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Inverse proximity effect in s-wave and d-wave superconductors coupled to topological insulators
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We study the inverse proximity effect in a bilayer consisting of a thin s- or d-wave superconductor (S) and
a topological insulator (TI). Integrating out the topological fermions of the TI, we find that spin-orbit coupling
is induced in the S, which leads to spin-triplet p-wave ( f -wave) correlations in the anomalous Green’s function
for an s-wave (d-wave) superconductor. Solving the self-consistency equation for the superconducting order
parameter, we find that the inverse proximity effect can be strong for parameters for which the Fermi momenta
of the S and TI coincide. The suppression of the gap is approximately proportional to e−1/λ, where λ is the
dimensionless superconducting coupling constant. This is consistent with the fact that a higher λ gives a more
robust superconducting state. For an s-wave S, the interval of TI chemical potentials for which the suppression
of the gap is strong is centered at μTI = ±

√
2mv2

Fμ, and increases quadratically with the hopping parameter t .
Since the S chemical potential μ typically is high for conventional superconductors, the inverse proximity effect
is negligible except for t above a critical value. For sufficiently low t , however, the inverse proximity effect is
negligible, in agreement with what has thus far been assumed in most works studying the proximity effect in
S-TI structures. In superconductors with low Fermi energies, such as high-Tc cuprates with d-wave symmetry,
we again find a suppression of the order parameter. However, since μ is much smaller in this case, a strong
inverse proximity effect can occur at μTI = 0 for much lower values of t . Moreover, the onset of a strong inverse
proximity effect is preceded by an increase in the order parameter, allowing the gap to be tuned by several orders
of magnitude by small variations in μTI.
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I. INTRODUCTION

Topological insulators (TIs) are insulating in the bulk, but
host metallic surface states protected by the topology of the
material [1–3]. For three-dimensional topological insulators,
the two-dimensional (2D) surface states can be described by
a massless analog of the relativistic Dirac equation, having
linear dispersions and spin-momentum locking. Many inter-
esting phenomena are predicted to occur by coupling the TI
to a superconductor, thus inducing a superconducting gap in
the TI [4]. For instance, such systems have been predicted
to host Majorana bound states [5], which could be used
for topological quantum computing. Moreover, the Dirac-
like Hamiltonian σ · k has consequences for the response to
exchange fields, allowing the phase difference in a Josephson
junction to be tuned by an in-plane magnetization to values
other than 0 and π [6], and inducing vortices by an in-plane
magnetic field [7,8].

Numerous papers have studied the interesting phenom-
ena that have been discovered in topological insulators with
proximity-induced superconductivity [9–22]. To our knowl-
edge, however, much less attention has been paid to the
inverse superconducting, or topological [23], proximity ef-
fect, i.e., the effect that the topological insulator has on the
superconductor order parameter. There have been indications
that superconductivity might be suppressed [17], while other
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studies have found no suppression [20], One recent study
demonstrated that the proximity to the TI induces spin-orbit
coupling in the superconductor (S), possibly making a Fulde-
Ferrel [24] superconducting state energetically more favorable
near the interface of a magnetically doped TI [25]. Another
study showed that the TI surface states can leak into the su-
perconductor, resulting in a Dirac cone in the density of states
[26]. In this paper, we focus on the superconducting gap itself
and study under what circumstances the inverse proximity
effect is negligible, as is often assumed in theoretical works.

Using a field-theoretical approach, we study an atomically
thin Bardeen-Cooper-Schrieffer (BCS) s-wave superconduc-
tor and d-wave superconductor coupled to a TI. While this
is an approximation for most conventional and high-Tc super-
conductors such as, e.g., Nb, Al, and YBa2Cu3O7, supercon-
ductivity has been observed in, e.g., single-layer NbSe2 [27]
and FeSe [28–30]. Integrating out the TI fermions, we obtain
an effective action for the S electrons. Due to the induced
spin-orbit coupling, spin-triplet p-wave ( f -wave) correlations
are induced in the s-wave (d-wave) superconductor.

Solving the mean-field equations, using parameters valid
for both conventional s-wave superconductors and high-Tc d-
wave superconductors, we find that in both cases a strong
suppression of the superconducting gap is possible. For con-
ventional superconductors, where the Fermi energy μ is high
compared to the cut-off frequency, the coupling between the S
and the TI has to be quite large in order for the inverse proxim-
ity effect to be strong for relevant TI chemical potentials μTI.
This can explain the lack of any inverse proximity effect in

2469-9950/2019/99(9)/094505(11) 094505-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.094505&domain=pdf&date_stamp=2019-03-07
https://doi.org/10.1103/PhysRevB.99.094505


HUGDAL, AMUNDSEN, LINDER, AND SUDBØ PHYSICAL REVIEW B 99, 094505 (2019)

experiments [20]. In high-Tc d-wave superconductors, on the
other hand, where the Fermi energy is much smaller, we find
a strong gap suppression at much lower coupling strengths,
which might therefore be experimentally observable. For
these systems, we also find an increase in the gap for μTI just
outside the region of strong inverse proximity effect.

The remainder of the paper is organized as follows: The
model system is presented in Sec. II, and the effective action
for the S fermions and order parameter is derived in Sec. III.
In Sec. IV we derive the mean-field gap equations for the
order parameter. Numerical results for the superconducting
gap are presented and discussed in Sec. V, and summarized
in Sec. VI. Further details on the calculation of the criteria
for strong proximity effect, the Nambu space field integral,
the zero-temperature, noninteracting gap solutions, and the
numerical methods used, are presented in the Appendices.

II. MODEL

We model the bilayer consisting of a thin superconductor
(S) coupled to a TI by the action

S = SS + STI + St . (1)

In Matsubara and reciprocal space, the superconductor is
described by

SS = 1

βV

∑
k

c†(k)

(
−iωn + k2

2m
− μ

)
c(k)

−
∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)c†

↓(−k′ + q)c↓(−k + q)c↑(k),

(2)

where c(k) = [c↑(k) c↓(k)]T with c↑(↓)(k) denoting the anni-
hilation operator for spin-up (spin-down) electrons, m is the
electron mass, and μ is the chemical potential in the S. β =
1/kBT and V = LxLy are the inverse temperature and system
area, respectively. We have used the notation k = (ωn, k) [q =
(�n, q)], where ωn (�n) is a fermionic (bosonic) Matsubara
frequency, and k (q) the fermionic (bosonic) in-plane wave
vector. Vk,k′ is the pairing potential, which can be written [31]

Vk,k′ = gv(k)v(k′), (3)

where v(k) = 1 for s-wave pairing, and v(k) = √
2 cos(2φk )

for dx2−y2 -wave pairing, where φk is the angle of k relative
to the kx axis. The coupling constant g is assumed to be
nonzero only when −ω− < k2/2m − μ < ω+, where ±ω± is
the upper (lower) cut-off frequency. For conventional s-wave
superconductors this is typically taken to be the characteristic
frequency ωD of the phonons, while the cut-off frequencies in
high-Tc superconductors are of the order of the characteristic
energy of the antiferromagnetic fluctuations present in these
materials [32–35]. We will set h̄ = 1 throughout the paper.
For the TI we use the Dirac action

STI = 1

βV

∑
k

�†(k)(−iωn + vFk · σ − μTI)�(k), (4)

where �(r) = [ψ↑(r) ψ↓(r)]T describes the TI fermions, vF is
the Fermi velocity, and μTI is the TI chemical potential. The

S and TI layers are coupled by a hopping term [25,26,36,37]

St = − 1

βV

∑
k

t[c†(k)�(k) + �†(k)c(k)]. (5)

Similar models were recently used in Refs. [25,26] when
studying similar systems with an s-wave S. The full partition
function of the system is therefore

Z =
∫

D[c†, c]e−SS

(∫
D[�†, �]e−STI−St

)
. (6)

III. EFFECTIVE ACTION

As we are interested in the inverse proximity effect in
the S and its consequences for the superconducting gap, we
integrate out the TI fermions by performing the functional
integral ZTI,t = ∫

D[�†, �]e−STI,t , where

STI,t = 1

βV

∑
k

{
�†(k)

( − G−1
TI

)
�(k) − t[c†(k)�(k)

+�†(k)c(k)]
}
. (7)

Here, we have defined the matrix G−1
TI = iωn − vFk · σ + μTI.

Performing the functional integration leads to an additional
term in the S action,

δSS = t2

βV

∑
k

c†(k)GTIc(k), (8)

with the TI Green’s function

GTI = iωn + μTI + vFk · σ

(iωn + μTI)2 − v2
Fk2

. (9)

The effective S action thus reads

Seff
S = − 1

βV

∑
k

c†(k)G−1
0 c(k) −

∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)

× c†
↓(−k′ + q)c↓(−k + q)c↑(k), (10)

where we have defined the inverse noninteracting Green’s
function

G−1
0 = iωn − k2

2m
+ μ − t2GTI. (11)

From this we see that the coupling to GTI in Eq. (9) leads to
an induced spin-orbit coupling ∼k · σ in the S, in agreement
with Ref. [25].

Performing a Hubbard-Stratonovich decoupling [38], the
four-fermion term in the S action can be rewritten in terms of
bosonic fields ϕ(q) and ϕ†(q),

−
∑
k,k′,q

Vk′,k

(βV )3
c†
↑(k′)c†

↓(−k′ + q)c↓(−k + q)c↑(k) → − 1

βV

×
∑
k,q

[ϕ(q)v(k)c†
↑(k)c†

↓(−k + q) + H.c.]. (12)

This also leads to an additional term in the total system action

S0
ϕ = βV

g

∑
q

ϕ†(q)ϕ(q), (13)
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and a functional integration of the bosonic fields in the parti-
tion function. Note that the decoupling is performed such that
the bosonic fields have units of energy.

By defining the Nambu spinor

C(k) = [c↑(k) c↓(k) c†
↑(−k) c†

↓(−k)]T , (14)

the effective S action can be written

Seff
S = − 1

2βV

∑
k,k′

C†(k)G−1(k, k′)C(k′), (15)

where

G−1(k, k′)=
(

G−1
0 (k)δk,k′ ϕ(k − k′)v(k)iσy

−ϕ†(−k + k′)v(k)iσy −[
G−1

0 (−k)
]T

δk,k′

)
.

(16)

Performing the functional integration over the fermionic
fields, we arrive at the effective action for the bosonic fields

Sϕ = βV

g

∑
q

ϕ†(q)ϕ(q) − 1

2
Tr ln(−G−1). (17)

The additional factor 1/2 in front of the trace is due to the
change in integration measure when changing to the Nambu

spinor notation (see Appendix B and, e.g., Ref. [39] for
details).

IV. MEAN-FIELD THEORY

Since G−1
0 (iωn, k) is still inversion symmetric in the di-

agonal basis (see below), we assume that the bosonic field
ϕ(q) is temporally and spatially homogeneous as in the
regular BCS case. However, a recent study has shown that
introducing in-plane magnetic fields in the TI breaks this
symmetry and can make a Fulde-Ferrel [24] order parameter
energetically more favorable in an s-wave S [25]. Calculating
the matrix G(k) assuming a spatially homogeneous bosonic
field φ(q) = δq,0, and defining the superconducting order
parameter (k) =  · v(k), we get

G(k) =
(

G(k) F (k)

F †(k) −GT (−k)

)
, (18)

where to leading order in t

G(k) = −εk + iωn

ξ 2
k + ω2

n

− t2 (εk + iωn)2[(iωn + μTI) + vFk · σ](
ξ 2

k + ω2
n

)2[
v2

Fk2 − (iωn + μTI)2
] − t2 |(k)|2[(iωn − μTI) − vFk · σ](

ξ 2
k + ω2

n

)2[
v2

Fk2 − (iωn − μTI)2
] , (19)

F (k) = (k)

ξ 2
k + ω2

n

{
1 + 2t2

(
v2

Fk2 − μ2
TI − ω2

n

)
εkμTI − ω2

n

(
v2

Fk2 + μ2
TI + ω2

n

)
(
ξ 2

k + ω2
n

)[
(vF|k| − μTI)2 + ω2

n

][
(vF|k| + μTI)2 + ω2

n

]
+ 2t2

(
v2

Fk2 − μ2
TI + ω2

n

)
εk − 2ω2

nμTI(
ξ 2

k + ω2
n

)[
(vF|k| − μTI)2 + ω2

n

][
(vF|k| + μTI)2 + ω2

n

]vFk · σ

}
iσy, (20)

with εk = k2/2m − μ and ξk =
√

ε2
k + |(k)|2. As men-

tioned above, the proximity-induced spin-orbit coupling leads
to nondiagonal terms in G(k). Moreover, F (k) now has diago-
nal terms ∝k · σiσy, signaling that p-wave ( f -wave) triplet
superconducting correlations are induced in the s-wave (d-
wave) superconductor. This has been shown to be the case
in s-wave superconductors when the spin degeneracy is lifted
by spin-orbit coupling [40]. A similar expression was found
for the anomalous Green’s function on the TI side of an S-TI
bilayer in Ref. [41]. The results in Ref. [41] also suggest
that odd-frequency triplet pairing could be induced in the
S by including a magnetic exchange term m · σ in the TI
Lagrangian.

Gap equation

While the above Green’s functions contain information
about the correlations in the superconductor, the supercon-
ducting gap must be determined self-consistently. We first
change to the basis which diagonalizes the nonsuperconduct-
ing normal inverse Green’s function G−1

0 . We find G−1
d,0(k) =

P(k)G−1
0 (k)P†(k), where G−1

d,0(k) = diag[G−1
+,0(k), G−1

−,0(k)],

with

G−1
±,0(k) = iωn − εk − t2

iωn + μTI ∓ vF|k| (21)

and

P(k) = 1√
2

(
1 e−iφk

1 −e−iφk

)
t . (22)

Here φk is the angle of k relative to the kx axis. + (−) here
denotes the Green’s function for positive (negative) chirality
states. Inverting G−1

d,0 we find the Green’s functions

G±,0(k) = iωn ∓ vF|k| + μTI

[iωn − ε+
± (k)][iωn − ε−

± (k)]
, (23)

where

εγ
α (k) = 1

2 [εk + αvF|k| − μTI

+ γ
√

(εk − αvF|k| + μTI)2 + 4t2], (24)
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with α, γ = ±1. The Green’s function has residues

wγ
α (k) = 1

2
+ εk − αvF|k| + μTI

2γ
√

(εk − αvF|k| + μTI)2 + 4t2
. (25)

We next transform the entire inverse Green’s function G
using G−1

d (k) = P (k)G−1(k)P†(k), where

P (k) =
(

P(k) 0

0 P∗(−k)

)
, (26)

which yields

G−1
d (k) =

(
G−1

d,0(k) −(k)e−iφkσz

−†(k)eiφkσz −G−1
d,0(−k)

)
. (27)

Hence the full Green’s function matrix for the superconductor
is

Gd (k) =
(

Gd (k) Fd (k)

F †
d (k) −Gd (−k)

)
, (28)

where we have defined the 2 × 2 matrices Gd (k) =
diag[G+(k), G−(k)] and Fd (k) = diag[F+(k), F−(k)], and
Green’s functions

G±(k) = [iωn + ε+
± (k)][iωn + ε−

± (k)][iωn ∓ vF|k| + μTI]

[iωn − ξ+
± (k)][iωn + ξ+

± (k)][iωn − ξ−
± (k)][iωn + ξ−

± (k)]
, (29a)

F±(k) = ± (k)e−iφk [(iωn)2 − (±vF|k| − μTI)2]

[iωn − ξ+
± (k)][iωn + ξ+

± (k)][iωn − ξ−
± (k)][iωn + ξ−

± (k)]
. (29b)

The eigenenergies of the system are now given by the poles in the above equation, where

ξγ
α (k) = 1√

2

{
ξ 2

k + (αvF|k| − μTI)
2 + 2t2 + γ

√[
ξ 2

k − (αvF|k| − μTI)2
]2 + 4t2[(εk + αvF|k| − μTI)2 + |(k)|2]

}1/2
. (30)

The gap equation for the amplitude  is found by requiring
δSϕ

δ
= 0 [38], which yields

† = − g

2βV

∑
k

tr F †
d (k)v(k)σze

−iφk . (31)

Inserting the Hermitian conjugate of Eq. (29b) and performing
the sum over Matsubara frequencies, we get the gap equation,

1 = g

4V

∑
k

v(k)2

{
ξ+
+ (k)2 − (vF|k| − μTI)2

ξ+
+ (k)[ξ+

+ (k)2 − ξ−
+ (k)2]

tanh
βξ+

+ (k)

2

− ξ−
+ (k)2 − (vF|k| − μTI)2

ξ−
+ (k)[ξ+

+ (k)2 − ξ−
+ (k)2]

tanh
βξ−

+ (k)

2

+ ξ+
− (k)2 − (vF|k| + μTI)2

ξ+
− (k)[ξ+

− (k)2 − ξ−
− (k)2]

tanh
βξ+

− (k)

2

− ξ−
− (k)2 − (vF|k| + μTI)2

ξ−
− (k)[ξ+

− (k)2 − ξ−
− (k)2]

tanh
βξ−

− (k)

2

}
. (32)

Setting t = 0 simply yields the regular BCS gap equation,
which results in a gap 0 = 2ωDe−1/λ in the s-wave case [42],
where λ = gD0/V is a dimensionless coupling constant, and
D0 is the density of states at the Fermi level. d-wave pairing
results in a slightly smaller gap for the same values for λ

and the cut-off frequencies (see Appendix C for details). For
t �= 0, the above equation can be expressed in terms of an
energy integral over εk using vF|k| = vF

√
2m(εk + μ).

V. RESULTS AND DISCUSSION

From the expressions for the system eigenenergies in the
nonsuperconducting case, Eq. (24), we see that the S and
TI bands have hybridized, leading to avoided crossings. The
effect of this hybridization is largest when the chemical

potential of both the S and TI is tuned such that the Fermi
momenta coincide, i.e., for μTI = ±

√
2mv2

Fμ. A possibly
strong proximity effect should therefore be expected to occur
in a region close to these values of μTI, the size of which
increases with increased hopping t . In the following we
numerically solve the gap equations for both s- and d-wave
superconductors for relevant parameter values.

A. s-wave pairing

Using numerical values μ ∼ 5 eV, a cutoff correspond-
ing to the Debye frequency, h̄ω± = h̄ωD ∼ 25 meV [43],
h̄2/2m ∼ 40 meV nm2, h̄vF ∼ 300 meV nm [20,44], and λ =
0.2, we solve the gap equation in Eq. (32) for different values
of t and μTI at T = 0 for an s-wave superconductor. The
results in Fig. 1(a) show that the absolute value of the gap
is not changed significantly due to the inverse proximity
effect for small t , except for μTI close to

√
2mv2

Fμ. Both
for μTI above and below this region, the inverse proximity
effect is small, signifying that the disappearing gap in the
region where the inverse proximity effect is strong cannot
be simply related to the increasing density of states in the
TI. For increasing t , the region where superconductivity is
suppressed increases quadratically with t , eventually leading
to suppressed superconductivity also at μTI = 0.

The strong suppression of the order parameter can be
understood from the fact that the pairing potential is attractive
only when |k2/2m − μ| � ωD, corresponding to wave vectors
between k± ≡

√
2m(μ ± ω±). This means that the Fermi

wave vectors kF of the bands in Eq. (24), the value of |k|
for which ε

γ
α (k) = 0, have to satisfy k− < kF < k+ in order

to contribute significantly to the integral in the gap equations
and thus give a finite gap. This can be seen by comparing
the left panels in Fig. 1(b), where the upper left panel shows
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FIG. 1. (a) Plot of the superconducting gap at T = 0 for an s-wave superconductor as a function of μTI and t and with an upper cutoff
ω+ = 0.0025 eV, normalized to the bulk value |0| for parameter values relevant for Nb-HgTe bilayers. The kF values for the TI appear vertical
on this plot as a function of μTI due to the small value of the cutoff ω+. The numerical results show that the zero-temperature gap essentially is
unaffected by the proximity to the TI for small values of t , where the suppression is severe only for values of μTI close to

√
2mv2

Fμ, a value far
too large to be experimentally achievable. However, for increasing t , the region where superconductivity is suppressed increases quadratically
with t , eventually leading to a suppression also for μTI = 0. The inset shows the normalized gap at t = 0.1, 0.2, and 0.3 eV, indicating that
the gap is not suppressed entirely in most cases, but rather to a reduced value of 0e−1/λ (dashed line), consistent with there being only one
band contributing to superconductivity in this region. The exception is close to μTI = 0 for t = 0.3 eV, where there are no bands with Fermi
wave vector between k− and k+, resulting in  = 0. This is the case in the area restricted by the dotted line in the main figure. (b) The upper
left panel is a plot of the integrand in the gap equation, Eq. (32), evaluated at 0 for wave vectors k− < |k| < k+ and t = 0.1 eV, where light
colors correspond to high values of the integrand. The three remaining panels show the magnitude of the Fermi wave vectors kF of the bands
defined in Eq. (24) (left axis) in the same interval at t = 0.1, 0.2 and 0.3 eV, and the normalized gap (right axis). Notice that the plots are
close to symmetric around μTI = 0 since ωD  μ. The dash-dotted lines are kS

F and kTI
F (μTI ), the Fermi wave vectors of the S and TI for t = 0,

respectively. Comparing the two left panels it is clear that the main contribution to the integral in the gap equation comes from wave vectors
close to the Fermi wave vectors of the bands in the relevant |k| interval. μα,±

TI (t ) are plotted as dashed (α = 1) and dotted (α = −1) lines in all
plots, indicating the onset of the region in parameter space where superconductivity is greatly suppressed.

the integrand of the gap equation, Eq. (32), and the lower
left panel plots kF for the bands in Eq. (24) as a function of
μTI. The main contribution to the gap equation clearly comes
from the values |k| = kF. From Fig. 1(b) we also see that as
μTI approaches ±

√
2mv2

Fμ, the value where the Fermi wave
vectors for the bare the S and TI bands, kS

F and kTI
F (μTI) cross,

the wave vector of one of the bands exceeds k+ and thus does
not contribute to the gap equation. Now there is only one
nondegenerate band inside the relevant region, meaning that
the density of states and thus λ is halved compared to the t = 0
case, where the band is doubly degenerate. Hence the resulting
gap is suppressed to 0e−1/λ = 2ωDe−2/λ, in good agreement
with the numerical results, as shown by the dashed line in the
inset in Fig. 1(a). This also means that the suppression is less
severe for higher λ, which we have confirmed by numerical
simulations.

For positive μTI, the Fermi wave vector in one band exits
the integration interval [k−, k+] at μTI = μ+,−

TI , while a new
band enters this region at μTI = μ+,+

TI , where we have defined

μα,±
TI (t ) = α

√
2mv2

F(μ ∓ ωD) ± t2

ωD
(33)

(see Appendix A for details). A similar argument holds
for negative μTI, and hence superconductivity is strongly
suppressed for

μα,−
TI < μTI < μα,+

TI , (34)

indicated by the dashed and dotted lines in Fig. 1. If the hop-
ping parameter is large enough, t2 > ωD

√
2mv2

F(μ ∓ ωD) ≡
(t∓)2, μ−,+

TI and μ+,−
TI change sign. Hence, for |t | > |t+| > |t−|

and μ+,−
TI < μTI < μ−,+

TI , no bands have a Fermi wave vector
between k− and k+, resulting in  = 0, as seen for t ≈ 0.3 eV
and low μTI in Fig. 1. Since μ � ωD, all results are close to
symmetric about μTI = 0, as seen in Fig. 1(b).

In order for strong suppression to occur for some value of
μTI, we must require μα,−

TI < μα,+
TI . For α = −1 this always

holds, while for α = +1 we get a lower limit for t2,

t2 > ωD
[√

2mv2
F(μ + ωD) −

√
2mv2

F(μ − ωD)
]
. (35)

For conventional s-wave superconductors μ � ωD, meaning
strong suppression can occur even at low values of t , though
for TI chemical potentials close to ±

√
2mv2

Fμ.
While this result is strictly only valid in the limit of an

atomically thin superconductor, we expect that this effect
in principle could reduce the zero-temperature gap and thus
also reduce the critical temperature in superconducting thin
films. However, for typical parameter values in TIs and s-wave
superconductors, the values of μTI where superconductivity
vanishes is inaccessible, tuning μTI by several eV would place
the Fermi level inside the bulk bands of the TI, where our
model is no longer valid. The only exception from this is
when |t | � |t−|, when superconductivity is suppressed even
at μTI = 0. The fact that no strong inverse proximity effect
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FIG. 2. (a) Plot of the superconducting gap at T = 0 for a d-wave superconductor as a function of μTI and t with upper cutoff ω+ =
0.15 eV, normalized to the bulk value |0| for parameter values relevant for bilayers consisting of HgTe and high-Tc superconductors. The gap
is strongly suppressed for μ−

TI < μTI < μ+
TI, where the approximate (exact numerical) functions μ±

TI(t ) in Eq. (36) are plotted as dotted (dashed)
lines. The approximate solution is only valid for kF ≈ kS

F , corresponding to small t . For μTI ≈ μ±
TI(t ) the gap increases beyond 0. (b) Plot of

the magnitude of the Fermi wave vectors of the bands in Eq. (24) in the interval k− < kF < k+ (left axis), together with the normalized gap
(right axis) for ω+ = 0.15 and 0.04 eV. The upper limit k+ in the left axis corresponds to ω+ = 0.04 eV. The black dash-dotted lines show the
S and TI Fermi wave vectors for t = 0. As for the s-wave case, the strong suppression of the gap is due to only one band having a Fermi wave
vector in the integration interval. Note how the values of kF(μTI ) of the hybridized bands (originating with the left t = 0 crossing of the kF’s of
the TI and the S) bend back in a pronounced way as a function of μTI (kF is a multivalued function of μTI since there are four bands). This leads
to an enhanced density of states for these values of μTI. This in turn gives an enhancement of the gap in the immediate vicinity of the region of
μTI where the gap is suppressed by the disappearance of bands crossing the TI Fermi surface. This effect is not seen in the s-wave case, where
the pronounced back bending of kF(μTI ) does not occur inside the integration interval with the much lower values of ω± [see Fig. 3(a)].

has been observed, e.g., in Ref. [20], might indicate that the
coupling constant t is below this limit, meaning that an un-
physical high chemical potential is needed in the TI to observe
the vanishing of superconductivity. Since conventional s-wave
superconductors have high Fermi energies, it might not be
possible to reach the parameter regions where superconduc-
tivity vanishes, unless the chemical potential in the S can be
lowered significantly, the Fermi velocity of the TI is lowered
by renormalization, as was proposed in Ref. [26], or the
coupling between the layers can be increased beyond t−. How-
ever, as we show below, similar effects are present also for
unconventional, high-Tc superconductors, for which the Fermi
energy is lower. Examples of such superconductors would be
the high-Tc cuprates and the heavy-fermion superconductors.1

B. d-wave pairing

Using a much lower chemical potential in the S, μ ∼
35 meV [45], and an upper cut-off frequency comparable to
the spin fluctuation energy in the high-Tc cuprates, ω+ ∼
0.04−0.15 eV [32,33,46], ω− = μ, and parameters otherwise
as for the s-wave case, we solve the gap equations for a d-
wave superconductor. First of all, the effect of the d-wave gap
structure, compared to an s-wave gap, is an overall change in
scaling, just as is the case for 0 (see Appendix C). Hence, the
results for s−wave/s−wave

0 are identical to d−wave/d−wave
0

1Although heavy-fermion superconductors nominally have a
quitelow critical temperature in absolute terms, they are nevertheless
high-Tc superconductors. Their critical temperatures are a significant
fraction of their Fermi-temperatures.

when using the same parameters, and we have therefore
solved the numerically more efficient s-wave gap equations
with parameters valid for high-Tc superconductors.

Figure 2(a) shows the numerical results for the normalized
gap as a function of μTI and t . The most prominent difference
compared to the results in Fig. 1 is that the results are no
longer symmetric about μTI = 0, which can be understood
from the fact that ω± is of the same order of magnitude or
larger than μ. Due to the anticrossing of the Fermi wave
vectors at negative μTI, there is only one Fermi wave vector
between k− and k+ for μ−

TI < μTI < μ+
TI [dashed lines in

Fig. 2(a)], leading to strong suppression for negative μTI.
This is illustrated in Fig. 2(b), where we plot the Fermi wave
vectors of the bands together with the normalized gap as a
function of μTI for different values of t . The figure also shows
how the regions of strong mixing between the bands increases
with increasing t . Interestingly, the suppression of the gap is
preceded by an increased  at μ±

TI, due to the bending of
the Fermi wave vectors away from the crossing point of kS

F
and kTI

F (μTI), which leads to an increase in the density of
states at the Fermi level. This is illustrated in Fig. 3(b), where
for TI chemical potentials μ±

TI the bands have a minimum
(maximum) at the Fermi level, resulting in high densities of
states. The difference in the gap enhancement between μ+

TI
and μ−

TI is due to the combined effects of different spectral
weights, indicated by the linewidths in Fig. 3(b), and the size
of the Fermi surface, leading to a net larger increase in || at
μ−

TI. In the small t limit, we find the approximate expressions

μ±
TI = −

√
2mv2

Fμ ± 2

(
mv2

F

2μ

)1/4

t + 1

4μ
t2. (36)
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FIG. 3. Plots of the bands εγ
α (k) in Eq. (24) for (a) s-wave and (b) d-wave parameter values and different values of μTI. The linewidths are

proportional to the spectral weights wγ
α (k) of the bands [see Eq. (25)]. In (a) the values of μTI correspond to a barely suppressed (μTI = 0.0 eV)

and strongly suppressed (μTI = −3.3 eV ≈ −
√

2mv2
Fμ) gap for coupling t = 0.2 eV. The inset shows that there is no hybridization of bands

close to the Fermi level (dashed line) for the lowest μTI, while the strong hybridization for μTI = 3.3 eV leads to only one band crossing the
Fermi level in the interval [k−, k+] (dotted lines). In (b) we see that only one band crosses the Fermi level for μTI = −0.25 eV, explaining the
strong suppression in this case. At μTI = μ±

TI we have an increase in ||, which can be explained by the bands having minima/maxima at the
Fermi level in these cases, leading to high densities of states.

These lines are plotted in Fig. 2(a) (dotted lines) together with
the exact numerical solutions (dashed lines) (see Appendix A
for details). This increase in || is not due to the the d-wave
symmetry, and should therefore be present for μTI = μ±

TI
whenever the interval [k−, k+] includes either of the points
kS

F ± |δkF|, where δkF is defined in Eq. (A7).
For positive μTI there is a small reduction in  close

to μTI =
√

2mv2
Fμ, even though there are three bands with

kF ∈ [k−, k+]. However, since the numerator of each term in
the gap equation, Eq. (32), can be written ξ±

α (k)2 − (αvF|k| −
μTI)2, regions where ξ±

α (k) are similar to the bare TI bands
contribute little to the gap equations, resulting in a small
decrease of .

The effect of using a lower upper cutoff in the solution of
the gap equations is also shown in Fig. 2. Comparing the ω+ =
0.15 and 0.04 eV lines, we see that for high t , the mixing of
the S and TI bands is still significant at kF = k+, leading to
abrupt changes in . For the negative μTI the main effect of
lowering the upper cutoff ω+ is a further increase of  at μ±

TI.
From the above results, it is clear that a strong suppression

of the gap is more probable in S-TI bilayers consisting of a
high-Tc S, where both the chemical potential −

√
2mv2

Fμ cor-
responding to kS

F = kTI
F (μTI) and the hopping strength needed

for strong suppression at μTI = 0 is much lower. Hence, we
may expect a strong inverse proximity effect in such systems,
with a strength determined by λ, as illustrated in Fig. 4 for
both the s- and the d-wave case. Increasing λ leads to a
reduced suppression of the gap, consistent with the fact that
the superconducting state is more robust for higher λ. For the
s-wave case, the suppression is proportional to e−1/λ. This
holds only approximately for the d-wave case due to other
factors than Fermi level crossings affecting the suppression,
such as changes in the spectral densities at the Fermi level and
changes in the size of the Fermi surface (see Fig. 3), effects
which are small in the s-wave case. From the results in Fig. 2
we also see that it should be possible to change  by several

orders of magnitude by small changes in μTI, again depending
on the value of λ as illustrated in Fig. 4.

VI. SUMMARY

We have theoretically studied the inverse superconducting
proximity effect between a thin s-wave or d-wave supercon-
ductor and a topological insulator. Using a field-theoretical
approach, we have found that in both cases there are regions in
parameter space where the inverse proximity effect is strong,
leading to a strong suppression of the gap approximately
proportional to e−1/λ. The suppression can be related to the

−5 0 5
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|/|

Δ 0
|
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0.3
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100

|Δ
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Δ 0
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FIG. 4. The figure shows how the dimensionless coupling con-
stant λ affects the suppression of the superconducting gap for s-
wave S with t = 0.2 eV (top) and d-wave S with t = 0.05 eV and
ω+ = 0.15 eV (bottom). Increasing λ makes the superconducting
state more robust, reducing both the suppression of , and also the
increase in  at μ±

TI in the d-wave case.
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hybridization of the TI and S bands, and the large degree of
mixing which occurs when the Fermi wave vectors of the S
and TI coincide for chemical potential μTI = ±

√
2mv2

Fμ. A
larger value of λ results in a more robust superconducting
state, and hence less suppression.

For parameter values relevant for s-wave superconductors,
the interval of suppression grows quadratically with the hop-
ping t , and eventually leads to strong suppression even at
μTI = 0. However, since there have been no experimental
indications of a strong inverse proximity effect, we must
conclude that the hopping is too weak to lead to suppression
for experimentally accessible values of μTI. Neglecting the
inverse proximity effect regarding the stability of the super-
conducting order therefore seems to be a good approximation
for conventional s-wave superconductors.

A similar effect of suppressed superconductivity is also
present for d-wave superconductors with parameter values
relevant for the high-Tc superconductors. In this case the
strong suppression is found for TI chemical potentials close
to −

√
2mv2

Fμ, where the interval of strong suppression of
the gap grows approximately linearly with t . Since the Fermi
energy μ is much lower for high-Tc superconductors, both
the magnitude of the chemical potential −

√
2mv2

Fμ, and the
hopping strength needed for strong suppression at μTI = 0 is
much lower, making a strong inverse proximity effect more
probable in such systems. In contrast to the s-wave case, the
region of strong suppression was preceded by an increase in 

above 0. This is, however, not a consequence of the pairing
symmetry, but rather the difference in system parameters. For
large enough cut-off frequencies, the integration region will
include a band minimum/maximum just touching the Fermi
level, leading to a large increase in the density of states, and
thus increased gap.

We also find that the spin-triplet p-wave ( f -wave) super-
conducting correlations are induced in the s-wave (d-wave)
S due to the proximity-induced spin-orbit coupling. Possible
further work could include breaking the translation symmetry
in the x or y direction and probing the density of states normal
to the z axis, possibly revealing signatures of p-wave or f -
wave pairing. Moreover, it could be interesting to study the
spatial variation of the order parameter in a superconductor
with finite thickness.
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APPENDIX A: CRITERIA FOR STRONG
PROXIMITY EFFECT

For superconductivity to occur, the Fermi wave vector
of at least one of the bands has to lie within the interval

of attractive pairing, which for s-wave superconductors is√
2m(μ − ωD) < |k| <

√
2m(μ + ωD). We find the Fermi

wave vector of the energy bands by setting ε
γ
α (k) = 0, which

yields the equation

[αvF|k| − μTI]εk − t2 = 0. (A1)

Inserting |k| = k± we get the value of μTI for which the Fermi
wave vector of a band enters or leaves the interval of attractive
pairing,

μα,±
TI (t ) = α

√
2mv2

F(μ ∓ ωD) ± t2

ωD
. (A2)

The Fermi wave vectors of the bands ε−
α (k) exceed

k+ at μα,−
TI , while the Fermi wave vectors of ε+

α (k)
enter the interval [k−, k+] at μα,+

TI . μ+,+
TI (μ−,−

TI ) is
always positive (negative), while μ+,−

TI and μ−,+
TI

change sign when t2 > ωD

√
2mv2

F(μ + ωD) ≡ (t+
0 )2 and

t2 > ωD

√
2mv2

F(μ − ωD) ≡ (t−
0 )2, respectively, where

|t+
0 | > |t−

0 |.
Hence we have strong suppression when

μα,−
TI < μTI < μα,+

TI , (A3)

which for α = +1 requires

t2 > ω
[√

2mv2
F(μ + ωD) −

√
2mv2

F(μ − ω)
]
.

Moreover, for |t | > |t+| and μ+,−
TI < μTI < μ−,+

TI no bands
have a Fermi wave vector inside the relevant interval, and the
gap is zero.

For the d-wave S we find an increase in the gap function for
certain values of μTI. An increase in the gap would occur in
regions where the Fermi wave vectors of two bands approach
each other and finally coincide as a function of μTI, resulting
in a region of closely spaced Fermi wave vectors. This can
be seen to happen in Fig. 2(b). To find the value of μTI

corresponding to the increase in  we find the local minima of

μTI(kF) = αvFkF − t2

εkF

(A4)

by requiring ∂kFμTI(kF) = 0, from which we get the equation
for kF,

αvF + t2kF

mε2
kF

= 0. (A5)

Solving this equation numerically with α = −1 and inserting
the results into Eq. (A4) yields the dashed lines in Fig. 2, in
good agreement with the numerical results of the gap equa-
tion. To get an approximate analytical expression, we assume
that kF = kS

F + δkF, where δkF  kS
F , which is valid for suffi-

ciently small t . Neglecting terms of O(δk3
F) and higher, we get

δk2
F + t2m

αvFkS
F

+ t2m

αvF
(
kS

F

)2 δkF = 0. (A6)

Neglecting the last term yields, effectively keeping terms up
to O(t2), results in

δkF = ±
√

− 1

α

(
m

2v2
Fμ

)1/4

t, (A7)
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from which it is clear that we only have solutions for α = −1.
Inserting this expression into Eq. (A4), we get to O(t2)

μ±
TI ≈ −

√
2mv2

Fμ ± 2

(
mv2

F

2μ

)1/4

t + 1

4μ
t2. (A8)

This result is plotted as dotted lines in Fig. 2(a), and is
in good agreement with the exact numerical results for
small t . For μ−

TI < μTI < μ+
TI, there is only one Fermi wave

vector in the integration region, leading to a suppressed
gap.

APPENDIX B: FUNCTIONAL INTEGRAL IN NAMBU SPINOR NOTATION

We begin by considering the Gaussian integral over Grassmann variables [47],

I =
(∏

i

∫
dai

)
e−1/2

∑
i, j aiMi j a j =

(∏
i

∫
dai

) ∏
i, j

(
1 − 1

2
aiMi ja j

)
= Pf

(
M − MT

2

)
, (B1)

where Pf[(M − MT )/2] is the Pfaffian of the antisymmetric part of M, where Pf(A)2 = det(A). As an example we consider only
two variables, a1 and a2. In this case, terms containing Mii disappear, since a2

i = 0, as do second-order terms in M. For the above
integral we therefore get

I =
∫

da1da2
1

2
(−a1M12a2 − a2M21a1) = M12 − M21

2
=

√
det

M − MT

2
=

√
det MA = Pf(MA). (B2)

Here, MA is the antisymmetric part of M.
Applying this to the problem of integrating exp(−Seff

S ), we first write the action in terms of the Nambu spinor C:

Seff
S = − 1

βV

∑
k,k′

CT (−k)

(
ϕ†(k′ − k) σx−iσy

2 0

G−1
0 (k)δk,k′ ϕ(k − k′) σx+iσy

2

)
C(k′) ≡ − 1

2βV

∑
k,k′

CT (−k)A(k, k′)C(k′)

= − 1

βV

∑
k,k′

CT (k)

(
−ϕ†(k − k′) σx+iσy

2 −[
G−1

0 (k)
]T

δk,k′

0 −ϕ(k′ − k) σx−iσy

2

)
C(−k′) ≡ − 1

2βV

∑
k,k′

CT (k)[−A(k′, k)]T C(−k′).

Combining these two expressions, we get

Seff
S = − 1

2βV

∑
k,k′

CT (−k)

(
−ϕ†(k′ − k)iσy −[

G−1
0 (−k)

]T
δk,k′

G−1
0 (k)δk,k′ ϕ(k − k′)iσy

)
C(k′)

= − 1

2βV

∑
k,k′

CT (−k)
A(k, k′) − AT (−k′,−k)

2
C(k′) = − 1

2βV

∑
k,k′

CT (−k)AA(k, k′)C(k′), (B3)

where AA(k, k′) denotes the antisymmetric part of A. This is exactly equal to Eq. (15), as can be seen by the following
manipulations. For notational simplicity we use the two-vector notation

C(k) =
(

c(k)

c∗(−k)

)
, (B4)

i.e., [C(k)]1 = c(k), [C(k)]2 = c∗(−k). Hence the matrix multiplication in Eq. (B3) can be written∑
i j

[CT (−k)]i[A
A(k, k′)]i j[C(k′)] j = − [CT (−k)]1ϕ

†(k′ − k)iσy[C(k′)]1 − [CT (−k)]1
[
G−1

0 (−k)δk,k′
]T

[C(k′)]2

+ [CT (−k)]2G−1
0 (−k)δk,k′ [C(k′)]1 + [CT (−k)]2ϕ(k − k′)iσy[C(k′)]2. (B5)

We use the fact that [C†(k)]1 = [CT (−k)]2 and [C†(k)]2 = [CT (−k)]1, and relate the remaining factors to the elements of
G−1(k, k′) in Eq. (16),

CT (−k)AA(k, k′)C(k′) = [C†(k)]2[G−1(k, k′)]21[C(k′)]1 + [C†(k)]2[G−1(k, k′)]22[C(k′)]2 + [C†(k)]1[G−1(k, k′)]11[C(k′)]1

+ [C†(k)]1[G−1(k, k′)]12[C(k′)]2

= C†(k)G−1(k, k′)C(k′), (B6)

which shows that Eqs. (B3) and (15) are equivalent. Using Eq. (B1), the functional integral of the action in Eq. (B3) results in

Z =
∫

Dc†Dce−Seff
S =

√
det[−AA], (B7)
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where we have neglected various numerical constants. By interchanging an even number of rows, it can be shown that
AA(k, k′) → G−1(k, k′), and since the determinant is invariant under an even number of interchanges, we find [39]

Z = e1/2 Tr ln(−G−1 ). (B8)

APPENDIX C: ZERO-TEMPERATURE GAP FOR t = 0

When t = 0, the gap equation, Eq. (32), reduces to

1 = g

2V

∑
k

v2(k)√
εk + |0(k)|2

(C1)

in the zero-temperature limit. Transforming this to an integra-
tion over φk and energy, we get

1 = λ

2

∫ ω+

−ω−
dε

∫ 2π

0

dφk

2π

v2(φk )√
ε + |0(φk )|2

, (C2)

where ω± are positive. Performing the energy integral we get

1 = λ

2

∫ 2π

0

dφk

2π
v2(φk ) ln

√
|0(φk )|2 + ω2+ + ω+√
|0(φk )|2 + ω2− − ω2−

≈ λ

2

∫ 2π

0

dφk

2π
v2(φk )

[
ln

4ω−ω+
2

0

− 2 ln |v(φk )|
]
, (C3)

where we in the last line have assumed that the gap is small
compared to the cut-off energy. For an s-wave superconduc-
tor v(φk ) = 1, and we get simply 0 = 2

√
ω−ω+e−1/λ. For

d-wave pairing we can instead write the gap as

0 = 2
√

ω−ω+e−(1/λ)−I , (C4)

where we have defined the integral

I =
∫ 2π

0

dφk

2π
v2(φk ) ln |v(φk )| = 1 − ln 2

2
≈ 0.153 426.

(C5)

Hence, the maximum d-wave gap amplitude is marginally
smaller than the s-wave gap for the same values of λ and ω±.

APPENDIX D: NUMERICAL INTEGRATION
PROCEDURES

When solving the gap equation numerically, the k sum is
rewritten in terms of an energy integral over εk and an integral
over φk, which in the s-wave case is simply equal to 2π . In
the s-wave case we therefore only have to perform the energy
integral for energies in the interval [−ω−, ω+], in our case
using Python and the implementation TRAPZ of the trapezoidal
method in the SCIPY library. In the d-wave case, we use the
QUADPY library’s implementation of the numerical integration
method in Ref. [48] when calculating the 2D integral in the
εk-φk plane.
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