
PHYSICAL REVIEW B 99, 094427 (2019)

Few-shot machine learning in the three-dimensional Ising model
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We investigate theoretically the phase transition in a three-dimensional cubic Ising model utilizing state-of-
the-art machine learning algorithms. Supervised machine learning models show high accuracies (99%) in phase
classification and very small relative errors (<10−4) of the energies in different spin configurations. Unsupervised
machine learning models are introduced to study the spin configuration reconstructions and reductions, and the
phases of reconstructed spin configurations can be accurately classified by a linear logistic algorithm. Based
on the comparison between various machine learning models, we develop a few-shot strategy to predict phase
transitions in larger lattices from a trained sample in smaller lattices. The few-shot machine learning strategy
for a three-dimensional (3D) Ising model enables us to study the 3D Ising model efficiently and provides an
integrated and highly accurate approach to other spin models.
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I. INTRODUCTION

Machine learning techniques have achieved remarkable
progress in many different fields, e.g., image recognition,
fraud detection, natural language processing, auto driving,
etc., due to their powerful magic to extract features from huge
data sets without explicit guidance from a human programmer.
In physics, machine learning algorithms have been employed
to study many-body physics [1–3], strong correlated systems
[4,5], electronic or transport properties [6–8], structure predic-
tions [9–12], phase matter or phase transitions [13–18], and
different spin models [14,19–23].

Among the various studied spin models, the Ising model
has attracted the most interest, because it is not only rich
in physics and mathematics, such as phase transitions [24]
and Kolmogorov’s zero-one laws [25], but also inspirations
in many other fields, such as the social sciences [26] and
neuroscience [27]. The possible applications of the Ising
model are extremely large. For instance, it can be used for
magnetic insulators [28], binary alloys [29–31], a lattice gas
model for fluids [32], ferroelectrics [33], biological systems
[34], or general demonstrations of statistical mechanics [35].

Of particular interest is the three-dimensional (3D) Ising
model, which has been introduced to exactly describe the
second generation D-wave quantum computer of 512 qubits.
Very recently, quantum supremacy has made the 3D Ising
model again a hot topic [36]. Although the Ising model looks
very simple, the complexity of the solutions to the model
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increases along with the dimensions. Until now, the Ising
model has been solved mathematically rigorously in only one-
[37] and two-dimensional lattices [38]. In three dimensions or
higher-dimensional cases, the analytic solutions remain un-
available. Instead, various approximation methods have been
developed to study the Ising model as a last resort, including
the conformal bootstrap approach [39–41], and numerical
approaches such as Monte Carlo simulation [42] and mean-
field theories [43].

It is notable that there exists a reciprocal relationship
between the Ising model and neural networks or machine
learning algorithms. On the one hand, the Ising model has
played a critical role in the development of machine learn-
ing techniques. For example, the famous Hopfield network
[34] is a typical recurrent artificial network based on the
dynamical Ising model. On the other hand, machine learning
techniques provide an effective approach to solve the Ising
model. Carrasquilla and Melko have investigated the phase
transition of a two-dimensional (2D) Ising model recently,
utilizing supervised learning models such as neural networks
(NNs) and 2D convolutional neural networks (CNNs) [14],
and they demonstrated that machine learning techniques can
study the phase transition of 2D Ising models with very high
accuracy. Besides the supervised learning models, unsuper-
vised learning models such as principal component analysis
(PCA) and auto encoder (AE) have also been applied to study
the 2D XY model [21,22] and 3D XY model [23]. However,
the 3D Ising model still remains unexplored using the machine
learning techniques.

In this work, we have studied the phase transition of
a ferromagnetic 3D Ising model by Monte Carlo–sampled
machine learning techniques. Instead of standard Monte Carlo
simulations [42,44,45], the needed parameters are predicted
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FIG. 1. (Upper panel) Standard Monte Carlo procedure to cap-
ture the key physical parameters Tc and v; (lower panel) Monte
Carlo–based machine learning procedure. The relationship between
the Monte Carlo and the machine learning procedures are indicated
by the arrows in the middle.

by the state-of-the-art machine learning techniques. In or-
der to compare the accuracy and efficiency of current ma-
chine learning algorithms, we perform both supervised and
unsupervised machine learning algorithms in the Ising mod-
els. Since the computation consumptions increase sharply
with increasing lattice sizes, we developed a few-shot machine
learning strategy by combining specific supervised and unsu-
pervised machine learning algorithms to predict phase tran-
sitions in larger lattices from trained data in smaller lattices.
The paper is organized as follows: In Sec. II, we present the
3D Ising model and methods used during the calculations. In
Secs. III and IV, we demonstrate the performances of machine
learning algorithms and the few-shot machine learning strat-
egy. In Sec. IV, we report the conclusions of our work.

II. MODELS AND METHODS

The Hamiltonian of the ferromagnetic 3D Ising model in a
cubic lattice is given by

H = −J
∑

〈i, j〉
σiσ j, (1)

with uniform interaction strength J = 1 and binary spin con-
figurations σi ∈ {+1 =↑,−1 =↓} on each site i where i runs
over all the spin sites (N). The sum goes over all nearest-
neighbor pairs, and the periodic boundary condition is taken in
our calculation. The magnetization of a spin sample is defined
as M = 1

N

∑
i σi. In the 3D Ising model studied here, there are

2N different spin configurations for cubic lattices and two key
physical parameters, the transition temperature (Tc) and the
critical exponent (v).

To investigate the two key physical parameters, we con-
sider cubic lattices with different sizes (L) and adopt a Monte
Carlo–sampled machine learning procedure as illustrated in
Fig. 1. In Fig. 1, the upper panel indicates a standard Monte
Carlo procedure in which all the intermediate parameters,
such as energy (E ), binder cumulant (U ), magnetization
(M), etc. for fitting the key physical quantities Tc and v are

calculated by the standard Monte Carlo algorithm itself.
While in the Monte Carlo–sampled machine learning proce-
dure as illustrated in the lower panel, the Monte Carlo method
is applied to generate raw data sets to feed into machine
learning models. At the first stage, the input data sets will be
minimized to spin configurations only. Afterwards, we prove
the exact correspondence between the intermediate parame-
ters given by standard Monte Carlo simulation and machine
learning models. Finally, one can compare the predicted Tc

and v from both procedures.
The Monte Carlo simulation, implemented by the

Swendsen-Wang cluster algorithms (SWCA) [46], is per-
formed to calculate the transition temperatures (Tc) by creat-
ing 2000 independent spin configurations at each temperature
step and to provide initial raw data sets to train the machine
learning models. The SWCA algorithm updates a cluster of
spins for each step, which reduces the correlation of data
remarkably. We take 50,000 update steps between every two
outputs of spin configuration in order to reduce the data
correlation more efficiently.

Machine learning methods are applied to get the above
parameters and are categorized as supervised and unsuper-
vised learning models as follows. Supervised learning is the
machine learning task of inferring a function from labeled
training data [47], in which each sample is a pair of an input
object and its desired label. A supervised learning algorithm
learns from the training sets and then produces an inferred
function which can be applied to the test sets that have never
been trained before. The accuracy of the supervised learning
model is determined by comparing the output of the trained
model and the original labels on the test sets, which is also
an important benchmark to evaluate the performance of the
machine learning model. In this case, the input data for the su-
pervised learning models are the spin configurations of the
cubic Ising lattice. The corresponding labels are determined
by the corresponding T of the input configurations: the spin
configurations are labeled by (1, 0) when T < Tc, and by (0, 1)
when T > Tc. Three supervised learning models are employed
in this work: support vector machine (SVM) [48,49], neural
network (NN), and 3D convolution neural network (CNN)
[50,51].

Contrary to the supervised learning method, unsupervised
learning models are expected to infer a function to describe
hidden structure from unlabeled data, which can be a classi-
fication or categorization not included in the given physical
observability. To solve complicated physical problems, the
labels of the target system are usually difficult to get from
calculations or experiments, which makes the unsupervised
machine learning necessary and useful. Since the input data
sets to the unsupervised learning are merely spin configura-
tions, the spin configurations with different labels will fall
into different clusters as the unsupervised learning models are
well trained. In this work we take two commonly used unsu-
pervised machine learning models, the principal component
analysis (PCA) [52,53] and the restricted Boltzmann machine
(RBM). All the supervised and unsupervised machine learn-
ing models are trained by the spin configurations generated
with T ∈ [3, 6] in units of J/k in a total of n = 100, 000
configurations for every size.
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FIG. 2. (a) The average outputs of different machine learning
models SVM (red dot), NN (green rectangle), and 3D CNN (blue
star) on the test set with L = 16. (b) The average energies predicted
by the 3D CNN model. The black solid line and the red dots are
obtained from the Monte Carlo simulations and 3D CNN model,
respectively.

III. CONVENTIONAL MACHINE LEARNING IN A 3D
ISING MODEL

First, we perform supervised classifications for spin con-
figurations in the 3D Ising model utilizing SVM, NN, and
3D CNN algorithms. The input data for supervised machine
learning models are obtained from the Monte Carlo sampling
at different temperatures T in a finite cubic lattice L = 16. The
spin configurations are binary labeled by their corresponding
phases, i.e., high-temperature paramagnetic phase when T >

Tc and the low-temperature ferromagnetic phase when T < Tc

[14]. The data sets are randomly divided into the train and test
sets; all the supervised machine learning models are trained in
the train sets and predicted in the test sets. In this work, we
adopt the SVM model which is implemented in the Scikit-
Learn library [54,55] with optimized hyper parameters and
build the NN and 3D CNN models in the framework of the
Keras library [56].

The numerical results obtained from the SVM, NN, and
3D CNN models are shown in Fig. 2(a). All the super-
vised machine learning models can classify the high- and
low-temperature phases with accuracies about 99%, and the
average outputs of the supervised machine learning models
cross at the predicted Tc, which is very close to the Monte
Carlo simulations. The result shows that all three supervised
machine learning models used in our calculations are effective
to distinguish the high- and low-temperature phases, although
they are quite different.

Machine learning models can not only classify phases
of the 3D Ising model, but they also can predict physical
quantities, such as the transition temperature Tc, the critical
exponents ν, and the averaged energies of various spin con-
figurations. We train a 3D CNN model to predict energies
of different spin configurations [see Fig. 2(b)]. The predicted
energies agree very well with the Monte Carlo simulations,
and the relative error of the predicted energy is smaller than
1.0 × 10−4.

Until now, all the input data are directly used to train the su-
pervised machine learning models without any preprocessing.
Next, we do some preprocessing to the 3D spin configurations.
Two unsupervised machine learning models, PCA and RBM,
are considered to reduce dimensions and reconstruct 3D spin
configurations, respectively. We take the PCA and Bernoulli
RBM implemented in the Scikit-Learn library [54,55].

We consider one principal component when we apply PCA
to 3D spin configurations, since we find that the first principal
component possesses the greatest explained variance [see the
inset of Fig. 3(a)]. In Fig. 3(a), one can find that the outputs p1
are linear with magnetization M, which means the correlation
between p1 and M is almost 1.0 and the physical observable,
magnetization, can be learned from the first PCA of the input
data. We also plot the absolute value of p1 as a function of
temperature in Fig. 3(b) and find that the lines with different
size parameter L tend to approach each other when the lat-
tice size L increases. Therefore we take a finite-size scaling
analysis to determine the critical exponent v and predict the
transition temperature of the 3D Ising model with infinite
L based on the first principal component and the predicted
energy [57,58].

The results of finite-size analysis are shown in Figs. 3(c)
and 3(d). The critical exponent of the 3D Ising model is
a very important physical quantity to describe the critical
behavior of the phase transition and still has not been studied
utilizing the machine learning models [21–23,59,60]. Here it
can be determined based on cubic spin configurations with
L ∈ [8, 28]. Kc = 1

Tc
is obtained by fitting the data with L �

22. The critical exponent v and the critical temperature Tc

are measured to be 0.629 and 4.511 417 (Kc = 0.221 659 8),
respectively, which agree very well with the results obtained
from the renormalization group theory [57,58].

Since p1 is also closely related to the high- and low-
temperature phases [see the red and blue scatters shown in
Fig. 3(a)], this feature makes it possible to classify different
phases based on the PCA outputs. In addition, the RBM
is applied to reconstruct the 3D spin configurations. The
results obtained from supervised learning models based on the
reduced and reconstructed spin configurations are shown in
Fig. 4(a). From this figure, one can see clearly that the com-
bined model can be used to distinguish different phases with
high enough accuracy. Notice that the RBM-reconstructed
3D Ising model can be simply classified by a logistic linear
classifier. The reconstruction process differentiates various
spin configurations, and the PCA reduction process makes
the classification procedure much more efficient than previous
direct classification machine learning models.

A full comparison between preprocessed machine learning
models and direct supervised machine learning models is
shown in Fig. 4(b). One can find that the overall accuracies
increase with the size parameter L, and the performance of
all these machine learning models approach each other. The
different behaviors of these models arise from the complexity
of these machine learning models, and the preprocessed model
could require fewer computation resources without loss of
accuracy.

IV. FEW-SHOT MACHINE LEARNING IN 3D ISING
MODEL

Supervised machine learning models trained from the data
with lattice size L cannot be applied to the lattices with L +
�L directly. In order to make it possible to predict the phase
transition in a larger size L + �L, we combine the PCA and
the NN together. We first perform PCA to the spin lattice with
different sizes (e.g., L = 10, 12, 14, 16, 20, 24), and only the
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FIG. 3. (a) The output of the first principal component as a function of the magnetization (M) in a cubic lattice with L = 16. The explained
variance, i.e., the ratio between the variance of the principal components and the total variance, is shown in the inset of (a). (b) Absolute value
of the first PCA output as a function of temperature. (c) Finite-size scaling analysis to determine critical exponent v based on the first principal
component and energy; the critical exponent is fitted to be 0.629. (d) Finite-size scaling analysis to determine transition Kc.

first two leading principal components remain as the input for
the next step.

Such a group of preprocessed data makes next-step train
sets. Then the train sets are fed to a NN model which consists
of an input layer with two units, one hidden layer with 30
units, and at the end the output layer with two units. The
performances of the mixed trained model on test sets are
shown in Fig. 5(a), and one can find that the mixed trained
model performs very well with different size parameters. The
overall accuracies of this mixed trained model obtained from
the test sets with different L are shown in Fig. 5(b), and the

FIG. 4. (a) The average outputs of different RBM combined with
a linear logistic classifier and PCA combined with a NN classifier,
both with L = 16. (b) Accuracies as a function of L for different
supervised and combined supervised models.

performance of the mixed trained model is comparable to the
models based on particular L shown in Fig. 4(b).

After the confirmation of the validity of the mixed trained
model for 3D Ising models in known lattice sizes, we extend
it to unexplored lattice sizes. By applying the mixed trained
model to the spin configurations with L = 28, we find out
that the model can predict the L = 28 lattice with an amaz-
ing accuracy of 0.996, therefore verifying the capability of
the model to predict critical temperatures in larger lattices
which have never been trained. The average outputs at dif-
ferent temperatures are shown in Fig. 6(a), and the predicted

FIG. 5. The performance of the model trained by mixing data
with different L. (a) The average output of the mixed trained model
as a function of temperature. (b) The overall accuracies of the mixed
trained model tested on different L.
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FIG. 6. The performance of the mixed trained model on the
unexplored size L = 28. (a) The average output of the mixed trained
model as a function of temperature. (b) The accuracies of the model
at different temperatures T .

phase transition temperature is very close to the standard
Monte Carlo simulation [the blue vertical line in Fig. 6(a)].
Figure 6(b) shows that the mixed trained model possesses very
high accuracies at different temperatures T , even when T is
very close to the critical temperature Tc. Since the prediction
of larger lattices can be obtained merely from training smaller
samples, the combination of PCA and NN enables us to
predict the phase transition in a quite large lattice which is
unattainable by standard Monte Carlo procedures. This mixed
trained model demonstrates a convincible few-shot machine
learning strategy for spin models.

V. CONCLUSIONS

In conclusion, we performed several machine learning
models for 3D Ising models. Based on the state-of-the-art
Monte Carlo simulations, we find both supervised and unsu-
pervised machine learning models can extract physical infor-
mation from raw data. A critical exponent and the transition
temperature are accurately fitted by PCA. The combination
of RBM and a simple linear logistic classifier is proven to be
as powerful as supervised machine learning models for 3D
Ising models. We show a type of few-shot machine learning
strategy based on PCA and a feed-forward NN classifier. The
few-shot machine learning strategy for the 3D Ising model
makes it possible to predict the phase transition in a larger
lattice based on data from some smaller samples, which also
provides an approach to other spin models. Our work presents
an integrated and highly accurate machine-learning toolbox
and demonstrates a few-shot learning strategy for studying
more spin models.
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APPENDIX A: ARCHITECTURES OF NEURAL
NETWORKS

In this work we study different deep learning (DL) models
where we give the architectures of full connected neural
networks (NN) and 3D convolutional neural networks (3D
CNN). The full connected NN model consists of four kinds
of layers: an input layer, hidden layer, dropout layer, and
output layer. The input layer contains L3 neurons, the hidden
layer contains 100 neurons which are activated by the sigmoid
function, and the output layer contains two neurons which are
activated by softmax functions. We take a dropout rate of 0.1
to prevent overfitting of this model.

The 3D CNN model is composed of a 3D input layer,
3D convolutional layers, a dropout layer, a full connected
hidden layer, and the output layer. The 3D convolutional
layers apply 64 2 × 2 filters to the spin configurations, and
the full connected hidden layer contains 64 neurons. All the
layers are activated by sigmoid functions except for the output
layer, which is activated by softmax function. The dropout
layer is added between the 3D convolutional layers and the
output layer with dropout rate 0.25.

APPENDIX B: ALGORITHM COMPLEXITY

The mixed trained model consists of two procedures: (1)
applying PCA to all the spin configurations of the train set and
(2) applying NN to the reduced spin configurations. The de-
termined complexity of this model comes from the PCA step.
In this paper we implement PCA utilizing Scikit-Learn with
randomized truncated singular value decomposition (SVD)
[56,61] where the complexity is O(n2

maxncomponents ). Here nmax

is the max value between the number of spin configurations
(nsamples) and dimensions of the spin configurations (L3), and
ncomponents is the number of principal components [56,61].
When the size of the 3D Ising model is big enough (L3 >

nsamples), the complexity is proportional to L6, which grows
rapidly when L increases.
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