the charge density at the site L/4 and 3L/4 is a local
maximum. Therefore, the influence of the CDW on the de-
caying behavior of superconducting correlation is minimized.
In Fig. 6 we show the dxy-wave superconducting correlation as
a function of L in a double-logarithmic plot at several doping
levels. The straight lines confirm the power-law behavior. We
extract Kρ from the slope according to Eq. (5). The values
are listed in Table I (SC row). In general, they are close to
the values calculated from the charge density oscillations.
Both methods show that Kρ > 1, which means the system is
dominated by the d-wave pair correlations rather than CDW
correlations [32]. Combining spin, charge, and pairing prop-
erties, we confer that the ground state of the doped Haldane
phase is a Luther-Emery liquid, which is similar to some
weakly doped t-J or Hubbard square ladders [32,34]. In the
inset of Fig. 6 we also show the spin-spin correlation function
F (L/2) = |〈�SL/4 · �S3L/4〉| at different system sizes at several

doping levels. The straight line represents the correlation is
decaying exponentially, which is consistent with the feature
of a bulk spin gap.

III. Renormalized Mean-Field Theory

A. Method

To obtain an intuitive and qualitative understanding of
the superconducting properties, we use RMFT to handle this
problem. The no-double-occupancy constraint is relaxed by
adding renormalized Gutzwiller factors gt before the intra-
chain hopping t term and gs before the superexchange J
term. Therefore, the renormalized Hamiltonian defined in the
Hilbert space without the constraint can be written as

H̃ = −gtt
∑

〈i j〉‖,σ
(c†

i,σ c j,σ + H.c.) + gsJ
∑

〈i j〉‖,×
Si · S j . (6)

Here 〈i j〉‖ means that i and j are two nearest-neighbor sites in
the horizontal direction (blue line in Fig. 1), and 〈i j〉× means
that i and j are two sites in the diagonal direction (red line
in Fig. 1). For nonmagnetic states the Gutzwiller factors are
given as

gt = 2δ

1 + δ
, gs = 4

(1 + δ)2
, (7)

where δ is the hole concentration. Then we define the pair field
and bond field between two sites as

�ν
i jσ = σ 〈
0|ciσ c j−σ |
0〉,

χν
i jσ = 〈
0|c†

iσ c jσ |
0〉. (8)

Here |
0〉 is the unprojected ground-state wave function of
Hamiltonian (6); i j denotes two neighboring sites in horizon-
tal (‖) or diagonal (×) direction. Then the superconducting
gap order parameter and the bond order parameter which
correspond to the expectation values of the operators in the
projected wave function |
〉 [ground state of Hamiltonian (1)]
are calculated by

�SC
i j = 1

2

∑
σ

σ 〈
|ciσ c j−σ |
〉 = 1

2
gt

∑
σ

�ν
i jσ ,

Ki j = 1

2

∑
σ

〈
|c†
iσ c jσ |
〉 = 1

2
gt

∑
σ

χν
i jσ . (9)

The mean-field Hamiltonian can be written as

HMF = −gtt
∑

〈i j〉‖,σ

(
c†

i,σ c j,σ + H.c.
)

− 3

4
gsJ

∑
〈i j〉‖,×,σ

(
χν

i jσ c†
iσ c jσ + �ν

i jσ c†
iσ c†

j−σ + H.c.
)

−μ
∑

iσ

c†
iσ ciσ . (10)

Here μ is the chemical potential for controlling the hole-
doping concentration. Then we can solve the Bogoliubov–de
Gennes (BdG) equations self-consistently. The system size is
100 × 2, and we confirm the convergence of the solution if the
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FIG. 7. The mean-field configuration in the model. Three kinds
of bonds (blue, green, and red) and six different mean fields,
χ1, χ2, χ3, �1, �2, �3, exist. In our solution the gap fields are �1 =
0, �2 = −�3 > 0, and the bond fields are χ1 > 0, χ2 = χ3 = 0.

difference of the mean fields between successive iterations is
less than 10−3. If we want to show the edge spins, we should
generalize the formalism to an inhomogeneous system with
OBCs and include local mi.

B. Results

First, we consider the nonmagnetic case with periodic
boundary conditions. �ν

i jσ and χν
i jσ are spin-independent

mean fields. The self-consistent solution of the BdG equation
gives us a superconducting state which is uniform in the x
direction. The antiferromagnetic interaction J term exists in
both intrachain nearest-neighbor sites (blue bonds in Fig. 7)
and interchain next-nearest-neighbor sites (red and green
bonds in Fig. 7). All these J terms can be decoupled into
mean fields χ and �. In other words, we allow nonvanishing
χ1, χ2, χ3 and �1,�2,�3 in Fig. 7. However, in our self-
consistent solution the gap fields �1 = 0,�2 = −�3 > 0.
The bond fields χ1 > 0, χ2 = χ3 = 0. From the relative phase
of the pair fields we confirm that the pairing symmetry is dxy.
To be specific, the gap fields satisfy �ν

i,i+x̂+ŷ = −�ν
i,i−x̂+ŷ =

�ν if i sits on the lower chain and �ν
i,i+x̂−ŷ = −�ν

i,i−x̂−ŷ =
−�ν if i sits on the upper chain. These results agree well with
DMRG calculations. First, the pairing symmetries using the
two distinct methods are identical. In addition, DMRG finds
that 〈c†

i c j〉 = 0 when i j are two sites in the diagonal direction,
and it is finite in the horizontal direction, which is the same as
the χ field in the RMFT qualitatively.

The values of the two mean fields as a function of doping
are depicted in Fig. 8(a). After multiplying gt , the supercon-
ducting order parameter and bond order parameter are shown
in Fig. 8(b). The pairing mean field �2 decreases monotoni-
cally, and the order parameter �SC forms a domelike shape.
�SC = gt�2 = 2δ

1+δ
�2 is roughly proportional to δ in the very

low doping range, so that �SC first increases with doping.
After moderate doping the decrease in �2 dominates over the
increase in gt . As a result, �SC drops down along with the
pairing field. The domelike behavior of the superconducting
order parameter is similar to the results of the 2D and quasi-
1D t-J model on a square lattice [11,23]. The bond order K
increases monotonously as a function of doping because more
doped holes may result in enhanced kinetic energies.

C. Momentum-space analyses

To give a further analysis of the problem, we switch to
k space to obtain some relations between the mean fields.
The mean-field Hamiltonian (10) can be written in momentum

FIG. 8. (a) Pair field �2 and bond field χ1 as a function of doping
concentration δ. (b) Superconducting order parameter �SC and bond
order K as a function of δ. SC order forms a domelike shape.
(a) and (b) are the expectations of the operators in |
0〉 and |
〉,
respectively.

space as

Hk =
∑
k,σ

εkc†
k,σ

ck,σ +
∑

k

�̃kc†
k↑c†

−k↓ + H.c., (11)

where

εk = −2gtt cos kx − 3

4
gsJ[2χ1 cos kx + χ2 cos(kx + ky)

+χ3 cos(kx − ky)] − μ, (12)

�̃k = −3

4
gsJ[2�1 cos kx + �2 cos(kx + ky)

+�3 cos(kx − ky)]. (13)

The mean fields χ1, χ2, χ3,�1,�2,�3 are shown in Fig. 7.

First, we consider the half-filled case with gt = 0. We can
write εk = −3/4gsJχk, �̃k = −3/4gsJ�k, with

χk = 2χ1 cos kx + χ2 cos(kx + ky) + χ3 cos(kx − ky)

= 2χ1 cos kx + (χ3 + χ2) cos kx cos ky

+ (χ3 − χ2) sin kx sin ky, (14)
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FIG. 9. The mean fields �1,�2, �3, χ2, χ3 as a function of χ1

in the half-filled case (δ = 0). All of the points are the solutions of
the BdG equation with exactly the same energy. They all satisfy the
constraints (18), (19), and (20).

�k = 2�1 cos kx + �2 cos(kx + ky) + �3 cos(kx − ky)

= 2�1 cos kx + (�3 + �2) cos kx cos ky

+ (�3 − �2) sin kx sin ky. (15)

Using the same method with Refs. [11,23], we find that the
energy of the system is

E = −3

4
gsJ

∑
k

Ek. (16)

Here Ek =
√

χ2
k + �2

k. Inspired by the real-space solution, we
can make an ansatz of Ek,

Ek = C
√

4 cos2 kx + 4 sin2 kx sin2 ky, (17)

where C is a parameter to be determined. Combining the
expressions of χk and �k, we find that the mean fields should
satisfy the following equations:

χ2
1 + �2

1 = χ2
2 + �2

2 = χ2
3 + �2

3 = C2, (18)

χ3 = −χ2,�3 = −�2, (19)

χ1χ2 + �1�2 = 0. (20)

Due to these constraints we have only one independent field.
For example, if we fix χ1, the absolute values of all mean
fields are determined. Changing χ1 will produce many states
with the same energy. To verify these conditions, we calculate
some ground states through solving the BdG equation (10)
and show the mean fields in Fig. 9. With the increasing of
χ1, the fields �1,−χ2, χ3 decrease, and �2,−�3 increase.
In addition, �2 = −�3 = χ1. These states indeed have same
the energies, and they all satisfy the constraints (18), (19), and
(20). The constant C equals 0.25. The degenerate states are
all unprojected states. They correspond to the same projected
RVB ground state [23].

FIG. 10. The entanglement spectrum at different doping levels.
Twofold degeneracy is the same as the undoped Haldane phase.

When we slightly deviate from the half-filled case, the
constraints above still hold approximately. Since the hopping
term is only along the x direction, we should maximize χ1

to make the absolute value of the kinetic energy as large as
possible. As a result, χ1 = C > 0,�1 = 0 due to the con-
straint χ2

1 + �2
1 = C2. In the diagonal direction, χ2 = 0 due to

χ1χ2 + �1�2 = 0. Then �2 = ±C because χ2
2 + �2

2 = C2.
On the whole, the ground state is

χ1 = C, �1 = 0, χ2 = χ3 = 0, �2 = −�3 = ±C.

(21)

This is exactly the dxy-wave superconducting state we calcu-
lated above using the DMRG and real-space RMFT method.
χ2 = χ3 = 0 is also reasonable and same with the results
before. However, χ1 = �2 = C is satisfied only in the exactly
half filled case, as shown by Fig. 8(a). Roughly speaking,
dxy superconductivity directly comes from J interaction in the
diagonal bond, but it is the hopping term in the x direction
that makes the system choose this ground state (the last point
in Fig. 9). The success of the RMFT method in handling
this problem demonstrates that the projected BCS function
approach is efficient for describing dxy superconductivity in
the doped Haldane phase. The formalism of RVB can capture
the essential physics in the present doped spin-1 system.

IV. DISCUSSION

A. Entanglement properties

The entanglement spectrum and entanglement entropy
have been widely used to investigate various quantum systems
[35]. The ground state of the spin-1 chain exhibits a twofold-
degenerate entanglement spectrum [3], reflecting the nontriv-
ial topological nature of the Haldane phase. We divide the
diagonal ladder system with finite length L into two subblocks
and calculate the eigenvalues wα of the reduced density ma-
trix ρl = TrL−l [ρ], with l = L/2. The entanglement spectrum
ξα = −ln wα at different dopings δ is shown in Fig. 10. When
the system is in the half-filled state, the entanglement is almost
the same as that for the spin-1 chain [3]. When we dope holes
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FIG. 11. The entanglement entropy S as a function of L at
different doping levels. Inset: The central charge as a function of
doping level.

into the system, twofold degeneracy still survives, which is
consistent with the existence of edge states.

For (1 + 1)-dimensional critical systems the von Neumann
entanglement entropy defined by S = −Tr ρl ln ρl generally
satisfies S(L) = c

6 ln(L) + c̃ [36]. Here c is the central charge
in the conformal field theory, and c̃ is a constant in a spe-
cific model. The entanglement entropy as a function of L
at different dopings δ is shown in Fig. 11. It is nearly a
straight line. The inset shows the central charge c as a function
of doping level δ determined from the fitting of S. In the
Luther-Emery phase, the spin sector is gapped, and there is
a single gapless mode in the charge sector. The central charge
is expected to be 1. Our calculations show that the central
charge is close to but slightly larger than c = 1, similar to
some previous calculations using the same method [31]. These
results demonstrate that our ground state is a Luther-Emery
liquid.

B. Comparison of DMRG and RMFT results

We have shown that qualitatively the same results can
be obtained by using the RMFT and DMRG methods in
this quasi-1D system. However, the RMFT method generates
finite pairing order, and the DMRG method has power-law de-
caying quasi-long-range order. To reveal the pairing strength
in the DMRG, we averaged the correlation function in the
interior region of the system for a fixed r to minimize the
influences of edge states:

P(r) = 1

L/2 − r − 1

3L/4−r−1∑
j=L/4+1

〈
�̂s

x+y( j)�̂s
x+y( j + r)†

〉
. (22)

Then we summed over many different r to estimate the
pairing correlation strength in this system [37]. In Fig. 12
we show PD = ∑38

r=4 P(r) as a function of doping in an
80 × 2 system using m = 1000 DMRG states. We find that
PD increases rapidly with hole doping starting from the half-
filled case and reaches a maximum at around δ = 0.1. Then
it decreases gradually in a wide doping range. The concrete

FIG. 12. The pairing correlation strength PD as a function of
doping δ in an 80 × 2 system. It first increases rapidly, then drops
gradually.

values depend on the lower and upper bounds in the sum,
but the overall tendency is insensitive to them. The doping
evolution is qualitatively similar to the dome shape calculated
using the RMFT in Fig. 8(b) and consistent with the behavior
of the binding energy shown in Fig. 3. It seems that the
pairing strength does not drop to zero when δ = 0.4. The
possible finite pairing correlations when δ > 0.4 are beyond
the consideration of this paper.

To make further comparisons with these two methods,
we calculate the ground-state energy and the superexchange
energy per site. Here we introduce a new Gutzwiller factor to
improve the approximation by

gs = 4n2

n2(1 + δ)2 + 8δ2(|�|2 − |χ |2) + 16(|�|4 + |χ |4)
,

where n = 1 − δ. This modification has been used to study the
two-leg square t-J model [11]. The mean fields and the order
parameter are almost unchanged compared to the common
Gutzwiller factor, but the superexchange energy is closer to
the result of the DMRG at most doping levels (shown in
Fig. 13). The total energy shown in the inset of Fig. 13
still slightly deviates from the DMRG result when holes are
doped into the system. The modifications of gt in Ref. [11]
are not useful to obtain more accurate energy. In the DMRG
calculation, we consider the middle part of the system (L/4
to 3L/4) to reduce boundary effects. Generally speaking, the
RMFT can obtain energies quite close to those of the DMRG
method.

In addition to the superconducting properties, the RMFT
results can also reveal the edge state under the condition of
the OBCs. The expectation value of Sz

i is represented by mi.
By taking into account mi, the RMFT calculations become
a little more complicated with modifications of renormalized
Gutzwiller factors [38,39]. Here we add an external Zeeman
field −h(ni↑ − n↓

i ) to drive the system to the S = 1 sector.
The expectation of Sz

i at different sites is shown in Fig. 14.
The length of the system is 100, and the doping level is 0.15.
For comparison, the DMRG results are shown in the inset.
These two methods present quite similar features in which the
edge spins Sb = 1/2 and Sz

i decays to zero in the bulk of the
system. It shows that the RMFT method can describe the main
physics of the present model.
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FIG. 13. The superexchange energy per site at several doping
levels using different methods in a 100 × 2 system. Inset: The total
energy per site using different methods. The energies of RMFT with
modified gs are closer to those of DMRG.

C. Effects of J/t

In this section we briefly discuss the effects of J/t in
the 0.1 � J/t � 0.5 regime (t = 1.0 is fixed). According to
our analyses before, pairing strength would increase with J
because it directly comes from the mean-field decoupling
of the antiferromagnetic interaction. In Fig. 15 we show the
pairing strength as a function of J/t in an 80 × 2 system using
the DMRG and RMFT methods. In the DMRG method, we
calculate the pair-pair correlation function PD. In the RMFT
method we calculate the superconducting order parameter
�SC defined in (9). Both methods exhibit a continuous in-
creasing of the pairing strength with J , as expected, showing
the consistency of the two methods.

Besides pairing strength, we also calculate the spin gap
and binding energy as a function of J/t in Fig. 16 with

FIG. 14. The spatial distribution of Sz using the RMFT method in
a 100 × 2 system with doping δ = 0.15 in the sector Sz

tot = 1. Inset:
Sz

i using the DMRG method in the same system. Edge state S = 1/2
appears in both methods.

FIG. 15. The pairing strength as a function of J/t calculated
using DMRG and RMFT. Both methods show that larger J makes
the pairing stronger, as expected.

L = 80 using the DMRG method. The spin gap divided by
J is shown on the left axis. �S=1 is always zero due to
the gapless edge states. �S=2/J only slightly changes with
J/t because the antiferromagnetic Heisenberg terms control
the bulk Haldane gap. The binding energy Eb shown on the
right axis is negative, and its absolute value increases with
J/t , which is consistent with the increasing pairing strength.
These results show that the value of J/t does not change the
properties of the doped Haldane phase qualitatively, at least in
the 0.1t � J � 0.5t regime.

D. dxy-wave superconductivity in other models

We note that dxy-wave superconductivity has been found
in several Hubbard or (t-J)-type ladder models [15–19]. In
our opinion their low-energy physics is almost the same as in
this paper. To achieve this kind of superconductivity, first, we
need an intrachain hopping term. Then we need an effective
antiferromagnetic Heisenberg interaction between horizontal

FIG. 16. The spin gap �S=1/J, �S=2/J (left axis) and binding
energy Eb (right axis) as a function of J/t in an 80 × 2 system.
The spin gap only slightly changes with J/t . The binding energy Eb

becomes more negative with the increasing of J/t .
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FIG. 17. The spin-spin correlation function in the diagonal di-
rection in models (1) and (23). The system is a 100 × 2 ladder
with doping level δ = 0.05. We can see that both models have a
strong antiferromagnetic correlation. The model (23) has no direct J
interaction in the direction, but the correlation is even stronger than
model (1).

neighboring sites. This interaction can also be induced by the
on-site Hubbard U term and intrachain hopping t . Finally, we
need a coupling between two chains. A vertical ferromagnetic
term or a diagonal antiferromagnetic term will work. For
example, dxy-wave superconductivity appears in the doped
two-leg ladder model in Refs. [15,16]. The Hamiltonian is

H = −t
∑

iσ

(c†
1,i,σ c1,i+1,σ + c†

2,i,σ c2,i+1,σ ) + H.c.

+ Jx

∑
i

(S1,i · S1,i+1 + S2,i · S2,i+1) + Jy

∑
i

S1,i · S2,i.

(23)

Here t = 1, Jx = 0.3, Jy = −10. The Jx term is the intrachain
antiferromagnetic Heisenberg interaction. The Jy term couples
two sites at different chains with a strong ferromagnetic
interaction. The ground state has a remarkable spin-spin
correlation in the diagonal direction, shown as red points in
Fig. 17, very similar to the correlation function shown as
blue points in the model (1) with the direct J term in that
direction. The oscillation is induced by the charge density
Friedel oscillations discussed before. We conclude that the
low-energy effective Hamiltonian of the present model may
contain an effective antiferromagnetic Heisenberg interaction
along the diagonal direction, which leads to the dxy-wave
pairing.

E. Changing the hopping term

In this section, we provide more pieces of evidence to
support our arguments that the ground state is determined by
how the electrons hop in the ladder system. In model (1) the
hopping term is along the intrachain bond. Now we change
the hopping term to

H = t
∑
i,σ

(c†
1,i,σ c2,i+1,σ − c†

2,i,σ c1,i+1,σ + H.c.). (24)

It means that the hopping term is along the diagonal direction
and the hopping matrix elements are t and −t in the two di-
rections. Like in the analysis above, to maximize the absolute
value of the kinetic energy we should force χ2 =−χ3 = C >0.
As a result, �2 = �3 = 0, χ1 = 0,�1 = ±C. This state is
just the first point in Fig. 9 with uniform pairing in the
intrachain bonds at both chains. The real-space RMFT and
DMRG results show that pairing order or quasi-long-range
correlation indeed appears in the intrachain bond in the ground
state. dxy pairing symmetry no longer exists. Meanwhile,
the finite expectation value of c†

i c j appears in the diagonal
direction instead of the horizontal direction. In addition, both
methods show that the ground-state energies of this model
and model (1) are the same. These results further demonstrate
our earlier statements. Pairing order � and bond order χ

can appear in all bonds with J interaction. It is the hop-
ping term that determines their behavior and the real ground
state.

V. SUMMARY

We proposed a doped two-leg diagonal ladder model to
realize the doped Haldane phase with a dominant dxy-wave
pairing correlation. By using the DMRG method, we found
that the ground state hosts some common features of the Hal-
dane phase, including the spin gap, edge states, and twofold
degeneracy in the entanglement spectrum. From the Friedel
oscillation and the power-law decaying pair-pair correlation,
we confirmed that the ground state belongs to Luther-Emery
liquid with the Luttinger parameter Kρ > 1. In addition, we
used the Gutzwiller approximation and decoupled the J term
to get bond and pair mean fields in the framework of the
RMFT. The superconducting order parameter with dxy-wave
symmetry was obtained, which originates from the antiferro-
magnetic interaction in the diagonal direction. The intrachain
hopping term may stabilize this state. The superconducting
order parameter forms a domelike shape as a function of the
doping levels. Even though the RMFT method is at the mean-
field level, its results, including the superconducting pairing
symmetry, the evolution of pairing strength as a function
of doping, ground-state energy, and the presence of edge
states, agree well with those of the numerically exact DMRG
method. These results clearly show that the RMFT method
based on the RVB picture works quite well in the present
diagonal ladder model. When we change the value of J/t , the
ground state is qualitatively invariant, and the pairing strength
increases with J .

Fe-based superconductivity has attracted much attention
during the past decade. Our results may be relevant in two
aspects. First, the superconductivity in ladder compound
BaFe2S3 is explained regarding a two-orbital Hubbard model
[19]. Our model shows the same pairing symmetry as their
model and can be treated as an effective model in the
large-U limit. Second, it is widely believed that the mag-
netism of FeSe should be explained with models with spin-
1 local moments [40,41]. Then it is promising to general-
ize our effective spin-1 chain to a two-dimensional spin-1
model to explore the superconductivity in the FeSe
system.
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