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The standard spin transfer torque (STT)—where spin-polarized current drives the dynamics of magnetization
viewed as a classical vector—requires noncollinearity between electron spins carried by the current and
magnetization of a ferromagnetic layer. However, recent experiments [A. Zholud et al., Phys. Rev. Lett. 119,
257201 (2017)] observing magnetization dynamics in spin valves at cryogenic temperatures, even when electron
spin is collinear to magnetization, point at overlooked quantum effects in STT that can lead to highly nonclassical
magnetization states. Using quantum many-body treatment, where an electron injected as a spin-polarized
wave packet interacts with local spins comprising the anisotropic quantum Heisenberg ferromagnetic chain,
we define quantum STT as any time evolution of local spins due to an initial many-body quantum state not
being an eigenstate of an electron+local-spins composite system. For time evolution caused by injected spin-↓
electron scattering off local ↑-spins, entanglement between electron and local spin subsystems takes place
leading to decoherence and, therefore, shrinking of the total magnetization but without rotation from its initial
orientation, which is compatible with the experiments. Furthermore, the same processes—entanglement and
thereby induced true decoherence—are present even in the standard noncollinear geometry, intertwined with
the usual magnetization rotation. This is because STT in a quantum many-body picture is always caused by
an electron spin-↓ factor state, and the only difference between collinear and noncollinear geometries is in the
relative size of the contribution of the initial separable state containing such a factor to the superposition of
separable many-body quantum states generated by time evolution.

DOI: 10.1103/PhysRevB.99.094431

The standard spin transfer torque (STT) [1], predicted in
the seminal works of Slonczewski [2] and Berger [3], is a
phenomenon where a flux of spin-polarized electrons injected
into a ferromagnetic metal (FM) layer drives its magnetization
dynamics. The origin of STT is transfer of spin angular mo-
mentum from electrons to local magnetic moments of the FM
layer, so it is fundamentally a nonequilibrium quantum many-
body physics effect. Nevertheless, local magnetic moments
μSS(r) are typically treated as classical vectors of fixed length
[1,4] whose dynamics is governed by the Landau-Lifshitz-
Gilbert (LLG) equation [5] extended by adding the STT term
[6–8]

T ∝ 〈ŝe〉 × S(r). (1)

Thus, the nonequilibrium spin density 〈ŝe〉 caused by the
flowing electrons must be noncollinear to the direction of
local spin S(r) to drive magnetization dynamics in such a
classical picture. The dynamics can include oscillations or
complete reversal, whose conversion into resistance variations
has emerged as a key resource for next-generation spintronic
technologies, such as nonvolatile magnetic random access
memories, microwave oscillators, microwave detectors, spin-
wave emitters, memristors, and artificial neural networks
[9–11].
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For example, passing current through a spin valve tri-
layer fixed-FM/normal-metal/free-FM, as employed in early
experiments on standard STT [12,13], first causes the FM
layer with fixed magnetization to spin-polarize the current,
which then impinges onto the second FM layer with free
magnetization that fluctuates in the classical picture due to
a random magnetic field caused by thermal motion. When
impinging spins and fluctuating magnetization become non-
collinear, standard STT can either amplify such fluctuations
(for the fixed-to-free spin current direction) or reduce them
(for the free-to-fixed spin current direction), as predicted
theoretically [14] and confirmed experimentally [15] at room
temperature.

However, this well-established picture cannot explain very
recent experiments [16] on collinear spin valves at cryo-
genic temperatures �3 K, where resistance measurements
have revealed magnetization dynamics even though thermal
fluctuations that could introduce noncollinearity between the
free and fixed magnetizations are suppressed. This implies a
mechanism where standard STT is zero, T ≡ 0 in Eq. (1), so
that magnetization does not rotate from the initial configu-
ration. Nevertheless, it changes its length, thereby signaling
generation of highly nonclassical magnetization states [16].
However, the proposed intuitive picture [16] where such a
mechanism would amplify quantum spin fluctuations, for both
fixed-to-free and free-to-fixed spin current directions, cannot
be rigorously justified. That is, although quantum fluctuations
of the local spin operators [17] (or, equivalently, zero-point
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FIG. 1. Schematic view of a quantum many-body system con-
sisting of a FM layer whose N = 5 local spins comprise the open
XXZ quantum Heisenberg ferromagnetic chain with anisotropic
exchange interactions Jz > J , and they are attached to a 1D TB chain
(composed of Lx = 400 sites) where electron hops with parameter
γ . The spin-polarized electron wave packet is injected along the TB
chain, with its spin pointing in the −z or +x direction, which is
collinear [a case in which the standard STT of Slonczewski [2] and
Berger [3] in Eq. (1) is absent] or noncollinear, respectively, to local
spins pointing initially along the +z direction. The spin of the wave
packet interacts with local spins via s-d exchange interaction Jsd .

energy of magnons as bosonic particles to which spin op-
erators can be mapped) play an important role in lowering
the energy of classical ground states of antiferromagnets
[18] or noncollinear spin textures [19], they vanish in a FM
with uniaxial anisotropy because the collinear state of local
magnetic moments is also a ground eigenstate of the exact
Hamiltonian [20].

Aside from a few disparate attempts [21–23], a general
framework for describing current-driven quantum dynamics
of magnetization is lacking. Note that quantum transport
theories, such as the nonequilibrium Green function formal-
ism [7,8,24,25] or the scattering matrix approach [26,27],
are routinely used to compute 〈ŝe〉 in Eq. (1) for a given
single-particle Hamiltonian, but this serves only as an input
[7,8] for the LLG equation describing classical dynamics of
magnetization. The LLG equation can be justified under the
assumptions [5] of large spin S → ∞, h̄ → 0 (while S × h̄ →
1), and in the absence of entanglement. The latter assumption
means that local spins comprising the total magnetization
should remain in a separable quantum state, |S1〉 ⊗ |S2〉 ⊗
· · · ⊗ |SN 〉, as exemplified by the ground state of a FM,
|↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉.

Instead of classical micromagnetics [4,14] or a quantum-
classical [7,8] description of standard-STT-induced magne-
tization dynamics, here we introduce a quantum many-body
picture of both flowing-electron-spin–local-spins interactions
and the ensuing time evolution of local spins at zero tem-
perature. For this purpose, we employ a system depicted in
Fig. 1 where a spin-polarized electron wave packet, assumed
to originate from a fixed FM layer, is injected along a one-
dimensional (1D) tight-binding (TB) chain whose sites in the
middle host local spins comprising a quantum Heisenberg
ferromagnetic chain modeling the free FM layer. The states of
such a composite quantum system electron+local-spins reside
in the Hilbert space

H = He
orb ⊗ He

spin ⊗ H1
spin · · · ⊗ HN

spin, (2)

which is the tensor product of the orbital electron subspace
He

orb (of finite dimension equal to the number of sites Lx

of the TB chain), the two-dimensional subspace He
spin for

electron spin, and Hn
spin as two-dimensional subspaces for

n = 1, . . . , N local spins assumed to be spin- 1
2 as well. The

system Hamiltonian acting in H is

Ĥ = −γ
∑

〈i j〉
|i〉〈 j| − Jsd

∑

i

|i〉〈i| ⊗ ŝe · Ŝi(t )

−
∑

〈i j〉

[
J
(
Ŝx

i · Ŝx
j + Ŝy

i · Ŝy
j

) + JzŜ
z
i · Ŝz

j

]
, (3)

where |i〉 is the electron orbital centered on site i, γ = 1 eV
is hopping between nearest-neighbor sites, and Jsd = 0.1 eV
is the strength of s-d exchange interaction between electron
and local spins. The exchange interaction between the nearest-
neighbor local spins is J = 0.1 eV and Jz = 0.1005 eV,
which are slightly different in order to include the uniaxial
anisotropy, quantified by the parameter � = Jz/J [28,29],
with the z axis as the easy axis. The third term in Eq. (3)
is denoted as the XXZ quantum Heisenberg ferromagnetic
chain with open boundary conditions (due to the first and last
spin interacting with only one nearest-neighbor spin) [28,29].
The spin operators in Eq. (3) are constructed as ŝe = Î ⊗ σ̂ ⊗
Î ⊗ · · · ⊗ Î for electron spin, Ŝ1 = Î ⊗ Î ⊗ σ̂ ⊗ Î ⊗ · · · ⊗ Î
for first local spins, and analogously for all other local spins,
where σ̂ = (σ̂x, σ̂y, σ̂z ) is the vector of the Pauli matrices
and Î is the unit operator. The eigenspectrum of an isolated
XXZ chain is shown in Fig. 2(a), while the eigenspectrum
of the whole many-body Hamiltonian in Eq. (3) is shown
in Fig. 2(b). The ground state in the former (latter) case has
degeneracy six (seven), as shown in Fig. 2(c) and expected for
a system of coupled five (six) spin- 1

2 angular momenta.
At t = 0, the many-body quantum state is a separable one,

〈x|�(t = 0)〉 = Ceikxx−δk2
x x2/4 ⊗ χe ⊗ χ1 ⊗ · · · ⊗ χN . (4)

Its first factor in He
orb is chosen as a Gaussian wave packet

with momentum along the +x direction and centered on the
left edge of the TB chain, as illustrated in Fig. 1, where C is
the normalization constant. To mimic the current of electrons
at the Fermi level that interact with the ground state of the free
FM layer within a spin valve, we use kxa = 0.1 and δkxa =
0.2 (a is the lattice spacing), which tune the wave-packet
average energy E = −2.36 eV and its standard deviation
δE = 0.054 eV to be close to the ground-state eigenenergy
E0 = −2.43 eV [Fig. 2(b)] of the Hamiltonian in Eq. (3). In
the ground state, all local spins are aligned with the anisotropy
z axis, as shown in Fig. 2(c), so we choose χn = (1

0) for
n = 1, . . . , N . To mimic minority-spin electrons impinging
onto the free FM layer within a spin valve with parallel
magnetizations, we select initial spin polarization of the wave
packet in the −z direction, as described by the spinor χe = (0

1).
For the standard STT setup with noncollinear magnetizations
of the fixed and free FM layers, we use spin polarization in
the +x direction, χe = 1√

2
(1
1).

For transparency of the discussion, operating with a small
number of excited states of the XXZ chain that can be
analyzed one by one, we employ a small number N = 5 of
local spins. The chosen length Lx = 400 of the TB chain
ensures that the wave packet does not reflect from its bound-
aries within the time frame considered in Figs. 3 and 4.
The numerically exact |�(t )〉, governed by the Schrödinger
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FIG. 2. (a) Eigenspectrum of the XXZ quantum Heisenberg ferromagnetic chain whose N = 5 local spins in Fig. 1 do not interact with
electron spin (Jsd = 0). (b) Eigenspectrum of the many-body Hamiltonian in Eq. (3) whose local spins interact via s-d interaction (Jsd = 0.1 eV)
with electron spin within a TB chain of length Lx = 400. (c) Expectation value of electron spin (first column) and local spins, extracted from
their subsystem density matrices via Eq. (6), in the degenerate ground state of the lowest energy in panel (a) (red arrows) or (b) (blue arrows).

equation ih̄∂|�(t )〉/∂t = Ĥ |�(t )〉, is obtained by using the
Crank-Nicolson algorithm [30].

Figure 2(c) shows that the degenerate ground state has
electron and local spins parallel to each other due to s-d
interaction between them acting to align them. Thus, when
an electron with spin-↓ along the −z direction is injected, its
spin is collinear to local spins, but |�(t = 0)〉 ≡ |G〉 ⊗ |↓e; ↑1

· · · ↑N 〉 (this form is used below for economy of notation)
at t = 0 is not an eigenstate of the Hamiltonian in Eq. (3).
This causes time evolution of the electron-spin+local-spins
subsystem, which rigorously defines quantum STT even in a
situation in which the standard STT in Eq. (1) is identically
zero. Over the course of time evolution, |�(t )〉 becomes an
entangled state due to linear superpositions of separable states
being generated for t > 0. The entanglement entails that each
subsystem must be described using the appropriate reduced
density matrix [31]

ρ̂sub = Trother|�(t )〉〈�(t )|, (5)

obtained via partial trace applied to the pure state density
matrix |�(t )〉〈�(t )|. For example, tracing over the states in the
subspace He

orb ⊗ He
spin ⊗ H2

spin · · · ⊗ HN
spin yields the density

matrix of the first local spin,

ρ̂1(t ) = 1
2 [Î + S1(t ) · σ̂], (6)

where S1(t ) = Tr[ρ̂1(t )σ̂] is the spin expectation value (in
units of h̄/2), also denoted as the polarization (or Bloch)
vector [31]. Pure (or fully coherent) quantum states of spin- 1

2
are characterized by |S1| = 1, while 0 < |S1| < 1 signifies
their decoherence [31,32] toward mixed (or partially coherent
[34]) states. Figure 3(c) shows that the first local spin has
Sz

1 < 1, Sx
1 = Sy

1 ≡ 0, and, therefore, |S1| < 1. The electron
spin also exhibits decoherence, |se| < 1, in Fig. 3(a). Virtually
the same time dependences as in Fig. 3(c) are obtained for
other local spins i = 2, . . . , 5, and, therefore, for total magne-
tization as the sum of local spins. Thus, this is precisely the

highly nonclassical state of magnetization conjectured from
the measurement of the spin valve resistance [16], which
increases ∝ 1 − Mz due to magnetization Mz = gμB

∑
i Sz

i
shrinking without rotation (i.e., Mx = My = 0) away from its
initial orientation.

To explain the origin of magnetization decoherence, or,
equivalently, of the subsystem comprised of all local spins,
we view the multipartite [due to N + 2 factors in Eq. (2)]
total system as a bipartite one, i.e., as being composed of the
electron subsystem whose states reside in He

orb ⊗ He
spin and

the subsystem of all local spins. The purity of the latter is
defined as [31,32]

P local
spins(t ) = Tr

{[
ρ̂ local

spins(t )
]2}

, (7)

where the density matrix ρ̂ local
spins(t ) is obtained via Eq. (5) by

tracing over the states in the subspace He
orb ⊗ He

spin. The decay
of P local

spins(t ) below one in Fig. 3(b) quantifies true decoherence
[32,33] (i.e., the decoherence that cannot be attributed to any
classical fluctuations) of an initially pure state |↑〉 ⊗ |↑〉 ⊗
· · · ⊗ |↑〉 as the decay [31,32] of the off-diagonal elements of
ρ̂ local

spins(t ) caused by entanglement with the electron subsystem.
The purity of a decohered electron subsystem in Fig. 3(b) is
identical to that of the local spin subsystem, as expected for
entanglement in bipartite quantum systems [31,32].

To understand the states of the electron-spin+local-spins
subsystem that are excited during time evolution initiated
by injection of a single spin-polarized electron, we compute
the density matrix ρ̂e+local

spins (t ) of this subsystem obtained by
partial trace in Eq. (5) performed over the states in He

orb. The
probability of finding this subsystem in state |σe; σ1, . . . , σN 〉
at time t ,

probe+local
spins (t ) = 〈σe; σ1, . . . , σN |ρ̂e+local

spins (t )|σe; σ1, . . . , σN 〉,
(8)
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FIG. 3. Time dependence of the expectation value of spin (in
units h̄/2) obtained from spin- 1

2 density matrix in Eq. (6) for (a) spin
of an injected electron wave packet in Fig. 1, which at t = 0 points
in the −z direction that is collinear and antiparallel to local spins
pointing in the +z direction; and (c) first local spin in Fig. 1 [the
time dependence of the expectation value of local spins n = 2–5 is
nearly identical to (c)]. (b) Purity defined in Eq. (7) of the subsystem
composed of electron degrees of freedom (orbital and spin) or of
the subsystem composed of all local spins. (d) Probability in Eq. (8)
to find an electron-spin+local-spins subsystem in a many-body
quantum state |σe; σ1σ2σ3σ4σ5〉.

is shown in Fig. 3(d) for an electron injected with spin along
the −z direction. The subspace of H whose states can generate
nonzero probe+local

spins (t ) is restricted by the energy bands in
Fig. 2(b) (caused by anisotropy and boundaries [28,29]) and
symmetries, such as the fact that total spin in the z direction
has to be conserved due to its operator, Ŝz

tot = ŝz + Ŝz
1 + · · · +

Ŝz
N , commuting with the Hamiltonian in Eq. (3), [Ĥ , Ŝz

tot] = 0.
Because of the latter requirement, all states |σe; σ1, . . . , σN 〉
participating in time evolution must have the same number of
↑-spins, so that one finds in Fig. 3(d) progressive excitation of
states with flipped spin of an electron and one flipped local
spin with a total transfer of angular momentum of 1 × h̄.
However, the initial state |↓; ↑ · · · ↑〉 maintains its probability
close to 1, and other states with flipped electron spin and one
flipped local spin have much smaller and nonuniform prob-
ability (note that increased probability to find a |↑; ↑↑↑↑↓〉
state is a consequence of the XXZ chain being open, which
brings this state and the |↑; ↓↑↑↑↑〉 state into resonance
[28,29]). Such peculiar quantum superposition of separable
many-body states, with a large contribution from the initial
state, leads to local spins maintaining their direction along
the z axis in Fig. 3(c). This can be contrasted with naive
(i.e., not taking into account superpositions) intuition [22,35]
where a spin-↓ electron simply flips the first local spin—the
flip then propagates to displace transversally other local spins
away from the anisotropy axis, eventually exciting the white
spectrum [22] of lowest-energy magnons [28,29].

The same effects—entanglement of an electron state and
a quantum state of all local spins [Fig. 4(b)], and thereby in-

FIG. 4. Panels (a)–(d) plot the same information as panels (a)–
(d), respectively, in Fig. 3 but for an injected electron wave packet
that at t = 0 is spin-polarized in the +x direction, i.e., noncollinear
to local spins pointing in the +z direction.

duced true decoherence [32,33] of an electron spin [Fig. 4(a)]
and local spins [Fig. 4(c)], and a high probability [Fig. 4(d)]
of finding the initial state of an electron-spin+local-spins
subsystem over the course of time evolution—are present also
in the standard STT geometry with noncollinearity between
spins of the injected electron and local spins. However, in the
standard STT geometry we also find the usual magnetization
rotation, i.e., Sx

1 �= 0 and Sy
1 �= 0 in Fig. 4(c). The probabilities

probe+local
spins (t ) in Fig. 4(d) to excite states of the type |↑; ↑ · · · ↓

· · · ↑〉 are simply half of those obtained for collinear geometry
in Fig. 3(d) since spin of the injected electron along the
+x direction used in Fig. 4 means |→e〉 = 1√

2
(|↑e〉 + |↓e〉),

where only the 1√
2
|↓e〉 term, entering as a factor of the initial

separable many-body state |�(t = 0)〉 ≡ |G〉 ⊗ 1√
2
(|↑e〉 +

|↓e〉) ⊗ |↑1 · · · ↑N 〉, induces time evolution of local spins
and transfer of angular momentum. On the other hand, the

1√
2
|↑e〉 ⊗ |↑1 · · · ↑N 〉 term in the initial many-body state is

an eigenstate [Fig. 2(c)] of an electron-spin+local-spins sub-
system, and therefore it has time-independent probe+local

spins (t ) =
1/2 in Fig. 4(d). Thus, the identical profile of curves in
Figs. 3(d) and 4(d) reveals that in a fully quantum many-
body picture there is no difference between the standard STT
and quantum STT—both originate from the |↓e〉 factor state
brought into the initial many-body state by either minority-
spin electrons [35] in spin valves with parallel magnetiza-
tions [16], or by the |↓e〉 term in the quantum superpo-
sition of electron spin states generated by the polarizing
effect of the fixed magnetization that is noncollinear to free
magnetization.

We note that increasing the total number of local spins
from N = 5 considered here to realistically large values does
not change these findings due to Schmidt decomposition
[36], which makes it possible to rewrite any entangled state
of spin- 1

2 as the sum of just two terms, a|↗〉 ⊗ |
1〉 +
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b|↙〉 ⊗ |
2〉, where |
1,2〉 ∈ H1
spin · · · ⊗ HN

spin. Thus, the
Schmidt decomposition state looks the same as the entangled
state of spin- 1

2 with just a single macrospin. We provide
counterparts of Figs. 3 and 4 in the Appendix where a single
local spin- 5

2 is employed as the macrospin.
We emphasize that a piecewise-linear increase of differ-

ential resistance with the bias voltage observed in Ref. [16]
and our explanation of its origin cannot be accounted for by
inelastic electron-magnon scattering [37] often observed in
magnetic tunnel junctions, which actually leads to the oppo-
site effect in which differential resistance of the junction with
collinear magnetizations (parallel or antiparallel) decreases
[38,39] with the bias voltage due to opening of additional
conduction channels [37].

Our model in Fig. 1 can be viewed as an addition to
the atlas of toy models considered in Ref. [26] to explain
conventional STT of Slonczewski [2] and Berger [3] due
to a single injected spin-polarized electron in a plane-wave
orbital state that is treated quantum-mechanically, while the
magnetization receiving the torque is treated as a classical
vector of fixed length. In contrast, in our toy model of Fig. 1
both the single injected spin-polarized electron in the wave-
packet orbital state and localized spins receiving the torque
are treated as a single quantum many-body system. However,
to explain conventional STT in realistic junctions requires
us to also sum over incoming momenta of all Fermi surface
electrons [26,27], which reduces the transverse component
of the transmitted and reflected spin currents to nearly zero
due to substantial phase cancellation [26,27], so that con-
ventional STT is very nearly proportional to the transverse
piece of the incident spin current. While such an effect is
not considered in our strictly one-dimensional system (in
three-dimensional spin valves, one sums different incident
transverse wave vectors that are parallel to junction interfaces
[26,27]), we do effectively include averaging over different
momenta of plane waves comprising the wave packet. We
relegate to future studies an investigation of the nonclassical
state of magnetization interacting with a flux of electrons with
different momenta arising from different parts of the Fermi
surface.

Finally, during the completion of this work we became
aware of two studies [40,41] in which magnetization dynam-
ics in collinear spin valves at cryogenic temperatures is treated
quantum-mechanically to find quantum STT on a single
macrospin signified by Sz shrinking in length while Sx =
Sy = 0. However, these studies do not invoke the
entanglement-induced true decoherence mechanism we
discuss (for the case of macrospin in Appendix).

We are grateful to D. Ralph, M. Stiles, and S. Urazhdin
for instructive discussions. P.M., U.B., and B.K.N. were sup-
ported by NSF Grant No. ECCS 150909. M.P. and P.P. were
supported by ARO MURI Award No. W911NF-14-0247.

APPENDIX: QUANTUM DESCRIPTION OF SPIN
TRANSFER TORQUE AND THE ENSUING DYNAMICS

OF A SINGLE MACROSPIN

In this Appendix, we present Figs. 5 and 6, which are the
counterparts of Figs. 3 and 4, respectively, for an injected

FIG. 5. Time dependence of the expectation value of spin (in
units h̄/2) obtained from respective density matrices for (a) spin of
injected electron wave packet that at t = 0 points in the −z direction
that is collinear and antiparallel to a single local spin- 5

2 pointing in
the +z direction; and (c) local spin- 5

2 . (b) Purity defined in Eq. (7) for
the subsystem composed of electron degrees of freedom (orbital and
spin) or of the subsystem composed of all local spins. (d) Probability
in Eq. (8) to find an electron-spin+local-spin subsystem in a many-
body quantum state |σe; Sz〉.

spin-polarized electron wave packet whose spin interacts via
s-d exchange interaction with a macrospin representing the
active ferromagnetic layer that receives STT. Note that this
Appendix can also be viewed as a rigorous analysis of heuris-
tic arguments provided in Sec. III B of the supplemental
material of Ref. [16].

FIG. 6. Panels (a)–(d) plot the same information as panels (a)–
(d), respectively, in Fig. 5 but for an injected electron wave packet
that at t = 0 is spin-polarized in the +x direction, i.e., noncollinear
to local spin- 5

2 pointing in the +z direction.
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The macrospin is modeled using a single (i.e., N = 1 in
Fig. 1) local spin- 5

2 . Since we assume an absence of spin-
orbit coupling, the orbital state of the wave packet, |G〉, and
the state of the electron-spin+local-spins subsystem, |spins〉,
remain uncorrelated [31] over the course of time evolution,
|�(t )〉 = |G〉 ⊗ |spins〉.

In the case of a |G〉 ⊗ |↑〉 injected electron wave packet,
with electron spin pointing in the +z direction, and local
spin- 5

2 being collinear to it in the state |Sz = 5/2〉, there is
no STT or entanglement since |�(t )〉 = |G〉 ⊗ |↑〉 ⊗ |5/2〉 is
a separable eigenstate of the many-body Hamiltonian, and
therefore it does not change with time.

In the case of a |G〉 ⊗ |↓〉 injected electron wave packet,
with electron spin pointing in the −z direction and local spin-
5
2 being collinear in state |Sz = 5/2〉, initial and final states are
given by

|�(t = 0)〉 = |G〉 ⊗ |↓〉 ⊗ |5/2〉, (A1a)

|�(t > 0)〉 = a(t )|G〉 ⊗ |↓〉 ⊗ |5/2〉
+ b(t )|G〉 ⊗ |↑〉 ⊗ |3/2〉, (A1b)

where the time evolution of probabilities in Fig. 5(d) is given
by |a(t )|2 (red dotted line) and |b(t )|2 (blue solid line). The
total spin in the z direction remains conserved during time
evolution. Over the course of time evolution, local spin- 5

2
in Fig. 5(c) does not rotate away from the z axis, but it is

shrinking due to true decoherence caused by entanglement in
Eq. (A1b).

In the case of a |G〉 ⊗ 1√
2
(|↑〉 + |↓〉) injected electron wave

packet, with electron spin pointing in the +x direction and
local spin- 5

2 pointing in the +z direction in the state |Sz =
5/2〉, initial and final states are given by

|�(t = 0)〉 = |G〉 ⊗ 1√
2

(|↑〉 + |↓〉) ⊗ |5/2〉, (A2a)

|�(t > 0)〉 = 1√
2
|G〉 ⊗ |↑〉 ⊗ |5/2〉 + a(t )√

2
|G〉 ⊗ |↓〉

⊗|5/2〉 + b(t )√
2

|G〉 ⊗ |↑〉 ⊗ |3/2〉, (A2b)

where the time evolution of probabilities in Fig. 6(d) is
given by 1/2 (red solid line), |a(t )|2/2 (red dotted line),
and |b(t )|2/2 (blue solid line). The latter two are just half
of the probabilities in Fig. 5(d). Over the course of time
evolution, this change leads to local spin- 5

2 in Fig. 6(c) both
rotating away from the z axis, as in the standard STT of
Slonczewski [2] and Berger [3], and shrinking due to true
decoherence caused by entanglement in Eq. (A2b). The latter
effect is the same as the only consequence of quantum STT
in Fig. 5(c).
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