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Predicting critical currents in grain-boundary limited superconductors
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The critical current across grain boundaries is severely suppressed in high-temperature superconductors, such
as the cuprate and iron-based compounds, if the grain boundary angle exceeds a few degrees. This is known from
the low critical currents in untextured conductors and measurements on bicrystalline films. Textured conductors
were developed to overcome this limitation; however, a quantitative understanding between the degree of texture
and the macroscopic critical current is still missing. A model for the prediction of the self-field critical current
as a function of grain alignment on the basis of experimental data obtained from bicrystals is presented. It is a
mean-field approach based on percolation theory. Without any fit parameter, good agreement with recent studies
on cuprates and iron-based superconductors is obtained, where the critical current and the texture were analyzed
quantitatively. The simplified grain boundary physics hence describes the macroscopic properties of imperfectly
textured materials.
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I. INTRODUCTION

Many exciting superconducting materials have been dis-
covered in the past decades. They are very promising for ap-
plications since they can significantly extend the operational
space of superconductivity in terms of both temperature and
magnetic field. The most promising among them, the cuprate
and iron-based superconductors, suffer from a bad connectiv-
ity between the grains of a conductor. It was shown for bicrys-
talline films that the critical current across grain boundaries
drops exponentially with the misalignment angle between ad-
jacent grains [1,2]. The technological solution of this problem
was the development of textured conductors, the most efficient
form being coated conductors, where the grains are aligned
within a few degrees so that they are sometimes called “single
crystals by the mile.” However, the corresponding production
processes are slow and expensive; hence, the market is still
dominated by NbTi and Nb3Sn, which do not suffer from
this granularity problem. Alternative texturing processes, in
particular thermomechanical treatments, are cheaper, but the
resulting grain alignment is less perfect. Recent results on
Bi-2212 [3,4] and Ba-122 [5] indeed indicate the feasibil-
ity of this approach. The relation between texture and the
macroscopic critical current density is still not understood
quantitatively despite many approaches, such as the brick-
wall [6,7], railway switch [8], freeway [9], and parallel path
[10] models, and various numerical approaches [11–15]. Most
of them model the current meandering between the grains
to predict the macroscopic behavior. Here, the approach is
different, focusing on only the statistical distribution of the
grain boundary angles and neglecting any details of the grain
structure or its local variation. This enables a comparison of
different materials on the basis of the experimentally observed
dependence of the critical current density on the misalign-
ment angle and a quantitative prediction of the influence of
texture.

II. MEAN-FIELD PERCOLATION MODEL

The percolation model is based on the mean-field approach
originally proposed for predicting the critical current density
in MgB2 [16], as well as its anisotropy upon texturing [17].
While the anisotropy of the upper critical field induces a
variation of the properties of differently oriented grains and
hence causes the inhomogeneity of the current flow in MgB2,
the grain boundary currents are assumed to vary and limit,
per definition, the macroscopic currents in grain-boundary-
limited superconductors. The critical current density Jc is
obtained from a simple integral [16],

Jc =
∫ Jmax

c

0
σpdJ. (1)

It basically sums up infinitesimal current densities weighted
by the effective cross section

σp =
(

p(J ) − pc

1 − pc

)t

(2)

over which they flow. The higher the local current density is,
the smaller the effective cross section becomes because fewer
current paths are available for higher currents. σp is motivated
by percolation theory, with p(J ) being the fraction of sites
(grains) or bonds (grain boundaries) having a local critical
current density JG/GB

c exceeding J . If this fraction decreases
to the percolation threshold pc, σp becomes zero because no
continuous current path can be formed at smaller p. (The
spanning cluster decomposes into separated clusters.) pc is
about 0.2 in three-dimensional systems and depends on the
coordination number, i.e., the number of neighboring grains. It
is generally somewhat smaller in bond than in site percolation
problems because removing one site removes all respective
bonds, while a site may stay connected with the spanning
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FIG. 1. Diagram of the percolation model.

cluster upon removing one of its bonds. Its actual value is
hard to assess in real systems, but it can be calculated for
regular lattices; for example, a value of 0.2487 results for a
simple cubic lattice (coordination number of 6), and a value
of 0.1802 results for a bcc lattice (coordination number of 8)
[18]. For the sake of simplicity and to keep the number of
free parameters small, pc = 0.2 will be used in the following.
The so-called transport exponent t was fixed to 1.76, as ex-
pected for three-dimensional systems in the highly nonlinear
limit [19]. p(J ) hence contains all information on the actual
material. It is just 1 − F (J ), with the distribution function of
the critical current densities F (JGB

c ). (The following refers to
only grain boundary currents since they are the focus of this
study.) Jmax

c is given by the condition p(Jmax
c ) = pc, where the

effective cross section becomes zero because grain boundaries
with higher critical current densities do not form a continuous
cluster anymore and therefore cannot contribute more than
Jmax

c to the macroscopic current.
A sketch of the percolation model is shown in Fig. 1. In

addition to pc and t , F (JGB
c ) has to be known or modeled in

order to get the macroscopic critical current density by means
of Eq. (1). This is very complex for the general case due to the
large variety of possible grain boundaries. Five parameters are
needed to classify them: the grain boundary angle α, the ori-
entation of the rotational (or common) axis (two parameters),
and the grain boundary plane (two parameters).

Figure 2 illustrates a grain boundary and the respective
grain boundary angle. Assuming the crystallographic axes are
parallel to the edges of the grains (cuboids) and the rotational
axis is parallel to the c axis, Fig. 2 would sketch a [001]
tilt boundary. This is, however, not the general case because
the orientation of the rotational axis and the grain boundary
plane can be chosen arbitrarily. A model and experimental
data for Jc as a function of all five parameters are currently

FIG. 2. Sketch of a grain boundary.

unavailable, and we restrict our considerations to the grain
boundary angle α. Most available experimental data refer to
[001] tilt boundaries (e.g., [1] and references therein), and an
exponential decrease of Jc as a function of α was found after
a plateau at low angles in the cuprates [1] as well as in the
iron-based superconductors [2,20],

JGB
c = J0e−1 for α � αc, (3)

JGB
c = J0e− α

αc for α � αc. (4)

Although the actual type of grain boundary [21] and its
morphology [22] influence this dependence, the exponential
behavior is a general trend in these two classes of super-
conductors, and the critical currents across grain boundaries
will be modeled by Eqs. (3) and (4). With this simplification,
F (JGB

c ) and p(J ) needed for the integral in Eq. (1) can be
calculated from the distribution function of the grain boundary
angle Fα , which will be derived in the following.

A. Distribution of grain boundary angles

We consider first the distribution of grain boundary angles
between two arbitrarily oriented grains. The orientation of
one grain can be obtained from the orientation of the other
grain by the rotation about the common axis (see Fig. 2). The
respective rotation angle defines the grain boundary angle α.
For a totally random orientation of both grains this results, for
0 � α � π , in (details are given in the Appendix)

fα (α) = 1 − cos α

2π
, (5)

Fα (α) = α − sin α

2π
, (6)

where fα (α) denotes the distribution density of the distribu-
tion function Fα (α), i.e., fα (α) = F ′

α (α). The angular range is
restricted to 180◦ since clockwise and counterclockwise rota-
tions lead to the same boundary. However, there are further
symmetries because a rotation about 180◦ results in the same
crystal lattice. We further assume that the effect of orthorhom-
bicity is small; hence, rotations about the crystallographic c
axis have a periodicity of 90◦. This leads to

Fα (α) = 8

π
(α − sin α) (7)

for α � π
4 ,

Fα (α) = 2 − 8

π
(cos α + 1) tan

π

8
(8)

for π
4 � α � π

2 , and approximately

Fα (α) ≈ 2 − 4

π
arccos(2 cos α + 1) − 8

π
(cos α + 1)

(
tan

π

8

− tan
arccos(2 cos α + 1)

2

)
(9)

for π
2 � α � 1.7178. (The derivation of the maximum of α

can be found in the Appendix.)
The distribution function (bottom panel) and the distribu-

tion density (top panel) are shown as gray lines in Fig. 3. The
circles in Fig. 3 were obtained from numerical simulations
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FIG. 3. Distribution function (top panel) and distribution density
(bottom panel) of grain boundary angles for randomly oriented
grains. The line graphs were obtained from the analytical expres-
sions [see Eqs. (7)–(9)]; the circles represent the results from the
simulation.

assuming cubic grains on a simple cubic lattice. The orienta-
tion of the grains was chosen randomly, and the distribution
density was obtained by counting the grain boundary angles
in a small angular range. Details are given in the Appendix.
These simulations are necessary to obtain the distribution of
grain boundary angles in textured samples, as well as to ensure
that the distribution is also valid for a large ensemble of grains.
The analytical expressions are valid for the distribution of two
grains with random orientation, but the grain boundary angles
are not independent of each other in a large ensemble, which
becomes evident by considering a closed path containing an
arbitrary number of grains. The grain boundary angles are
restricted by the condition that the grain orientation has to
be the same after the entire loop. Although this restriction
does not change the angular distribution in an ensemble of
randomly oriented grains, it does for partially aligned grains
(not shown), and the maximum in the grain boundary angle
distribution density of the ensemble shifts to lower angles
compared to the case of two grains.

The differences between the analytical formula and the
simulation for grain boundaries above 90◦ are caused by
something else: the derivation of the formula does not take
all symmetries into account [see Eq. (A8) in the Appendix].
These symmetries reduce some of the grain boundary angles
for π

2 � α � 1.7178, but they remain in this angular range and
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FIG. 4. Distribution density of the grain boundary angles for
uniaxial (top panel) and biaxial (bottom panel) textures. The given
angles refer to the out-of-plane texture angle θt. φt = θt is assumed
for biaxial texture; φt = ∞ is assumed for uniaxial texture. The
distribution densities were divided by 2 and 5 for φt = 5◦ and 1◦,
respectively, to fit into the bottom panel.

cause the discontinuity (appearing as spikes in Figs. 3 and 4)
at 90◦ in the distribution density. (The distribution function
changes slope.)

A first important result follows from the grain boundary
angle distribution between randomly oriented grains. The dis-
tribution function becomes 0.2, which is a typical percolation
threshold in three-dimensional materials, only at about 45◦
(top panel in Fig. 3). Since nearly all experimental data for
critical currents across grain boundaries were obtained for
bicrystals with misorientation angles up to 45◦ [1], these data
are not useful for predicting the behavior of untextured materi-
als. If the fraction of grain boundaries with angles below 45◦ is
smaller than the percolation threshold, these boundaries can,
by definition, not form a continuous current path throughout
the entire sample and, consequently, cannot contribute more to
the global currents than the best links in the remaining matrix.
Data for grain boundaries with grain boundary angles above
45◦ are needed for modeling untextured superconductors. We
will restrict our considerations in the following to textured
samples, where the grain boundaries below 45◦ determine the
properties, so that the behavior known from experiments can
be used [i.e., Eqs. (3) and (4)].
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B. Preferred grain orientation

A Gaussian distribution density of the grain misalignment
from the preferred orientation is assumed:

f (θ ) ∝ e
− θ2

2θ2
t sin θ, (10)

f (φ) ∝ e
− φ2

2φ2
t , (11)

where the texture angles φt and θt quantify the in- and out-
of-plane textures, respectively. Since f (φ) becomes 1

2 at φ =√
2 ln 2, the full width at half maximum is larger by a factor

of 2
√

2 ln 2 ≈ 2.35 than these texture angles. (A Gaussian
distribution of the out-of-plane orientation was indeed found
in weakly textured MgB2 [23].)

The top panel in Fig. 4 shows the evolution of the grain
boundary angle distribution density with texture for the pure
out-of-plane texture, as achieved, for instance, by thermome-
chanical treatments (see Bi-2223 below). With decreasing θt,
a peak evolves below 90◦ and shifts to lower angles upon im-
proving texture. A plateau develops below 45◦ which finally
extends to 0◦ in the limit θt = 0 when the peak disappears,
reflecting the equal distribution of the in-plane misorientation
angle φ.

This plateau does not occur for the biaxial texture. The
distribution densities displayed in the bottom panel of Fig. 4
were calculated for φt = θt, meaning the same in- and out-
of-plane alignments. There is hardly any difference from
uniaxial texture at θt = 45◦, some weight is transferred to
grain boundary angles below 45◦ at θt = 30◦, and the peak
shifts from 45◦ to about 25◦ for θt = 15◦, becoming more
symmetric for biaxial grain alignment. At lower texture an-
gles, the distribution functions become very different because
of the absence of the plateau. The distribution density has to
converge to the δ function for θt = φt → 0◦.

We will restrict our considerations in the following to
textured samples with texture angles below 15◦, where grain
boundaries below 45◦ determine the properties so that the
available experimental data can be used. Figure 5 demon-
strates the influence of texture on Jc. The open and solid
symbols refer to uniaxial (φt = ∞) and biaxial (φt = θt)
textures. The decay angle αc in Eq. (4) was chosen to be 5
and 9 for cuprate and iron-based superconductors [1,2,20].
The top panel represents the suppression of Jc; the data are
normalized by J0/e [see Eq. (4)]. In the case of uniaxial
texture, a plateau is found at low angles in both materials,
where the in-plane misorientation dominates. It is evident that
a large decay angle αc in Eq. (4) is crucial for large currents
in the case of the pure out-of-plane texture. The currents
are suppressed to 9% and 1.5% for the perfect out-of-plane
texture (θt = 0) in iron-based (αc = 9◦) and cuprate (αc = 5◦)
superconductors, respectively. The low-angle plateau is re-
stricted to very small angles in the case of the biaxial texture,
when all misorientation angles are below αc and the grain
boundaries do not limit the currents anymore. If the texture
becomes weaker, αc determines the slope of the approximately
exponential decrease in Jc with θt for both uni- and biaxial
textures.

The percolation threshold pc was fixed to 0.2 in this study,
but it varies and is hard to determine in a real system. To
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FIG. 5. Critical current densities as a function of texture quanti-
fied by θt. The current densities are normalized by the intragranular
value (i.e., α = 0) in the top panel. The expected values of J0 for Bi-
2212/2223 and K-doped Ba-122 were used to calculate the current
densities shown in the bottom panel.

investigate the importance of this parameter, the Jc suppres-
sion in the case of perfect uniaxial (out-of-plane) alignment
was recalculated for pc = 0.15 and pc = 0.25, which bound
the realistic range of pc. A smaller Jc reduction to 11.6%
and 2.3% is found for iron-based and cuprate superconductors
with pc = 0.15, while an increase of pc to 0.25 results in a
smaller Jc (7.2% and 0.9% of J0/e, respectively). A change
in pc in the realistic range causes a similar relative change
in Jc. Although pc does influence the absolute values of the
critical currents, slight changes in pc do not alter the results
and conclusions of this study qualitatively.

The positive effect of the larger αc in the iron-based su-
perconductors is partly compensated by a smaller J0. For in-
stance, J0 was reported to be 2.8 × 106 A cm−2 for Co-doped
Ba-122 [2], and the data for YBa2Cu3O7−δ (YBCO) summa-
rized in Fig. 30 of the review by Hilgenkamp and Mannhart
[1] indicate J0 is about 2 × 107 A cm−2. Many fewer data
obtained from bicrystals are available for other compounds
of these superconducting families. Since the properties of
Bi2Sr2CanCun+1O2n+6 (BiSSCO) and K-doped Ba-122 tapes
and wires will be discussed later, J0 of these compounds has
to be estimated. The maximum current density that can be
obtained in superconductors scales with the depairing current
density Jd; it seems hence reasonable to rescale J0 with the
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respective depairing current densities, which are about 400,
240, 110, and 75 MA cm−2 in YBCO, BiSCCO (similar for
2212 and 2223), and K- and Co-doped Ba-122, respectively.
This leads to J0 ≈ 1.25 × 107 A cm−2 for BiSCCO 2212
and 2223 and J0 ≈ 6.35 × 106 A cm−2 for K-doped Ba-122.
These data refer to low temperatures (around 4.2 K) and self-
field. The resulting current densities in granular conductors
are shown in the bottom panel of Fig. 5. Iron-based supercon-
ductors are favorable compared to the cuprates for uniaxially
textured conductors considering the grain alignment. The
situation is more complex in biaxially textured conductors
where the cuprates (BiSSCO) reach higher currents at high
texture but fall below Jc of K-doped Ba-122 at around θt = 5◦.
The situation is even more favorable for YBCO since its Jd and
hence J0 are higher.

III. COMPARISON WITH EXPERIMENTAL DATA

The excellent work of Kametani et al. [24] provides data on
texture obtained from electron backscatter diffraction orienta-
tion imaging microscopy (EBSD-OIM) together with critical
current densities of the same conductor. This is ideal for
checking the predictions of the calculations and validating the
underlying, simplified grain boundary physics. The top panel
in Fig. 6 compares the experimentally obtained distribution
density of the grain boundary angles in a Bi-2223 tape with
the theoretical expectation. The gray line corresponds to the
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FIG. 6. Distribution density of grain boundary angles in Bi-2223
tapes (topes panel) and Bi-2212 wires (bottom panel). Experimental
data (symbols) were extracted from Ref. [24].

pure out-of-plane texture. The experimental data do not show
this plateaulike behavior, or the peak is much higher than the
plateau; hence, the in-plane orientation is likely not totally
random. This is taken into account by adding a weak in-plane
alignment (φt = 33◦), which leads to a much better agreement
with the experiment (black line). The bottom panel refers to
a Bi-2212 wire, where a local biaxial texture enables a high
critical current. The experimental data can be reasonably well
described by a similar in- and out-of-plane texture of about
5.5◦ or assuming a high out-of-plane texture (3.5◦) and a
weaker in-plane alignment. The latter is supported by the step
at 45◦ in the experimental data. However, the plateau between
30◦ and 45◦ cannot be described either way. This in turn leads
to the conclusion that the Gaussian distribution of the grain
boundary angle is a useful approximation for Bi-2212 and
2223 but does not rigorously apply.

The critical current densities predicted on the basis of these
distribution densities are represented by the stars in the bottom
panel of Fig. 5. A value of 4 × 105 A cm−2 is obtained with
θt = 3.5◦ and φt = 18◦, and θt = 5.5◦ and φt = 5.5◦ result in
6.8 × 105 A cm−2. The latter value is in excellent agreement
with the experimental data since about 6 × 105 A cm−2 were
reported for the Bi-2212 wire at 1 T, the lowest field available
[24]. The model somewhat underestimates the current density
in the Bi-2223 tape. It predicts 1.1 × 105 A cm−2 for θt = 4◦
and φt = 33◦, while the self-field Jc of the tape is certainly
above 2 × 105 A cm−2 (experimental data are available only
for fields down to 2 T).

Another study on grain alignment and the resulting Jc is
available for K-doped Ba-122 [5]. The distribution density of
the grain boundary angles given in Fig. 5 of that paper cannot
be described well by the Gaussian distributions, Eqs. (10)
and (11). Therefore, the data for the bar graph were extracted
and linearly interpolated for the calculations, which predict a
Jc of 4.4 × 105 A cm−2. This value cannot be directly com-
pared with experimental data since only high-field data are
available at low temperature. The behavior of the volume
pinning force Fp = JcB ∝ b0.64(1 − b)2.3 observed at high
temperatures [5] was hence used to extrapolate the high-field
data to the self-field, which was estimated self-consistently
from Bself ≈ μ0Jcd/2 with the sample thickness d . Jc ≈ 4.8 ×
105 A cm−2 is obtained, which agrees with the value predicted
by the percolation model.

Untextured, polycrystalline materials cannot be modeled
because the behavior of Jc across grain boundaries with mis-
alignment angles above 45◦ is unknown. However, by looking
at the data of Katase et al. [2] [see their Fig. 1(b)], it is
tempting to speculate that JGB

c (α) becomes constant above
30◦ in iron-based superconductors since the values at 30◦
and 45◦ are very similar. This flattening was also pointed out
by Iida et al. [20]. With this assumption about high*angle
grain boundaries our approach predicts a current density of
2.2 × 105 A cm−2, while the highest reported self-fields Jc

reach 2 × 105 A cm−2 [25,26].
A constant JGB

c above 30◦ does not change the above cal-
culations for textured conductors significantly because grain
boundaries with angles above 30◦ do not significantly con-
tribute to the current transport either in the theoretical analysis
shown in Fig. 5 (maximum texture angle of 15◦) or in the
K-doped Ba-122 tape [5].
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IV. DISCUSSION

The agreement between the model and the experimental
data is astonishing, given the various assumptions and sim-
plifications, in particular the reduction of the grain boundary
properties to one parameter and a Gaussian distribution of the
grain orientation. Note that there is no free parameter since
all parameters (Jd, J0, αc, pc) were fixed in accordance with
literature values before the calculations. The behavior of the
grain boundaries is based on experiments with pulsed laser
deposition (PLD) films on bicrystalline substrates, which may
or may not be representative of natural grain boundaries. Even
in these films the scatter of data is considerable. Also no com-
mon agreement on the values of the depairing current density
Jd of the various materials has been reached so far. Since the
parameter selection was subjective (but not biased in view
of the results), some coincidence is certainly responsible for
the agreement, and a discussion of quantitative differences is
pointless. There are good reasons for the approach to overes-
timate the critical currents in polycrystalline conductors: The
superconducting matrix is assumed to be perfect (no voids,
secondary phases, etc.), and the average self-field is certainly
smaller at artificial grain boundaries than in the conductors
under consideration. On the other hand, there are good reasons
for the opposite as well: The critical current density along the
very planar grain boundaries resulting from PLD is smaller
than those across meandering grain boundaries [22], which of-
ten arise from other synthesis techniques. Percolating currents
could preferentially cross grain boundaries under a reduced
Lorentz force, and last but not least, the large aspect ratio of
the grains, in particular in the BiSCCO compounds, could en-
able a much higher macroscopic (longitudinal) current density
than the local (mainly transversal) intergrain current densities
[27] (see the brick-wall model [6,7]).

The model is restricted so far to the self-field limit and
to textured materials mainly because of the lack of the re-
spective experimental data on grain boundary currents. The
extension of the model to untextured materials or materials
containing a significant fraction of grain boundaries with
misalignment angles above 45◦ will be straightforward when
the corresponding experimental data or theoretical predictions
become available. Predicting in-field currents might be more
complex because the orientation of the local field with respect
to the grain boundary becomes important and is hard to
address within this approach. However, a model successfully
describing the field dependence of Jc in untextured Ba-122,
where high-angle grain boundaries dominate the current flow,
was proposed by Hecher et al. [28]. That model also neglects
any details of the current flow. The empirical prefactor (it is
also called J0 in Ref. [28], but it is different from J0 used
in Eqs. (3) and (4)) could be calculated with the mean-field
percolation approach when data for currents across high-angle
grain boundaries become available.

V. CONCLUSIONS

A model for the quantitative prediction of the macroscopic
critical currents based on experimental data for the texture and
the grain boundary properties was developed and successfully
applied to Bi-2212 tapes, Bi-2212 wires, and Ba-122 tapes.

The good agreement between prediction and experiment in-
dicates that the simplified grain boundary physics covers the
essential physics of imperfectly textured high-temperature
superconductors. For (perfect) uniaxial texture (out-of-plane),
the currents are suppressed to 9% and 1.5% compared to
highly biaxially textured materials in the iron-based and
cuprate superconductors, respectively. A reliable prediction
for untextured materials is not possible because the relevant
grain boundaries have misorientation angles above 45◦ in that
case, and very few experimental data exist for such high-angle
grain boundaries.
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APPENDIX

1. Grain boundary angle between two adjacent grains

Without loss of generality, the crystallographic axes of the
first grain are assumed to be parallel to the x, y, and z axes
of the Cartesian coordinate system. The crystallographic axes
of the other grain can be considered as the axes of another
coordinate system, and the unit vectors of�a,�b, and�c define the
transformation matrix between these two coordinate systems:

T =

⎛
⎜⎝

− �ea −
− �eb −
− �ec −

⎞
⎟⎠. (A1)

T then also defines the rotation of the two crystallographic
lattices, and the rotation angle can be easily obtained from

tr(T ) = 1 + 2 cos α. (A2)

The rotation axis is the eigenvector of T to the eigenvalue 1.

2. Distribution of grain boundary angles

We start with two perfectly aligned grains (i.e., α = 0),
their (normalized) crystallographic axes defining our coordi-
nate system. In order to change the orientation of the second
grain, we first establish its in-plane misorientation by a rota-
tion about �ez

Rin =

⎛
⎜⎝

cos φin − sin φin 0

sin φin cos φin 0

0 0 1

⎞
⎟⎠. (A3)

Next, the out-of-plane misorientation is defined by choosing a
new orientation of �c with its unit vector

�ec =

⎛
⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎠; (A4)
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θ then defines the out-of-plane misorientation angle, and φ

has to be determined such that the in-plane misorientation
remains unaltered. This is achieved by a rotation of the second

grain about the axis orthogonal to the plane spanned by �ec

and �ez, i.e., �n = �ez × �ec/|�ez × �ec| = (− sin φ, cos φ, 0)T . The
resulting rotation matrix is given by

Rout =

⎛
⎜⎝

n2
1(1 − cos θ ) + cosθ n1n2(1 − cos θ ) − n3 sin θ n1n3(1 − cos θ ) + n2 sin θ

n1n2(1 − cos θ ) + n3 sin θ n2
2(1 − cos θ ) + cosθ n2n3(1 − cos θ ) − n1 sin θ

n1n3(1 − cos θ ) − n2 sin θ n2n3(1 − cos θ ) + n1 sin θ n2
3(1 − cos θ ) + cosθ

⎞
⎟⎠. (A5)

The rotation (or misalignment) angle can be calculated from
Eq. (A2) with T = RoutRin:

cos α = 1
2 (cos θ + cos θ cos φin + cos φin − 1). (A6)

For a random orientation, φin is equally distributed on [0 2π ]
[i.e., fin(φin ) = 1/2π ], and θ is distributed as fout (θ ) =
1
2 sin θ on [0 π ]. The distribution function for α is obtained by
calculating the fraction of grains with a misalignment angle
less than or equal to α. φin can vary between zero and α, and
cos θ is, for a given α and φin, bounded by Eq. (A6). Equation
(6) results from the corresponding integration:

Fα (α) =
∫ α

0

1

2π
dφin

∫ arccos 2 cos α−cos φin+1
1+cos φin

0

1

2
sin θdθ

= 1

2π
(α − sin α). (A7)

If θ and φin are restricted to π/2 and π/4, respectively,
the maximum misalignment angle can be calculated from
Eq. (A6) by inserting these maximum values for θ and
φin: αmax = arccos 1

2 ( 1√
2

− 1) = 1.7178 = 98.42◦. Different
angular regions have to be considered in this case since the
limits of the integration over φin in Eq. (A7) change: The
upper limit is fixed to π/4 for α > π/4 (maximum in-plane
misalignment); the lower limit becomes larger than zero for
α > π/2. The latter is necessary since a small φin cannot
result in such high misalignment angles. The actual lower
limit for a given α > π/2 is calculated again from Eq. (A6).

With the correct limits, the distribution functions given in
Eqs. (7)–(9) are obtained.

3. Numerical simulations

Since it turned out to be difficult to derive an analyti-
cal expression for nonrandom grain orientations, numerical
simulations were performed. Cubic grains (typically about
1503) were arranged on a simple cubic lattice (coordination
number of 6). Their orientation was chosen as outlined above
[in- and out-of-plane rotations, Eqs. (A3) and (A5)], but
allowing a preferred grain orientation according to Eqs. (10)
and (11), if desired. The coordinate system of the first grain is
transformed into the system of the other grain by T = T2T T

1 ,
where T1 and T2 are the rotation matrices of the two grains
defined as above (Ti = Rout,iRin,i, i = 1, 2). The rotation angle
is then, in principle, obtained from relation (A2). However,
the symmetries have to be taken into account, which results in

cos α = 1
2 [max(|T1,1| + |T2,2|, |T1,2| + |T2,1|) + |T3,3| − 1]

(A8)

(Ti, j refer to the matrix elements of T ). The absolute values re-
flect inversion symmetry; the maximum refers to an exchange
of the a and b axes.

Finally, the grain boundary angles of all pairs of grains
were calculated and assigned to the respective angular interval
to derive the distribution density.
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