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The diagrammatic ¢-matrix approximation has often been adopted to describe a dilute Fermi gas. This
approximation, originally considered by V. M. Galitskii (Zh. Eksp. Teor. Fiz. 34, 151 (1958) [Sov. Phys. JETP
7, 104 (1958)]) for a repulsive interparticle interaction, was later widely utilized for an attractive Fermi gas to
describe the BCS-BEC crossover from strongly overlapping Cooper pairs in weak coupling to nonoverlapping
composite bosons in strong coupling. Several variants of the #-matrix approximation have been considered
in the literature, which are distinguished by the degree of self-consistency allowed in the building blocks of
the diagrammatic structure. Here, we perform a systematic and comparative study of all possible variants on
the degree of self-consistency for the 7-matrix approximation in an attractive Fermi gas, which enables us to
confront their outcomes for thermodynamic and dynamical quantities on the same footing in an unbiased way.
For definiteness, only the normal phase above the superfluid critical temperature is considered. The dispute
that can be raised in this context, about the adequateness of introducing progressive degrees of self-consistency
over and above the non-self-consistent z-matrix approximation for an attractive Fermi gas, parallels the recent
interest in the literature in assessing the importance of various degrees of self-consistency in the context of

semiconductors and insulators.
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I. INTRODUCTION

The method of functional derivatives provides a general
framework to deal with quantum many-particle systems in a
nonperturbative fashion. This method, which was originally
introduced in condensed matter by Martin and Schwinger [1]
and later adopted by Hedin [2] (see also Ref. [3]), starts from
the exact equations for the single- and two-particle Green’s
functions (namely, the Dyson and Bethe-Salpeter equations,
respectively) and introduces approximations only at the level
of the kernels of these integral equations.

A systematic method for selecting nonperturbative approx-
imations that satisfy the conservation laws (the so-called “con-
serving approximations”) has been formulated by Baym and
Kadanoff [4]. This method intimately relates the kernel of the
Dyson equation (namely, the single-particle self-energy) with
the kernel of the Bethe-Salpeter equation. In both cases, these
kernels are expressed as functionals of the single-particle
propagator that solves the Dyson equation. In this context,
the need for a “®-derivable” choice of the single-particle self-
energy and for the self-consistent solution of both equations
has been emphasized [5].

Although the use of a fully self-consistent and conserving
approximation appears mandatory when dealing with physical
problems that involve transport and localization, in other
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circumstances non-self-consistent or partly self-consistent ap-
proximations may provide physically more sensible results
with respect to the self-consistent one. An example is provided
by the fluctuation exchange (FLEX) approximation intro-
duced for the repulsive Hubbard model (even at half filling),
whereby both the self-consistent and the non-self-consistent
versions have been investigated [6,7]. More recently, interest
in comparing the results of the self-consistent vs non-self-
consistent approaches has arisen also in the context of the GW
approximation for semiconductors and insulators. In this case,
the non-self-consistent calculations turn out to better compare
with the experimental values of the band gaps with respect to
the self-consistent calculations [8]. Similar conclusions have
further been drawn in the context of a simpler model [9].

In the context of a (dilute) Fermi gas with an attractive
interparticle interaction, the #-matrix approximation appears
as a natural candidate to describe the system while it evolves
throughout the BCS-BEC crossover. The first pioneering ap-
proach in this respect goes back to the work by Nozieres and
Schmitt-Rink (NSR) [10], where a simplified version of the
non-self-consistent #-matrix approximation proved sufficient
to highlight the main features of the crossover physics in the
normal phase above the superfluid critical temperature. Later
on, the NSR approach was extended, either to improve on
the treatment of the non-self-consistent #-matrix approxima-
tion [11], or to include various degrees of self-consistency
within this approximation, ranging from partial [12—14] to
full [15,16] self-consistency. As expected, depending on
the degree of self-consistency different numerical results
were obtained for various physical quantities, ranging from
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thermodynamic to dynamic. However, direct comparison
among the results obtained with various degrees of self-
consistency has been hindered by the (sometimes even drastic)
numerical approximations that were introduced in the calcu-
lations on top of a specific choice about the degree of self-
consistency. For these reasons, it appears that a systematic and
direct comparison of the results obtained by adopting various
degrees of self-consistency on the ¢-matrix approximation is
still lacking, especially one in which the comparison is made
in an unbiased way by retaining the same level of numerical
accuracy for all different approaches.

The primary purpose of this paper is to fill this gap, by
undertaking the above systematic study on all five degrees of
self-consistency that have been considered thus far in the lit-
erature within the #-matrix approximation in the normal phase
above the superfluid critical temperature [11-16]. Although
the results of the present study may not lead to definite conclu-
sions, about which one of the above five approximations could
account best for the thermodynamic and dynamical properties
of a (dilute) Fermi gas undergoing the BCS-BEC crossover,
it appears nevertheless interesting and relevant (if not timely)
to discover how these properties get modified when passing
from one to the other of these five approaches. In addition,
the high precision of the numerical calculations that we have
implemented has enabled us to accurately check how the two
distinct (BCS and BEC) limits of the crossover are recovered
by the alternative t-matrix approaches. Specifically, in the
BEC limit the residual interaction among composite bosons
extracted from our numerical calculations turns out to be in
excellent agreement with the analytic estimates that we also
provide (which correct a previous analytic estimate obtained
in Refs. [15,16] within the fully self-consistent f-matrix ap-
proach). In the BCS limit, on the other hand, we have found
that a partially self-consistent #-matrix approach, developed
in Ref. [13] and often utilized in the literature, breaks down
when one avoids using the set of approximations that normally
accompany its implementation.

Finally, it should be recalled that, in order to get a refined
agreement with quantum Monte Carlo and experimental data
available for a Fermi gas in the unitary region of the crossover
intermediate between the BCS and BEC regimes, it may in
any case be required to go beyond the t-matrix approximation
[17] and include on top of it also a class of vertex corrections
associated with the Gorkov-Melik-Barkhudarov (GMB) con-
tribution [18].

The plan of the paper is as follows. Section II sets up
the theoretical framework and specifies in detail how the
alternative 7-matrix approaches with various degrees of self-
consistency need to be handled. Sections III and IV report
on the numerical results obtained within the above alternative
t-matrix approaches, for the thermodynamic and dynamical
quantities of interest, respectively. Section V gives our con-
clusions. Appendix A gives a detailed account about the nu-
merical procedures we have adopted to achieve (partial or full)
self-consistency within the various 7-matrix approaches, for
all relevant subunits of the many-body structure. Appendix B
discusses the optimization procedure that was found necessary
to achieve the required convergence toward self-consistency,
within some of the above alternative f-matrix approaches.
Finally, Appendix C compares the results of two partially

self-consistent 7-matrix approaches with that of their approxi-
mate treatments usually utilized in the literature.

II. ALTERNATIVE ¢t-MATRIX APPROACHES

In this section, we set up the theoretical framework for the
alternative ¢-matrix approaches that can be used to describe
a Fermi gas with an attractive contact interaction throughout
the BCS-BEC crossover, in the normal phase at a temperature
T above the superfluid critical temperature 7. Only a bal-
anced situation, with equal number of spin-up and spin-down
fermions, will be considered in this paper.

A. Basic equations

Within this framework, the basic expressions read (in the
following, we set the Planck constant 7 and Boltzmann con-
stant kp equal to unity)

G(k) = [Go(k)™" = Z(k)] ", (1

— _ ﬂ (c) _
(k) = /(27r)3TXU:F(Q)G (Q — k), (2

-1

F(Q)z—[#ﬂepp(g)] , 3)
R dk @ (yG® n 4
w@ = | o5 T GURGVQ -k = 5| @

Here, G is the single-particle fermionic propagator and Gy
its noninteracting counterpart, ¥ is the self-energy, I' is
the particle-particle propagator, and Ry, is the (regularized)
particle-particle bubble. These quantities are drawn pictori-
ally in Fig. 1. In addition, k = (k, w,) is a fermionic four-
vector with wave vector k and fermionic Matsubara frequency
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FIG. 1. Diagrammatic representation of the f-matrix approxima-
tion. Thick and thin lines represent the single-particle propagator
G and its noninteracting counterpart Gy, respectively, while broken
lines stand for the interparticle interaction. The colored ellipse cor-
responds to the self-energy X and the colored square to the particle-
particle propagator I, where fermion lines connected by interaction
lines are meant to have opposite spins. The positions where the three
types of propagators G®, G, and G occur in the diagrams are
also indicated.
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TABLE 1. Short names adopted for the various #-matrix ap-
proaches, according to the conventions introduced in the expres-
sions (4) and (2), with the corresponding key references to these
approaches.

(GWG®)G© Reference
(Go Go) Go Ref. [11]
(Go Gy) G Ref. [12]
(G Gy) Gy Ref. [13]
(GGG, Ref. [14]
GGG Refs. [15,16]

w, =2n+ 1)r T (n integer), and Q = (Q, 2,) a bosonic
four-vector with wave vector Q and bosonic Matsubara fre-
quency 2, =2nwv T (v integer). Finally, m is the fermionic
mass and ap the scattering length of the associated two-
fermion problem.

Note that in the above equations, the single-particle propa-
gators have been distinguished as G®, G®, and G®, mean-
ing that each of them can be either the dressed G or the
bare Gy, in such a way that different #-matrix approaches
can be realized by selecting different combinations of these
functions. Specifically, the shorthand notation (G®G®)G©
will be used to identify a given #-matrix approach, where the
propagators G® and G® within the parentheses correspond
to those entering the particle-particle bubble (4), while the
external propagator G© enters the self-energy (2). In the
following, we shall consider the five combinations of G@,
G®, and G reported in Table I, with the corresponding
references where the various approaches have been discussed
for a Fermi gas with an attractive contact interaction.

B. Routes toward self-consistency

Except for the non-self-consistent (GyGy)Gy approach,
Egs. (1)—(4) must be solved in a self-consistent way. To this
end, we follow the numerical procedure developed originally
in Refs. [15,16]. The procedure makes use of the Fourier
transforms from the (k, w,) or (Q, €2,) space to the (r, 1)
space, according to the expressions

dk .
T Z kT GK, w,),  (5)

G(r, 1) = a7

ren= [ STy ekeorQa).  ©

Analogous transformations hold for X(k,w,) and
Rpp(Q, 2,). Here, T is the imaginary time which varies
in the interval (0, 1/7T). In the r = (r, 7) space, Egs. (2) and
(4) acquire the simple form

2(r) = =T(1) G (1), )
Rop(r) = GG (r) — AS(r), ®)
where A is an appropriate regularization constant that depends

on the cutoff in the k integral of Eq. (4) and becomes infinite
together with that cutoff [15]. To avoid dealing directly with
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FIG. 2. Flowchart for the routes toward self-consistency of
the various 7-matrix approaches: (a) non-self-consistent (G Gy)Go;
(b) extended ¢-matrix (G Gy )G; (c) partially self-consistent (GGy )Gy
and (GG)Gy; (d) fully self-consistent (GG)G.

A, in r space it is convenient to work in terms of the difference
ARy (r) = Ryp(r) = Ryy)(r) = GV (NG (1) = Go(r)?, (9)

where R[()g)(r) is the regularized particle-particle bubble built
on the noninteracting Gy. Equations (1), (3), (7), and (9),
together with the Fourier transforms (5) and (6), form a com-
plete set of equations that need to be solved self-consistently.
The flowchart shown in Fig. 2 summarizes schematically the
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various routes toward self-consistency to be followed when
adopting the alternative -matrix approaches of Table I.
Although the non-self-consistent (GyGy )Gy approach does
not require any self-consistent cycling, we have reported it
in Fig. 2(a) since its calculation has always to be performed
at a preliminary level, to the extent that it is also used as
input for the self-consistent calculations. In this approach,
RY)(Q) is directly calculated according to Eq. (4) with two

noninteracting propagators Gy in the place of G® and G®.
Figure 2(b) shows the flowchart for the (GyGy)G approach
(referred to as the “extended 7-matrix” approach in Ref. [12]),
where self-consistency is present only in the external G,
while the particle-particle propagator I' coincides with its
bare counterpart I'g built on R©(Q). Figure 2(c) shows the
flowchart for both the (GGy)Gy and (GG)G, approaches,
where self-consistency enters only the particle-particle propa-
gator I, while the external propagator G© is a noninteracting
Gy. Finally, Fig. 2(d) shows the flowchart for the fully self-
consistent (GG)G approach. Note that in the flowcharts of
Figs. 2(c) and 2(d), the regularized particle-particle bubble
Ryp(Q, ©2,) is obtained by Fourier-transforming the difference
ARpy(r, 7) defined in Eq. (9) and then by adding to it the
regularized particle-particle bubble R%(Q, 7) of the non-self-
consistent approach.

Most functions appearing in the flowcharts of Fig. 2 suf-
fer from a slowly decaying tail in the variables (k, w,) or
(Q, 2,), which implies a corresponding singular behavior
when (r, 7) — 0. For this reason, the Fourier transforms
should be performed on a logarithmic scale, following the
prescriptions given in Refs. [16,19]. In addition, one also
needs to subtract appropriate semianalytic expressions from
the functions to be numerically Fourier transformed, in order
to make their slow decay faster (or, alternatively, their singular
behavior weaker). These semianalytic expressions have to be
known also for the transformed representation, so that they
can be added back to the functions after having performed
the Fourier transform. A detailed account of the semianalytic
expressions used in the numerical calculations is given in
Appendix A.

C. Thouless criterion

As already mentioned, all five #-matrix approaches consid-
ered in this paper will be examined on equal footing through-
out the whole BCS-BEC crossover (also with emphasis on
the analytic results that can be obtained separately in the
BCS and BEC limits). The BCS-BEC crossover is spanned
in terms of the (dimensionless) coupling parameter (kpap)~!,
where ky = (372n)'/3 is the Fermi wave vector associated
with the particle density n. In practice, the crossover between
the BCS and BEC regimes is essentially exhausted within
the range —1 < (krar)~! < 41 across the unitary limit at
(kpap)™' =0 (for a recent comprehensive account of the
BCS-BEC crossover, see Ref. [20]).

In the present paper, we are interested in the normal
phase above the the critical temperature 7, of the superfluid
transition, where the numerical value of 7. depends on the
specific theoretical approximation one is adopting to describe
the Fermi gas. For all five f-matrix approaches we are con-
sidering, 7, is determined by the Thouless criterion [21],

in the form
[MQ=0,Q,=0,T,1)] " =0. (10)

This condition has to be supplemented by the density equation
to determine the chemical potential j:

n=-2Gr=0,t—> BT, u) (11

(with 8 = 1/T the inverse temperature), where the factor of
2 accounts for the spin multiplicity. In practice, one fixes the
values of the coupling (krar)~' and of the temperature T to
determine u from Eq. (11), and then uses this value of u to
determine 7, from Eq. (10). However, for temperatures close
to T, this simple iterative procedure may not work properly
as far as the (GGy)Gy, (GG)Gy, and (GG)G approaches are
concerned, where difficulties are found in the convergence of
the iterative procedure toward self-consistency. To overcome
these difficulties, we have found it necessary to introduce two
different refinements of the above iterative procedure, the first
of which enables us to get close to T, from 7 > T, while
the second one allows us to work exactly at T = T,. These
refinements are described in detail in Appendix B.

III. NUMERICAL RESULTS FOR
THERMODYNAMIC QUANTITIES

Several thermodynamic quantities of interest can be ob-
tained directly in terms of the single-particle fermionic prop-
agator G of Eq. (1) and of the particle-particle propagator I"
of Eq. (3). Here, we report on the numerical results obtained
within the five alternative #-matrix approaches that we are con-
sidering, for the critical temperature and chemical potential as
well as for the Tan contact.

A. Critical temperature

The results for the critical temperature 7, obtained from
the Thouless criterion (10) are shown in Fig. 3 over a wide
coupling range for all five 7-matrix approaches reported in
Table I. Several interesting features can be highlighted when
comparing the results of the various approaches:

(i) All approaches are seen to interpolate rather well be-
tween the BCS and BEC critical temperatures (indicated by
black dotted lines in Fig. 3), with the notable exception of
the (GGy)Gy approach which fails to reach the BCS limit
since in this case the critical temperature collapses abruptly
to zero at coupling (kpar)~' ~ —1. We attribute this failure
to the asymmetric treatment of the single-particle propagators
G@ and G in the particle-particle bubble (4) that enters the
particle-particle propagator I'. The asymmetry generates an
artificial imbalance between spin-up and spin-down species,
which acts to suppress the critical temperature of the su-
perfluid transition (cf. also Appendix C). This feature has
apparently passed unnoticed in the literature. It is for this
reason that, in what follows, the results of the (GGy)Gy
approach will not be reported for the BCS limit.

(i) The behavior of the critical temperature in the BCS
(weak-coupling) limit (krar)~! <« —1 is shown as a function
of krar in the inset of Fig. 3, for all #-matrix approaches
with the exception of the (GGy)Gy approach for the reasons
discussed in point (i) above. In all cases, the numerical results
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FIG. 3. Critical temperature 7, (in units of the Fermi temperature
Tr) as a function of (krpap)~' within alternative #-matrix approaches.
The black dotted lines correspond to the BCS critical temperature
(12) when (kpar)~' < —1 and to the critical temperature (13) for a
condensate of noninteracting composite bosons when (kpar)~! > 1.
Quantum Monte Carlo (QMC; from Ref. [22]; circles) and diagram-
matic Monte Carlo (DMC; from Ref. [23]; squares) data are also
shown for comparison. The inset shows the extrapolation of the ratio
T./TE® in the weak-coupling limit (krar)~' <« —1. Here, thick
lines correspond to numerical data and thin dotted lines to parabolic
fits of the data that extrapolate 7, in the weak-coupling limit.

have been extended toward the extreme BCS limit kpap — 0~
through a parabolic extrapolation (dots). Within a numerical
error on the order of 1% [24], in this limit we obtain that the
(GG)G and (GG)Gy approaches recover the value of the BCS

temperature:
8e’E b4
TP = =1 exp( ) (12)

e 2](1:(11:

where y is the Euler’s constant. On the other hand, the
(GoGo)G and (GyGy)Gy approaches reproduce the BCS criti-
cal temperature only within logarithmic accuracy, in the sense
that they recover the result (12) with the prefactor divided
by e!/3 (see Ref. [17] for a discussion of the origin of this
spurious factor in those approaches that do not dress the bare
particle-particle propagator I').

(iii) In the crossover region about unitarity, it turns out that
the inclusion of (even a partial degree of) self-consistency in
the particle-particle propagator I' of Eq. (3) acts to suppress
the maximum of 7., which otherwise occurs for the (GyGy)G
and (GyGy)Gy approaches.

(iv) In the BEC (strong-coupling) limit (kpap)~' > 1, all
approaches reproduce the value of the critical temperature for
a condensate of noninteracting composite bosons made up of
fermion pairs (with mass mp = 2m and density ng = n/2):

BEC __ 2 (”3)2/3
O rB2PR mg

~ 0218 Ep. (13)

However, alternative ¢-matrix approaches differ in the way
the value (13) is reached when (krap)~' > 1. Specifically,
the subleading behavior of 7. when approaching T2E€ can be

TABLEII. Values of the coefficient & of Eq. (14) obtained within
the various 7-matrix approaches, both from analytic calculations (th)
and extrapolation of numerical results (extr). One analytic value is
not available (na).

(GOGOHYG© o (th) o (extr)
(GoGo)Gy 1 1.02
(GoGo)G 1.07 1.12
(GGy)Gy -0.5 —0.48
(GG)Gy na —2.00
(GGG -1 —1.02
characterized by the expression

kP S (14)

< — 7 (krar),

TBEC 3ro

where the values of the coefficient o for the various 7-matrix
approaches are listed in Table II.

The theoretical values reported in Table II for the (GG)G
and (GGy)Gy approaches are taken from Refs. [15,25], re-
spectively, while we have calculated independently those for
the (GoGy)Gp and (GoGy)G approaches (the corresponding
analytic calculations are not reported here owing to their
complexity). Note that for those approaches that include even
a partial degree of self-consistency in the particle-particle
propagator I', @ < O such that the value (13) is approached
from below; the opposite occurs for the remaining approaches.

We have also compared the numerical values we have
obtained for 7, within the various 7-matrix approaches with
other published data for the same quantity. For the (GyGy)Go),
(GoGy)G, and (GG)G approaches we found good agreement
with the data published in Refs. [11,26], and [16], respec-
tively. For the (GGy)Gy and (GG)Gy approaches, on the
other hand, direct comparison with previous data throughout
the BCS-BEC crossover is not possible, since within these
approaches the curves for 7, have only been calculated with
additional approximations affecting the form of the particle-
particle propagator and of the self-energy (Refs. [14,27]). In
these cases, our data compare well with those of Refs. [14,27]
only in the strong-coupling regime (krar)~' 2> 1, where the
additional approximations introduced in those references re-
main valid at T =~ T (see also Appendix C).

Finally, a comparison with available quantum Monte Carlo
(both QMC and DMC) data has been reported in Fig. 3. Note
how these data show a steeper coupling dependence with
respect to the f-matrix calculations. As already mentioned in
the Introduction, this steeper dependence can be accounted for
by a further inclusion of the GMB vertex corrections [17].

B. Chemical potential

The corresponding results for the chemical potential 1,
calculated at the critical temperature 7, are reported in Fig. 4
as a function of coupling (krar)~!, for each of the five 7-
matrix approaches here considered. The main features that can
be identified from this plot are as follows:

(i) In the weak-coupling (BCS) limit (kpap)™' <« —1,
the (GG)G and (GG)Gy approaches recover the Galitskii
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FIG. 4. Chemical potential 1. at 7. [in units of the Fermi energy
Er when p. > 0 and of half the binding energy gy = (ma%)~' of
composite bosons when 1, < 0] as a function of (kpap)~! within
alternative 7-matrix approaches. The black dotted line in weak cou-
pling corresponds to the Galitskii result (15). Comparison with QMC
data from Ref. [22] (circles) is also shown. In the inset, &y/2 has been
added to . for (kparp)™' > 0 to amplify the values of the chemical
potential of composite bosons due to their mutual interaction.

expression [28]

Gal
w

Er

up to second order in (krpap), while the (GyGy)Gy and
(GoGy)G approaches recover this expression up to first order

4 4
=14 —(kpar)+ —=[11 — 21n2](kpa;c)2 (15)
37 1572

only.
(i) In the strong-coupling (BEC) limit (krar)~' > 1, all
approaches recover the value u, = —go/2 at leading order

in krar, where gy = (ma%)~! is the binding energy of the
composite bosons. At subleading order, on the other hand,
the behavior of u. depends on the approach. In particular,
for the (GoGo)Gy and (GoGy)G approaches the subleading
term vanishes exponentially when (krap)~' > 1, while for
the (GGy)Gy, (GG)Gy, and (GG)G approaches the subleading
term vanishes linearly in (krar) (a behavior which has been
evidenced in the inset of Fig. 4). This difference is due to the
fact that self-consistency in the particle-particle propagator
introduces a residual repulsive interaction between composite
bosons, as discussed in Sec. III C.

By the present methods, the chemical potential & can be
calculated not only at 7, but also above T,. Figure 5 shows u
as a function of temperature for three characteristic couplings
[(krap)~' = (=0.5,0,0.5)] spanning the crossover regime,
for all five 7-matrix approaches we are considering. On the
low-T side, the curves terminate at the respective critical
temperature 7, given in Fig. 3. Note that for the (GoGy)Gy
and (GyGy)G approaches where no degree of self-consistency
is introduced in the particle-particle propagator, the curves of
w(T) show a maximum above T,.. We have also verified that
the curve of Fig. 5(b), which corresponds to the (GG()Gy ap-
proach at unitarity, compares well with the numerical results
reported in Ref. [30]. To the best of our knowledge, this is, in
fact, the only other reference where a calculation based on the

1.0 . . . .
(kpap)™' =-0.5 (a)
0.5 -
\\\
""" (GoGp)Gy \\
0.0r (GGG S
-- (GGG \\
(GGy)Gy \\
T CA S Y
_ &
(?G)G | X
05| e (krap)™' =0 (b)
""" (GoGp)Gy
w00 (GoGp)G
< == (GGp)Gy
o5l @9
— (GGG
: Q:MC . ; . . N
- (krap)™ = 0.5 (©)
0.0t .
-0.5¢
—1.0r

=) - - - - -
8.0 0.2 0.4 0.6 0.8 1.0 1.2
T/Tr

FIG. 5. Chemical potential w (in units of Er) as a function of
the temperature T (in units of 7y) for various couplings (kpap)™' =
(—0.5,0,0.5) within alternative #-matrix approaches. Comparison
with QMC data from Ref. [29] (circles) is also shown in panel (b).

complete (GGy)Gy approach was performed, without recourse
to additional simplifying approximations (albeit in Ref. [30]
the calculation was limited to the coupling (krpap yl=0
only).

In both Figs. 4 and 5, comparison has also been added with
available QMC data, which show overall good agreement with
the results of the 7-matrix approaches.

C. Scattering length of composite bosons

The residual repulsive interaction between composite
bosons is characterized by a finite value of the scattering
length ap. This can, in turn, be determined by comparing the
chemical potential for the composite bosons up = 2u. + €9
in the strong-coupling limit (krar)~' > 1 with the chemical
potential ,uOB = 8magng/mp of a dilute Bose gas at T;.. This
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FIG. 6. (a) Values of ag/ar extrapolated from the expression
(16) within alternative z-matrix approaches. Thick lines correspond
to numerical data, while thin dotted lines correspond to parabolic
fits to numerical data which extrapolate to the value of ag/ar in
the strong-coupling limit krar — 0. (b) Diagrams contributing to
the bosonic scattering length ag within the (GG)G approach. Like in
Fig. 1, thin lines correspond to the bare fermionic propagator G.

comparison yields

ag . 3 MB

= lim .
ar kpap—0% 4(kFaF) EF

(16)

The values of ap extrapolated in this way for the (GG)G,
(GG)Gy, and (GGy)Gy approaches are shown in Fig. 6(a).
Note, in particular, that the (GG)G fully self-consistent ap-
proach yields ag/ar ~ 1.16, which contrasts with the value
ap/ar = 2 obtained analytically in Ref. [15].

The above limiting numerical values for the bosonic scat-
tering length ap, obtained within the 7-matrix approaches
that include the dressed single-particle propagator G in the
particle-particle propagator I', can be compared with the
corresponding analytic results obtained by expressing the self-
consistently dressed I' as an infinite series of diagrams in
terms of the bare Gy and 'y, and then by retaining only the
leading-order corrections to the bare particle-particle propa-
gator Iy in the BEC (/T — —o00) limit.

For the (GG)Gy approach, this corresponds to considering
the left diagram of Fig. 6(b) (together with the corresponding
diagram where the lower fermionic line to get dressed is).
Comparison of the analytic evaluation of this diagram in
the BEC limit as done in Refs. [15,31] with the leading

self-energy correction Xg = 8magng/mp for a dilute Bose gas
yields the value ag/ar = 2 [cf. the upper curve of Fig. 6(a)].

For the (GGy)Gy approach, on the other hand, the ab-
sence of the self-energy correction in the lower fermionic
line then eliminates the multiplicity of 2 for the left diagram
of Fig. 6(b), yielding ag/ar =1 [cf. the lower curve of
Fig. 6(a)]. Note, however, that this reduction of ag by half
in comparison with the more symmetric (GG)G, approach
is somewhat artificial, since it corresponds to an incomplete
symmetrization of the bosonic interaction vertex.

Finally, for the (GG)G approach also the right diagram of
Fig. 6(b) contributes at the leading order, again with a mul-
tiplicity of 2 due to the corresponding dressing of the lower
fermionic line. This diagram (which had apparently escaped
the analysis of Ref. [15]) yields a correction —0.842ar to
the bosonic scattering length ap in the BEC limit, thereby
resulting altogether in the value ag/ar =2 — 0.842 = 1.158
in excellent agreement (within 0.2%) with that obtained by
our numerical extrapolation [cf. the middle curve of Fig. 6(a)].
This analytic estimate for the right diagram of Fig. 6(b) can be
readily obtained by noting that in the BEC limit, its leading-
order behavior coincides with that of the diagram introduced
in Ref. [17] to include the GMB correction for 7. throughout
the BCS-BEC crossover, whose contribution to ag in the BEC
limit was there estimated to be —0.842ar. It should also
be remarked that this identification between (the numerical
values of) the two diagrams holds in the BEC limit only. For
this reason, the self-consistent #-matrix approximation fails to
recover the GMB reduction factor for 7, in the BCS limit [17].

D. Tan contact

An important physical quantity that characterizes a Fermi
gas with short-range interaction is the Tan contact [32-34],
which connects two-particle correlations at short distances
with thermodynamics. Here, we calculate the contact C,. at
T. within the various ¢-matrix approaches as the trace of the
particle-particle propagator

_ [ 4Q
) @n)

TY IQ.Q)d*" =Ir=0,7— ),

a7

according to an expression introduced in Ref. [35]. The results
are shown in Fig. 7 throughout the BCS-BEC crossover. For
internal consistency, we have also verified numerically that the
values of the contact C, obtained by Eq. (17) coincide with the
coefficient of the k= tail of the wave-vector distribution (per
spin component o)

ns(k) = -Gk, 7 — 7). (18)

We have further verified that, at 7. (< Tr) in weak cou-
pling, the expansion for the contact in powers of (krpar),

C. 4Akrar)? 12

——=———|14+—(01—-2In2)(k , 19
K 92 + 3571( n2)(kpar) (19)
which results by taking the derivative with respect to a;l
of the expression for the total energy at 7 = 0 obtained
by Galitskii in powers of (krar) [28], is recovered by the

(GoGy)Gy and (GyGy)G approaches up to leading order and
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FIG. 7. The contact C, at T, is shown as a function of (kpay )™
within alternative 7-matrix approaches. The black dotted line stands
for the leading term of the contact C, /k; =4/(Brkrar) in the
strong-coupling limit (cf. Ref. [20]). The inset reports the contact on
the weak-coupling side, where the black dotted line now corresponds
to the expression (19) within the Galiskii approximation up to next-
to-leading order in (krar).

by the (GG)G and (GG)Gy approaches up to next-to-leading
order in (krar).

E. Summary of the main thermodynamic results

The numerical values of the critical temperature 7;, and of
the chemical potential 1, and the contact C, at T, can be read
off directly from Figs. 3, 4, and 7, respectively, for each of the
five r-matrix approaches that we have considered in this paper.
It might be useful, however, to summarize the values of the
above physical quantities for a few characteristic couplings in
the crossover region of most interest. Accordingly, we report
in Table IIT a list of these values for five couplings in the
interval —1 < (kpap)~' < +1. In this way, differences in the
results of the various 7-matrix approaches can be most readily
appreciated.

IV. NUMERICAL RESULTS FOR DYNAMICAL
QUANTITIES

The results obtained in Sec. III, about the single-particle
fermionic propagator G of Eq. (1), can now be utilized to
obtain a number of spectral features for the attractive Fermi
gas in the normal phase throughout the BCS-BEC crossover.
To this end, a suitable method is required to perform the
analytic continuation from Matsubara to real frequencies, as
discussed next.

A. Method for analytic continuation

To assess the dynamical properties of a Fermi gas, the
analytic continuation G(k, z) of the single-particle fermionic
propagator G(k, w,) is required over the complex z plane.
The function G(k, z) takes the values G(k, w,) along the
imaginary axis at the Matsubara frequencies z = iw,, and is
analytic everywhere except on the real frequency axis where

TABLE III. Numerical values of the critical temperature 7,
chemical potential u., and contact C. at T, are reported for five
characteristic couplings in the crossover region about unitarity and
for all -matrix approaches. A few numerical values are not available
(na) for the reasons discussed in the text. For each coupling, reference
to different 7-matrix approaches follows the conventions (from top to
bottom) of Table I.

(kpap)™ T./Ty He/Erp Ce/ki
-1.0 0.08495 0.7997 0.01462
0.07294 0.7381 0.01139
na na na
0.07132 0.8006 0.01930
0.06776 0.7375 0.01874
—0.5 0.1649 0.6846 0.04595
0.1358 0.6018 0.03076
0.1132 0.7230 0.03999
0.1112 0.7269 0.04099
0.1077 0.6226 0.03892
0.0 0.2429 0.3655 0.1479
0.2034 0.3059 0.1036
0.1709 0.5096 0.1108
0.1451 0.5734 0.09513
0.1505 0.4000 0.09170
0.5 0.2588 —0.1890 0.3075
0.2361 —0.2005 0.2638
0.1975 0.04935 0.2522
0.1674 0.2176 0.2148
0.1870 —0.02339 0.2182
1.0 0.2351 —0.9986 0.4759
0.2320 —0.9987 0.4666
0.2097 —0.8042 0.4418
0.1918 —0.6250 0.4150
0.2062 —0.8092 0.4342

its imaginary part is discontinuous due to the time-reversal
symmetry condition G(k, z*) = G(k, z)*. The single-particle
spectral function A(k, ) is then obtained in terms of the
discontinuity of G(k, z) across the real frequency axis:

1 - . ~ .
Ak, w) = —%[G(k, o +i0%) — Gk, w — i07)]

1 .
= —;Im[G(k,w—i—zO )] (20)

The positive-definite function A(Kk, w) is normalized accord-
ing to

+00
/ doAk, w) = 1. (21)

To evaluate the single-particle spectral function (20), a pro-
cedure is required to obtain the function G(k, z) just above the
real frequency axis from the known values G(k, z = iw,) =
G(k, w,) on the imaginary axis. To this end, we make use of
the method of Padé approximants [36,37] which consists of
approximating G(k, z) for given k by a ratio of polynomials,
in the form

pL+prz+---+p!

g+ @zt g 7

Gk, z) = (22)
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Here, the 2r (real) coefficients {p;, g;;i = 1, ..., r} are deter-
mined from the values of G(K, z) at 2r points on the imaginary
axis.

This procedure, however, turns out to be quite sensitive to
the presence of numerical uncertainties in the values of the
input function G(k, w,), in such a way that the resulting shape
of the function A(k, @) may turn out to be rather distorted or
even to acquire negative values. To mitigate the occurrence of
this sort of problem, we have followed a prescription proposed
in Ref. [38] and averaged over several (typically 12) runs of
analytic continuations with different sets of 2r (typically 50)
points selected on the imaginary axis, consistently discarding
those runs that yield A(k, w) < O for some w intervals. In
addition, even though the analytical continuation is performed
over the half plane with Im(z) > 0, we have sometimes found
it useful to include in the sets of 2r points the first few (from
one up to three) frequencies on the negative imaginary axis,
as also proposed in Ref. [38].

B. Single-particle spectral function

The single-particle spectral function A(k, @), obtained at
unitarity and 7; for all 7-matrix approaches, is shown in
Fig. 8 for several values of k = |k|. A notable difference
results by comparing the various panels of Fig. 8, between
the approaches that dress the fermionic propagator G'© in
Eq. (2) [cf. panels (b) and (e)] and those that do not [cf.
panels (a), (c), and (d)]. As a matter of fact, in the (GG)G
and (GyGy)G approaches there is essentially no evidence of
a double-peak structure (except at k 2~ 0), such that the shape
of A(k, w) is mostly represented by a single peak that shifts
from negative to positive frequencies upon increasing k. Yet,
this behavior appears not to be consistent with what one would
expect for a Fermi liquid, as sometimes claimed instead in the
literature [39]. This is because the single peak broadens up just
at k >~ kp with a width on the order of Ef, both features being
not consistent with the behavior of a Fermi liquid [40,41].
On the other hand, the (GG)Gy, (GGy)Gy, and (GoGy)Gy
approaches [whereby G in Eq. (2) remains Gy] present
a persistent double-peak structure through k ~ kp, with an
exchange of weight occurring for increasing k£ between the
peaks at negative and positive frequencies.

C. Single-particle density of states

To avoid reference to a specific wave vector in the the
single-particle spectral function, yet maintaining the main fea-
tures of its frequency dependence, one can integrate A(k, w)
over all k and obtain the density of states:

N dk Ak 23
= S Ak o) 23)
Figure 9 shows the density of states obtained in this way
at T, for the coupling values (krar)~' = (—0.5,0.0,0.5),
within the alternative ¢#-matrix approaches. In all cases, a
depletion is apparent in the density of states about w = 0.
The energy width of this depletion is associated with a pseu-
dogap that develops in the normal phase above T due to
pairing fluctuations, as a precursor of the pairing gap that
occurs in the superfluid phase below 7. Although all #-matrix
approaches present evidence of a pseudogap, its detailed

@ (GGG, k]

0.75]

A(k,w)EF

(d) (GGG, ke ker
2.0t — 0 ]
0.75
1.5} ]
1
1.0t .':“\ [A‘\ -- 1.251
FYONSTN s
0.5¢ i)"n /\\\ \
A M ' y o N < N
0.0 .._.I-_.‘;_ I/‘/J/\:&._:I:.\__"\___
(e (GGG klkr
2.0f — 0
0.75
1.5¢
i 1
1.0f SR 18]
SN/ N s
0.5} S B :
\_ i /\\ ~
-\ e e Nt T
00 i = it
-2 -1 0 1 2 3
w/EF

FIG. 8. Spectral function A(k, w) (in units of E. Yat (kpap)™' =
0 and T =T, for different values of k& (in units of kr) within
alternative #-matrix approaches.

structure depends on the specific approach. Let us consider,
for instance, panel (b) of Fig. 9 for the coupling (kpar)~! = 0.
Here we observe that, similarly to A(k, w), also for N(w)
the approaches can be divided in two classes, namely, those
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FIG. 9. Density of states N(w) at T = T, for the coupling values
(krap)~' = (—0.5, 0.0, 0.5) within alternative 7-matrix approaches.
The noninteracting density of states Ny = mkg /(272) per spin com-
ponent at the Fermi level is used to normalize N (w).

that dress the fermionic propagator G in Eq. (2) and those
that do not. The first ones present only a narrow and shallow
pseudogap feature, while the second ones present a wide and
deep pseudogap feature [which is especially amplified by the
(GoGy)Gy approach]. This is, of course, a direct consequence
of the behavior of the single-particle spectral functions shown
in Fig. 8, where the single peak in A(k, w) that crosses w = 0
tends to partially fill the pseudogap region for the (GG)G
and (GyGy)G approaches, while for the (GG)Gy, (GGy)Gy,
and (GoGy)Gy approaches a depletion persists about w = 0
owing to the double-peak structure of A(k, w). For the weaker
coupling (kpap)~! = —0.5 [cf. panel (a) of Fig. 9], on the
other hand, the density of states has the overall shape Ny(w) =
m3/?/2(w + )/ (27*) of the noninteracting system, with
only a rather minor pseudogap feature occurring about w = 0.
While for this coupling the qualitative behavior of N(w) is

essentially the same for all approaches, the (GG)G and
(GoGo)G approaches still have a weaker pseudogap be-
havior than the other approaches. Finally, for the coupling
(kpar)™' = 0.5 [cf. panel (c) of Fig. 9] more marked dif-
ferences appear among the various approaches. In particular,
the (GG)Gy, (GGy)Gy, and (GoGy)Gy approaches all present
quite a wide and deep pseudogap feature, the (GoGy)G ap-
proach presents a wide but rather shallow pseudogap feature,
and the (GG)G approach shows almost no evidence of a
pseudogap (to the extent that the density of states does not
even go through a local minimum near w = 0).

D. Pseudogap temperature

For given coupling, the evolution of the shape of N(w) vs
o can be followed for increasing temperature starting from 7.
As an example, Fig. 10 shows this temperature evolution when
(kpar)~' = 0 for each ¢-matrix approach we are considering.
Quite generally, the depletion of the pseudogap region about
o = 0 gradually fades away upon increasing temperature, in
such a way that a “crossover” temperature 7* can be identified
as the highest temperature at which the local minimum of
N(w) near w = 0 eventually disappears.

The crossover temperature 7* obtained in this way
throughout the BCS-BEC crossover is reported in Fig. 11 for
all #-matrix approaches. It turns out that the coupling depen-
dence of T* differs considerably for the various approaches,
especially for positive couplings on the BEC side of unitarity.
In particular, one notices that 7* is considerably suppressed
for the (GG)G and (GyGy)G approaches with respect to the
other approaches. In addition, for the (GG)G and (GyGy)G
approaches there occurs a coupling interval where 7* cannot
be defined, because the density of states N(w) does not have
a local minimum near w = 0 even at T = T.. This occurs
when (kpap)~' ~ 0.3 for the (GyGy)G approach and when
(kpap)~' >~ 0.6 for the (GG)G approach. Finally, for all ap-
proaches T* begins to increase rapidly with coupling around
(kpap)~' >~ 0.5-0.7. This is because this coupling regime is
where the actual crossover occurs, from a pseudogap phase
where the depletion in the density of states is rather shallow
and due to a truly many-body effect, to a normal-Bose-gas
phase where the depletion in the density of states becomes
deep and is just evidence of the two-body binding energy of
composite bosons [42].

E. Luttinger wave vector

The above crossover, between the pseudogap and normal-
Bose-gas phases, can be characterized in terms of the Lut-
tinger wave vector k. This wave vector was originally consid-
ered in Ref. [43] within the (GyGy)Gy approach, as the wave
vector k at which the backbending of the lower branch € (k) of
the single-particle dispersion occurs. In Ref. [43], this branch
was obtained by following the k dependence of the low-energy
peak in the single-particle spectral function A(k, w) [cf. panel
(a) of Fig. 8], and then by fitting the dispersion of the lower
branch € (k) obtained in this way through a BCS-like form

k
O e (k2 — k2)* + A2, (24)
Er
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FIG. 10. Evolution of the density of states N(w) at unitarity for
temperatures 7 > 7, within alternative 7-matrix approaches.

Here, 1’ and A’ are fitting parameters (in units of Er), with the
energy shift 4" needed to account for the dispersion € (k) away
from the weak-coupling regime, and k and k; are in units of
kr. On physical grounds, a nonvanishing value of k; signals
the presence of an underlying Fermi surface, which endows

(GoGo)Gop
08[ = (GyGp)G
(GGp)Gy
(GG)Gy

04 A& (GGG

*

|

-0.5 0.0 0.5 1.0
-1
(krar)

FIG. 11. Temperature T* for the appearance of a pseudogap in
the density of states, as a function of (kpar)~' within alternative
t-matrix approaches. The nonconnected regions that appear for the
(GoGp)G and (GG)G approaches signal that there 7 cannot
be identified, to the extent that a local minimum near « = 0 cannot
be found in N(w) evenat T = T..

the system with a persistent fermionic character even in the
presence of a strong attractive interparticle interaction. In
these terms, the crossover from the pseudogap to the normal-
Bose-gas phase is considered complete only when k; reaches
zero at some critical coupling, thus signaling the eventual
disappearance of the underlying Fermi surface.

The above definition of k;, introduced in Ref. [43] within
the (GoGp)Gy approach, can as well be extended to the
(GGy)Gyp and (GG)Gy approaches here considered, whereby
a lower branch of the dispersion can be clearly identified from
the spectra of A(k, w) [cf. panels (c) and (d) of Fig. 8] and
a backbending occurs. However, this definition of k; cannot
be transferred to the (GyGy)G and (GG)G approaches, where
only a single peak appears in the A(k, ®) [cf. panels (b) and
(e) of Fig. 8] and there is no observable backbending in the
dispersion for most couplings. As a consequence, for the
latter two approaches we make use of an alternative operative
definition of k; which is closer in spirit to the description
one would adopt for a Fermi liquid, and identify k; as the
wave vector for which the single peak in A(k, w) passes
through w = 0. Nevertheless, this definition appears to work
properly up to when k. /kr = 0.5, because at that point a
double-peak structure begins to appear in A(K, w) even for
the (GoGo)G and (GG)G approaches. To be able to extend
the kz-vs-coupling curve up to ki, — 0 when the full collapse
of the underlying Fermi surface occurs, for the coupling
regime where the double peak occurs we thus found it more
appropriate to identify k; as the wave vector at which the
peaks in A(k, w) at negative and positive frequencies mutually
exchange the height of their maxima.

Figure 12 reports the values of the Luttinger wave vector &,
as a function of (kpap)~! obtained for all #-matrix approaches
using the procedures described above. Here, depending on
the approach, k;, is seen to vanish for coupling values in the
rather narrow range between 0.55 and 0.7, with the largest
critical coupling reached by the (GG)G fully self-consistent
approach.
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FIG. 12. Luttinger wave vector k; (in units of k) vs (krarp)™!
obtained at T = T, within alternative 7-matrix approaches (the defi-
nition of k; for the different approaches is given in the text).

V. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, we have performed a systematic theoretical
study about several variants of the #-matrix approximation for
an attractive dilute Fermi gas in its normal phase above the
superfluid critical temperature 7;. This study was extended to
the whole BCS-BEC crossover and has regarded both thermo-
dynamic and dynamical quantities that characterize the Fermi
gas. Although these variants of the f-matrix approximation
have already been separately considered in the literature, here
all these variants have been treated on equal footing (with
the same numerical accuracy also having been pursued for all
of them) and in an unbiased way, in order to evidence their
individual virtues and shortcoming.

As far as the thermodynamic quantities that we have con-
sidered are concerned, from one 7-matrix approach to the other
we have found mostly quantitative differences but similar
qualitative trends, apart from the presence vs absence of a
maximum for the critical temperature in the intermediate-
coupling regime (cf. Fig. 3) and of a residual bosonic inter-
action affecting the chemical potential in the strong-coupling
(BEC) regime (cf. Fig. 4). The most distinctive differences
(not only at a quantitative but also at a qualitative level) among
the outcomes of the various 7-matrix approaches have instead
been found for the dynamical quantities, specifically, about
the occurrence of a one-peak vs two-peak structure in the
single-particle spectral function (cf. Fig. 8). This qualitative
difference appears relevant, not because it hinges on a dispute
about the Fermi liquid vs non-Fermi liquid behavior of an
attractive Fermi gas at unitarity [39], but rather because it
affects the width (if not the presence itself) of a temperature
interval above T, where a pseudogap regime would show up,
with the simultaneous presence of preformed pairs and of an
underlying Fermi surface.

That a fully self-consistent diagrammatic approximation
may end up in giving (even considerably) smaller values for
the excitation energies with respect to its non-self-consistent
version(s) (and possibly “overshoot the mark” when compar-
ing with experimental values) has also been evidenced in other
physical contexts. One can specifically refer to the spectra

associated with electronic excitations that can be described in
terms of the GW approximation, not only for semiconductors
and insulators [8] but also for complex molecules [44]. In
these cases, attempts have recently been made to mitigate the
effects of self-consistency by introducing vertex corrections
on the GW calculations [45-47].

In the present context of the #-matrix approximation for
an attractive Fermi gas, too, vertex corrections have recently
been included on top of a partially self-consistent version of
this approximation, ending up with rather good results for
the critical temperature 7, [17] and the pairing gap at zero
temperature [48] throughout the BCS-BEC crossover, when
compared with available quantum Monte Carlo calculations
and experimental data. It could therefore be interesting to
assess whether including a similar kind of vertex correction
on top of the fully self-consistent z-matrix approximation
may result in more favorable conditions for the presence of
a pseudogap regime about unitarity.
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APPENDIX A: DETAILS OF THE NUMERICAL
PROCEDURES FOR ACHIEVING (PARTIAL OR FULL)
SELF-CONSISTENCY

In this Appendix, we present in detail the numerical pro-
cedures that are needed to implement the cycles of self-
consistency depicted schematically in Fig. 2. For the sake
of definiteness, we will specifically consider the fully self-
consistent (GG)G approach whose cycle is shown in Fig. 2(d),
since all procedures discussed for this approach can as well be
applied to the partially self-consistent approaches. We remark
that the procedures here presented for the (GG)G approach
are in line with those previously suggested in Ref. [16] and
partially with those reported in Ref. [49].

All expressions reported in this Appendix are given in di-
mensionless units, such that energies are in units of the Fermi
energy Er = k#/(2m) and wave vectors in units of the Fermi
wave vector kr. Accordingly, the single-particle fermionic
propagator G(K, w,) is in units of E; ', the fermionic self-
energy X(k, w,) in units of Er, and the particle-particle prop-
agator I'(Q, 2,) in units of (mkr)~!. In addition, to further
shorten the notation, here we use the symbol v = (kpag)~!
for the coupling.

1. Transforming from G(k, w,) to G(r, 7)

The first function to be Fourier transformed in the self-
consistent cycle of Fig. 2(d) is the single-particle fermionic
propagator G. For this function the Fourier transform can be
done in two steps, namely,

Gk, w,) - Gk, 1) = G(r, 1) (A1)

with the Fourier transform over the wave vector k following
that over the frequency w,.

In the first step, to get the Fourier transform over the
frequency w,, we note that the dressed fermionic propagator
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G(k, w,) for large frequencies behaves like the free propaga-
tor Go(Kk, w,):

Gk = Goko)=-—1"  (A)

wp — &k

where £, = k> — 1. One can thus calculate numerically the
Fourier transform from w,, to T of the difference
AGK, w,) = G(k, w,) — Go(k, wy), (A3)
which is easier to obtain than the Fourier transform of
G(k, w,) since the function (A3) converges like ~w,>/? for
large frequencies. One then adds to this result the Fourier
transform of Gy(k, w,), which is known analytically in the
form [50]
Go(k, ) = e *[f(&) — 1], (A4)
where f (&) = (% 4 1)~! is the Fermi distribution function.
In the second step, to get the Fourier transform over the

wave vector K, it is further convenient to split the expression
(A4) in two parts:

Go(k, 7) = G (k, 1) + G (k, 1), (AS)

where
GV (k, 7) = e 5T f (&), (A6)
G (k,7) = —e 5. (A7)

Here, the labels (n) and (a) signify that the term (A6) has to
be numerically Fourier transformed over k, whereas the term
(A7) admits an analytic Fourier transform of the form

2
etle &

(a) _
Gy (r,7)= 8773/273/2°

(A8)

which in the limit T — 07 is a representation of the Dirac
delta function 83(r). This property is related to the anticom-
mutator between fermionic field operators that appears in the
fermionic propagator when passing from t =0~ to t = 07.
The term (AS8) thus describes the singular behavior when
(r, t) — 0%, not only for the free propagator Gy but also for
the dressed propagator G. It is then convenient to define a new
function

AG(K, 1) = G(k, 7) — G{(k, 1), (A9)
which can be readily Fourier transformed over k numerically.
The desired Fourier transform G(r, 7) is eventually obtained
by adding G(()”)(r, 7) of Eq. (A8) to the Fourier transform of
AG(k, 7) [51].

_ 8/2¢%T [Fo0

(n)
Fsc (Q! T) - ﬁ 0

2. Transforming from I'(Q, 2,) to I'(r, 7)

The next function to be Fourier transformed in the self-
consistent cycle of Fig. 2(d) is the particle-particle propagator
I'. Also in this case, the Fourier transform can be done in two
steps, namely,

rQ,e,)—-r@Q,r)— '), (A10)

with the Fourier transform over the wave vector Q following
again that over the frequency €2,,.

To perform the first Fourier transform over €2,, we begin
by noting that the large-frequency behavior of the particle-
particle propagator I'(Q, €2, coincides with that of its non-
self-consistent counterpart taken in the strong-coupling limit
—pBu > 1, which is given by the expression [31]

rQ.2) = Te(Q )

4
= — id . (AlD
T u—i%

v —

However, using ['.(Q, 2,) as the reference function to be
subtracted in the Fourier transform may lead to problems,
because for 2, = 0 the function (A11) has a pole at |Q| =
2/v2+ when v > 0. To the extent that we are inter-
ested only in taking care of the large-frequency behavior of
I'Q, 2,), we are led to introduce the new reference function

Fe(Q, 2)) = I'e(Q, ) — I'e(Q, Rv=0) (A12)

with the zero-frequency term removed from the expression
(A11). Although the Fourier transform of the function (A12)
cannot be calculated analytically, it can be computed with
limited effort by writing it as an integral over the complex
z plane as follows:

FQ o) =T e TL(Q )

1 P )
i édz(eﬁZ — 1)FSC(Q, 2), (Al3)
where the contour C surrounds the poles of the Bose function
b(z) =1/ (e?* — 1) on the imaginary axis. Here, the function
I'..(Q, z) has a branch cut along the negative real axis starting
at zc = 2(u — Q?/4) as well as a pole at z, = 2v* + z. when
v > 0. The integral in Eq. (A13) then reduces to the calcula-
tion of an integral along the branch cut and of the residue of
the pole, and can accordingly be split in the following way:

Q1) =TQ, 1) +IQ, )

+ Fres(Qv T) =T Re[FSC(Qﬂ Q1):0)]7 (A14)
where the first two terms are contributed by the branch cut and
the third term by the pole. Like in Eq. (AS), the labels (n) and
(a) in the first line of Eq. (A14) signify that these contributions

are calculated numerically or analytically, respectively.
The first term in Eq. (A14) can be cast in the form

_2
e x?

x 2
(e=Ba—x*/1) — 1)(x2 + 27v?)

(A15)
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for z. < O (that is, for u < Q?/4), and in the form

. 8«/_ez“ e 2
roQ.« /
VT (z—20)

— (e—ﬁ(zc—xz/f) —
e‘ﬁZC -1
<ZO — Zc — e*ﬂl{) — 1 )

for z. > 0 (that is, for u > Q? /4), where 7 is any point along
the negative real axis (typically, we have taken zp = —2T).
The second term in Eq. (A14) has instead the semianalytic
form

2ut 7Q21:/2
r“Q, t) = 4v2m c(r, v) % (A17)
with the coefficient c¢(z, v) given by
+OO 2 —x2
c(t,v) = \/_/ x—2 g (A18)

Note that this coefficient is unity for t — 0% or v = 0.
The term (A17) admits also an analytic Fourier transform
from (Q, 7) to (r, t), which is given by

2
2¢(t,v)etTe =

r®e, )= (A19)

wt?
One can show that this is the leading term of the singular
behavior of the full I'(r, ) for (r, T) — 07, not only in the
strong-coupling regime but also throughout the BCS-BEC
crossover. Finally, the third term in Eq. (A14) is the residue
of the pole at z = zp, given by

16 v >*
[Nes(Q,7) = _e(v)eﬂzp——l'

One can also show that the divergence of this term for z, = 0

(that is, for |Q| = 24/v2 + ) is exactly compensated by the
fourth term of (A14), in such a way that I',_(Q, 7) is always a
smooth function of Q.

At this point, we calculate numerically the Fourier trans-
form from (Q, 2,) to (Q, ) of the difference

AT(Q, Q) =T(Q, Q) — T (Q, 2,) (A21)

to obtain AI'(Q, 7), and then add to it ", (Q, ) given by
Eq. (A14) to obtain I'(Q, 7).

Finally, for the remaining Fourier transform from (Q, 7) to
(r, T), we can make use of I‘SC‘)(Q, 7) defined by Eqgs. (A17)
and (A18) to subtract the leading term of the singular behavior
when (r, t) — 0%, similarly to what we did in Eq. (A9).
Accordingly, we define the difference function

AT@Q,7)=T(Q, 1) —-T¥Q, 1) (A22)

and Fourier-transform it from Q to r to obtain AI(r, 7).
The desired function I'(r, 7) eventually results by adding
to A'(r, t) the semianalytic expression (A19) for I’ gé‘)(r, T)
[52].

(A20)

3. Transforming from X(r, 7) to X(k, ®,)

The last function to be Fourier transformed in the self-
consistent cycle of Fig. 2(d) is the self-energy X. Also in this

)(x2 + 27v?)

7 VTGe—20) 1 LT3 2 X /Ze
+ 8,/ — / dx - —
T Jo e P/ — 1\ x2 42102 z,/T

(A16)

(

case, the Fourier transform is done in two steps, namely,

2, t) = 2k, ) > Z(k, wy), (A23)

where now one first transforms from r to k and then from t
to w,, in the reversed direction to what was done for G [cf.
Eq. (A1)] and for I" [cf. Eq. (A10)]. This is because from
Eq. (7), once G(r, t) and I'(r, t) are known, X(r, 7) is also
known.

From Eq. (7) one can also determine the singular behavior
of X(r, ) for (r, T) — 07 in terms of those of G(r, 7) [cf. the
discussion after Eq. (A8)] and of I'(r, t) [cf. the discussion
after Eq. (A19)]. To this end, we rewrite Eq. (7) in the
alternative forms

X(r,7)=-2I(r,t)G(-r, —7)
=2I'(r,7)G(r,B — 1)

(A24)
(A25)

(where the factor of two originates by having expressed the
particle-particle propagator I" in terms of dimensionless quan-
tities). In the second line we have used the spatial isotropy
and the antiperiodicity in t of the fermionic propagator, to
write G(—r, —7) = —G(r, § — 7). As discussed previously,
both G(r, 7) and ['(r, 7) are strongly peaked for (r, 7) — 0%,
We then expect the singular behavior of X(r, ) to be captured
by the following alternative expressions:

S (r, 1) ~2T(r, 1) G(r=0,87) (A26)
in the limit (r, T) — (0, 0%) and
>, 1) ~2T(r=0,7)G(, B —1) (A27)

in the limit (r, ) — (0, 7). Out of the above terms, (A26)
is the dominant one because I'(r, t) [cf. Eq. (A19)] is more
strongly peaked than G(r,7) [cf. Eq. (A8)] in the limit
T — 0.

Accordingly, in order to perform the Fourier transform of
3(r, t) from r to k, we consider the difference

AX(r,7) = Z(r, 7) — ZP(r, 1) (A28)

with the term (A26) only. In addition, to the extent that in
Eq. (A28) we are interested in the leading behavior of X+
for (r, t) — (0, 0"), we can approximate the particle-particle
propagator I'(r, t) in Eq. (A26) by the analytic result (A19)
and write

2

e 2t

2P, 1) = —2n —,
T

(A29)
where we have consistently set c(r,v) - 1 and e/ — 1
and used the result n = —2G(r =0, 7) in terms of the
fermionic density n (in dimensionless units). [For the f-matrix
approaches that use an external Gy in the place of G, the
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expression (A29) needs to be modified by replacing n by the
free-fermion density np = —2 Go(r =0, 87).]

The expression (A29) has the further advantage that its
Fourier transform from (r,7) to (K, w,) can be obtained
analytically in terms of the error function [53], in the form

erf[/B(K2 — 2iwy)/2]
VK2 = 2iw, '

This expression correctly reproduces the leading w; !/? be-
havior of X(k, w,) for large frequencies. [Similarly, )
of Eq. (A27) can be shown to behave like ~w, ! for large
frequencies [49], thereby confirming that this is a subleading
contribution also in the frequency domain.]

Once the difference (A28) has been Fourier transformed
numerically (first from r to k and then from 7 to w,,) according
to the above prescriptions to obtain AX(k, w,), one can
eventually add to it the analytic expression (A30) and obtain
the desired function 2(k, w,).

Sk, w,) = —87n

(A30)

APPENDIX B: OPTIMIZING THE CONVERGENCE
TOWARDS SELF-CONSISTENCY

In this Appendix, we discuss the procedures that we
have adopted to achieve optimal convergence toward self-
consistency within the 7-matrix approaches considered in this
paper. A judicious optimization in achieving convergence is,
in fact, especially required for those approaches that imple-
ment partial or total self-consistency in the particle-particle
propagator I, to the extent that these approaches become in-
trinsically unstable when the temperature approaches 7, when
one uses the straightforward iterative procedure sketched in
Sec. II (cf. Fig. 2 therein). The origin of this problem can be
highlighted through the following analytic considerations.

1. General considerations on the iterative procedure

For definiteness, we shall consider in detail the fully self-
consistent (GG)G approach. Equations (1)—(4), which need to
be self-consistently solved, can be written in a compact way
as a functional equation for the self-energy X, in the form

X(k) = FIE(p)IK). (BI)

This is because, once X is known, G and I' in Egs. (1)-(4) can
also be readily obtained. Let us then see what happens when
trying to solve Eq. (B1) iteratively.

Suppose that X5C(k) = F[Z5¢(p)](k) is the self-
consistent (SC) solution to Eq. (B1) which the iterative
method is expected to reach. At a generic iteration step (i)
toward self-consistency, the self-energy X (k) deviates from
£5€(k) by some amount § £V (k):

2D k) = 5€%k) + s =D (k). (B2)

Provided one is close enough to the self-consistent solution,
Eq. (B1) can be linearized about %5€, to write

5k + 85V (k)
= F[=P ()]

~ $5C(k) + / dp [—SFESEE((”;)]U‘)} 8z (p). (B3)
SC

Here, the subscript SC indicates that the functional derivative
is taken at self-consistency, and the integral over p contains
both an integral over the wave vector p and a sum over the
Matsubara frequency w,. This provides a relation between
the distance § X from the self-consistent solution between the
steps (i — 1) and (i):

BZ(i)(k)zfdp[M} sV, (B4
3X(p) sC

When X(k) is calculated on a k grid of points, like it is
done in our numerical calculations, §¥ can be regarded as a
vector which is acted upon by the functional derivative matrix
[6F /8X]sc. The convergence of the iterative procedure, from
(i—1) to (i) and so on, is then governed by the behavior of
this functional derivative matrix.

To find an explicit expression for [§F /8 X]sc, we rewrite it
in the form

SFIE(PIGK) _ SFIEPIK) 8G(p)

. (BS)
8§(p) 8G(p)  §X(p)
Here, the factor on the right is given by
8G(p) 2
——= =G(p) (B6)
5xp)

with the use of Eq. (1), while the factor on the left can be
calculated by recalling that [cf. Egs. (2) and (B1)]

FIE(P)Ik) = X(k) = —/dQ HQGQ - k), (B

yielding
SF[X(p)]k) / ()
- =T k)— | dQ ——G(Q — k).
5G(p) (p+k) Q 5G(p) (Q—k)

(B3)

In this expression, the functional derivative of the particle-
particle propagator I'(Q) can be obtained from Eq. (3):
Q) _ [\ 2 Renl©)
8G(p) 3G(p)

where the functional derivative of the regularized particle-
particle bubble R;,,(Q) is obtained from Eq. (4):

SRy (Q)
8G(p)

Grouping all the above results together, Eq. (B5) becomes
eventually

SF[Z(p)I(k) )
=G r k
53(p) (p)y’[I'(p+k)

-I'(Q) (B9)

=2G(Q—p). (B10)

2 / dOT(QPG(Q — KGO — p)l.
B11)

When this result is used in Eq. (B4), X therein can be
conveniently split into two terms

82V (k) = 82V (k) + 8=V (k), (B12)

094502-15



M. PINL, P. PIERI, AND G. CALVANESE STRINATI

PHYSICAL REVIEW B 99, 094502 (2019)

where we have defined
3% (k) = — / dpG(p)’T(p + k)8 (p), (BI3)

§EV (k) =2 f dpG(p) f dQT(Q)

x G(Q — k)G(Q — p) sV (p). (B14)

Suppose now that T = 7. The Thouless criterion (10) then
implies that the particle-particle propagator I'(Q) has a pole
for Q =0, such that one expects I'(Q) to remain strongly
peaked in the vicinity of Q = 0. The expressions (B13) and
(B14) can be simplified accordingly, by setting to zero the
arguments of the particle-particle propagators in the smooth
functions that multiply them. For the term (B13) we thus have

8TV (k) ~ —G(—k)252<i—‘>(—k)/dp T(p+ k)
= —CG(—k)? 8=V (—k), (B15)

where C is the Tan contact according to Eq. (17). This term
poses no problem to the convergence, since the quantity that
multiplies X~V (—k) is finite. For the term (B14) we instead
obtain

5200 = 26(-) [ dor(©r

x f dpG(p)’G(—p)sV(p). (BI6)
where the factor

d
[aorr= [ SEryr@a.r

B17)

is infrared divergent at T = T even in three dimensions. This
is because, for the term with 2, = 0 therein, I'(Q, 2, = 0) ~
Q2 whenQ — 0atT =T, [11].

This divergence represents a problem for the convergence
of the iterative algorithm, because it implies that, no matter
how close the step (i — 1) might be to the self-consistent
solution, the step (i) is bound to run infinitely away from
it. This problem can affect the convergence of the iterative
algorithm also for temperatures 7 2> T., depending on how
much I'(Q) is peaked about Q = 0.

The only (partially) self-consistent #-matrix approach not
affected by this problem is the (GyGo)G approach. This is
because in this approach, by construction, the particle-particle
propagator I" coincides with the bare I'y, whereby 6179 /6G =
0. As a consequence, the second term on the right-hand side of
Eq. (B8) identically vanishes and with it the divergent factor
in Eq. (B16).

We pass now to show how this problem can be overcome
in practice, both for 7 > T, and T — T..

2. Improved method for 7 > T,

Although the iterative approach (B4) to solve Eq. (B1) can-
not converge at exactly T = T, there exists a simple method
to make it converge for T 2 T, with the factor (B17) keeping
a finite (albeit large) value. This method, which has already
been used for the self-consistent calculations of electronic

structures in atoms and molecules [54], consists of redefining
the iterative steps in terms of the weighted sum:

20k = a FIZTV(Ik) + (1 — )2 D),  (BI8)

where the weight factor o ranges between 0 and 1. This
method is found to reduce the effects of the divergence due to
the term (B16), thereby making the iterative process to con-
verge even sufficiently close to 7. Nevertheless, the method
fails upon approaching 7, because smaller and smaller values
of o are needed for attaining convergence. A smaller value
of «, in turn, implies that more iterative steps are required
for convergence, since the contribution of a single step, too,
becomes smaller and smaller. In practice, we have found that
this method can conveniently be used down to temperatures
for which (T — T;)/T; is of order 1%, before it becomes
numerically too demanding.

3. Improved method for 7' = T,

Alternatively, exactly at T = T, one can rely on a different
method that avoids the convergence problem discussed above.
This method can be summarized as follows:

(1) One begins by fixing the value n of the density, in terms
of which one obtains the Fermi wave vector kr = (372n)'/3
and the Fermi energy Er = ki /(2m). One also fixes a guess
value T, /Ty for the temperature in units of the Fermi energy,
as well of the ratio u/T, between the chemical potential
and the guess temperature 7, (recall that we have set the
Boltzmann constant kg equal to unity throughout).

(i) Next, one replaces the particle-particle propagator of
Eq. (3) with the following expression

Q)™ = Rpp(Q) — Ryp(Q = 0),

in such a way that I'(Q = 0)~! = 0 by construction. This
implies that the Thouless criterion (10) is always satisfied
by the modified particle-particle propagator (B19), no matter
what the initial guess for T, /Er was.

(iii) At this point one can proceed and perform the iterative
procedure toward self-consistency on the set of equations
(1)—(4), with I'(Q) therein replaced by [ (Q). It will be shown
below that this replacement avoids the occurrence of the
infrared divergence that plagues instead the expression (B16)
obtained in terms of the original I'(Q).

(iv) Once self-consistency has been achieved with this
modified set of equations, one can obtain the modified density
asii=—-2G(r=0, B7), and the modified scattering length
ar from the expression

1 4 .
=z = _?Rpp(Q = 0),

ar

(B19)

(B20)

where R,, is obtained from Eq. (4) with G replacing G.
The result (B20) follows directly from the Thouless criterion
corresponding to the modified density 7.

(v) Finally, in terms of 72 one obtains the modified Fermi
wave vector kp = (37%1)'/3 and the modified Fermi energy
Er = k% /(2m). The desired value of the critical temperature
is then obtained by

L=t 1 (B21)
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in terms of the initial guess T,/Er. From Eq. (B20) the
corresponding coupling value is given by
1 1 1 kg 4Ry (Q = 0) kg

S S s U Y0
kFaF kFaF kFaF kF mkF kF

There remains to explain the reason why this method is
not plagued by the convergence problem discussed above for
the iterative procedure. The point is that, using the modified
particle-particle propagator (B19) in the place of the original
one, one also modifies the structure of the functional deriva-
tive in Eq. (B4). Specifically, for the functional derivative of
' (Q) with respect to G(p) one obtains [cf. Eq. (B9)]

Q) _ 8(Ryp(Q) — Rpp(Q = 0))
8G(p) 3G(p)
= —2T(Q)’’[G(Q — p) — G(—p)].

The corresponding variation of the self-energy related to this
functional derivative then becomes [cf. Eq. (B14)]

~I'(Q)?

(B23)

85 (k) =2 f dpG(p) / dQT(QYG(Q — k)

x [G(Q — p) — G(—p)18E "V (p). (B24)

Comparing this result with Eq. (B14), one notes that the
singular behavior of I'(Q)? for Q — 0 is now suppressed by
the presence of the factor [G(Q — p) — G(—p)]. This feature
makes it possible to reach convergence exactly at T =T,
with a limited number of iterations, without the need for the
weighted sum of Eq. (B18).

APPENDIX C: COMPARISON WITH THE PSEUDOGAP
APPROXIMATION AT T,

The (GGy)Gy and (GG)Gy t-matrix approaches have al-
most invariably been implemented in the literature using a set
of approximations (sometimes referred to as the “pseudogap
approximation”), which considerably simplify the numeri-
cal calculations. Specifically, close to 7. where the particle-
particle propagator I'(Q) is strongly peaked about Q = 0, the
fermionic self-energy (2) has been approximated as follows
[25,55]:

d
Sk, 0,) = — %T STRQ. 2,)Go(Q — k, 2, — )
dQ i2,0°
~ Go(—k, —wn>[—/mr ;no, Q,)e' " }

= Go(—k, —wn) A, Cn

Due to this approximation for the self-energy, the dressed
single-particle propagator G (and thus also the equation for
the particle number) coincides with that of BCS theory, with
the pseudogap energy A, now playing the role in the normal
phase of the BCS gap A in the superfluid phase. In addition,
the Thouless criterion (10) for the dressed I" coincides with
the BCS gap equation (again with the replacement A — A,)
for the (GGy)Gy approach [25,55], or with the BCS gap
equation plus additional corrections (which become anyway
negligible both in the BCS and BEC limits) for the (GG)G

0.30 , ' |
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s
0.10F ‘
. — (GGG
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0'20_ (b) ....................
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] ] 0 " )

(krar)™

FIG. 13. Critical temperature T, vs the coupling (kpap)~' for the
(GGy)Gy [panel (a)] and (GG)G [panel (b)] approaches (full lines),
and for their corresponding pseudogap (PG) approximation (dashed
lines). The BCS and BEC critical temperatures are also reported for
comparison (dotted curves on the left and right sides, respectively).
The data for the pseudogap approximation to the (GG()Gy and
(GG)Gy approaches are taken from Refs. [27] and [14], respectively.

approach [14]. A further approximation, which is usually
adopted within the pseudogap approximation when calculat-
ing Ay, by means of Eq. (C1), is the use of an expansion of
I'Q, €2,) for small values of Q and €2,.

It should, however, be remarked that the pseudogap ap-
proximation (C1) appears justified only in the strong-coupling
(BEC) regime (krpap)~! 2 +1, where the large fermionic
energy scale |u| (with u < 0) dominates over the bosonic
energy scales and the approximation (C1) becomes fully
correct. This can also be verified numerically as shown in
Fig. 13, where a comparison is presented for the calculation
of T, between the complete (GG()Gy and (GG)Gy approaches
(full lines) and their corresponding pseudogap approximations
(dashed lines). This comparison shows that a good agreement
between the complete and approximate calculations occurs
only for (krar)~" > 1, while significant deviations result both
at intermediate and weak couplings.

From Fig. 13 one also notices that, in the weak-coupling
(BCS) regime (kpap)™! < —1, the curves for T, obtained
within the pseudogap approximation converge rapidly to the
corresponding BCS curve for T.. This is because Ap(7T') is
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bounded by the value Ay of the BCS gap at T =0 [25],
which in turn vanishes exponentially in the weak-coupling
limit. This implies that the approximate self-energy (C1), too,
vanishes exponentially, in such a way that the BCS result
for T, is recovered. Without the use of the approximation
(C1), in weak coupling the self-energy would instead ap-
proach the value ¥ ~ 2mwagn/m associated with a mean-field
shift.

For the complete (GG()Gy approach, whereby this shift
appears in just one of the two single-particle propagators
that enter the particle-particle bubble in I', the equation for
T, corresponds to that of a Fermi system in the presence of

a chemical potential imbalance §u. This equation is known
to have no solution when this imbalance nearly exceeds the
BCS gap Ag of the balanced system at 7 = 0 [56]. Given
the exponential dependence of Ay on coupling, to be con-
trasted with the linear dependence 6 >~ 2mwapn/m associated
with the mean-field shift, the condition §u > A is readily
met in the weak-coupling regime. This explains why, in the
weak-coupling regime, the (GG()Gy approach does not admit
solution for 7., as was already noted in the discussion of
Fig. 3. For the complete (GG)G approach, on the other hand,
the differences with respect to its pseudogap approximation
are overall less pronounced, albeit still significant.
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