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Impurity band magnetism in organic semiconductors
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Recent experiments and theoretical studies have proposed that spin-transport in organic semiconductors, in
particular in Alq3, may occur in an impurity band. Here we model the electronic and magnetic properties of
such an impurity band by treating the effect of disorder in a numerically accurate way. The calculations are
carried out by solving the Anderson-Hubbard model within the mean-field approximation and by accounting for
magnetic excitations via the Bethe-Salpeter equation. We find that some impurities form clusters where electrons
are delocalized, while others develop localized magnetic moments, which are antiferromagnetically correlated.
The excitations of these correlated magnetic moments are spin waves, which can enable spin transport.
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I. INTRODUCTION

Organic semiconductors (OSCs) made their first appear-
ance in spintronics more than a decade ago [1–3]. Since then,
many experimental studies succeeded in measuring magne-
toresistance (MR) across hybrid spin-valve devices [4–9],
where an OSC film is sandwiched between two ferromagnetic
electrodes. Despite these important results, research in organic
spintronics has been stumbling during the last few years. This
is because our understanding of spin injection and transport in
OSCs is still incomplete.

Over the years, intense efforts have been devoted to prove
spin-injection from ferromagnetic electrodes into an OSC
and to investigate the key role played by the interfaces
[11–22]. Some experiments have indicated that the injection
of spin-polarized charge carriers into molecular orbitals can
be achieved both electrically [9,10] and optically [11]. Despite
that, reports about MR in hybrid organic spin valves are
often difficult to interpret even for the prototypical devices
comprising Alq3 molecules, which have been extensively
studied for years. These devices are surprisingly conductive
and the highest MR is measured at bias voltages of the order
of 100 meV [2,4,23,24]. This contrasts with the fact that
the typical electron (hole) injection barrier into the lowest
unoccupied (highest occupied) molecular orbital of Alq3 is of
the order of 1 eV [9,21,25]. Furthermore, OSCs seem not to
be affected by the conductivity mismatch, in contrast to their
inorganic counterparts [26].

To rationalize this body of experimental findings, Yu pro-
posed that transport through hybrid organic spin valves may
occur along a broad impurity band located inside the molecule
transport gap [27,28]. Such model can qualitatively explain
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the typical I-V characteristic curve, the dependence of the
MR on the bias voltage, and the absence of the conductivity
mismatch problem [27]. Furthermore, it also accounts for
other common phenomenological features such as the sup-
pression of the Hanle effect [28]. Although the experimental
validation of the model has still to be established, a detailed
analysis of the performances of Alq3-based spin valves does
indeed strongly support the idea that transport at low bias
voltages proceeds by hopping between trap states, which form
an impurity band at sufficiently high concentration [29]. These
impurities have been proposed to be oxygen ions O−

2 [30,31].
For devices with molecules other than Alq3, experiments are
more scarce and the possibility of impurity band transport has
not been systematically analyzed to date.

The presence of the impurity band in Alq3-based devices
indicates that many charge carriers already exist at zero tem-
perature before the application of a bias voltage. The model
by Yu assumes that each impurity hosts one localized electron
and therefore a magnetic moment, which is coupled to those
of the neighbor impurities via direct exchange. However, this
picture may not describe the most general case. Electrons
may not be fully localized and magnetic moments are not
guaranteed to form. This will depend on a subtle balance be-
tween the disordered impurity distribution, the overlap of their
electronic wave functions, the electron-electron interaction,
and the wave-function renormalization effects caused by the
interaction of electrons with the molecular vibrations.

In this paper, we investigate the equilibrium electronic
and magnetic properties of an impurity band. We account
for the effect of disorder in an accurate way via numerical
calculations and we release the assumption that each impurity
hosts a localized magnetic moment. We employ a variant of
the Hubbard model, namely the Anderson-Hubbard model
(AHM) [32,33], where the on-site energies are allowed to
assume random values. We do not aim at accessing the exact
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mathematical properties of the model; rather, we focus on
some qualitative results that may be relevant for impurity
bands in OSCs, in particular Alq3. For this purpose, we treat
the electron-electron interaction at the mean-field (MF) level,
which already leads to quite interesting physics.

We find that the interplay between disorder and electron-
electron interaction separates the impurity lattices into dif-
ferent regions. Some regions are almost insulating and each
impurity carries a localized magnetic moment. In contrast,
other regions are more metalliclike, where electrons delo-
calize over several impurities and no magnetic moment is
formed. This behavior is reminiscent of the “two-fluid” model
[34,35] introduced many years ago to explain the properties
of P- and B-doped Si at low temperatures [36–38]. While,
for those systems, the two-fluid model was found not to
provide a satisfactory description of the experimental results,
here we suggest that it should be reconsidered in the context
of impurity bands in Alq3 and, more in general, in OSCs.
Notably, in the limit in which the itinerant component of the
two fluids becomes negligible, the model reduces to that of a
disordered quantum antiferromagnet [39], which shares some
similarities with the model proposed by Yu for large impurity
concentrations [28].

Although experiments have traditionally focused on elec-
trical spin-injection into OSCs [40], a few studies recently
reported spin injection induced via spin pumping [41–43].
While in the case of electrical spin-injection the spin is
transported via diffusion of spin-polarized charge carries,
in spin-pumping experiments spin waves carry the angular
momentum [44]. Therefore, here we extend our investigation
to examine whether spin waves can develop into an impurity
band. Our results, obtained by solving the Bethe-Salpeter
equation (BSE) [45], show that indeed spin waves can appear
in the regions of an impurity lattice where the localized
magnetic moments are present. Accordingly, we propose that,
while charge currents propagate through the metallic compo-
nent of the two fluids, spin currents are transported through
the insulating one.

The paper is organized as follows. In Sec. II, we first
introduce the AHM (Sec. II A) and the theoretical methods
(Secs. II B and II C). Then we discuss in detail the MF results
in Sec. III and the calculations of the spin waves in Sec. IV.
Finally, in Sec. V we summarize the main outcomes of our
paper and we relate them to the physics of the impurity band
in OSCs.

II. MODEL AND METHODS

A. Anderson-Hubbard model

Impurities in an OSC film form an impurity band with a
broad energy distribution located inside the molecule trans-
port gap. In particular, recent experiments have focused on
Alq3 molecules proposing oxygen ions as the relevant impu-
rities [30]. Such impurity band is described here by means of
the so-called AHM, which is defined by the Hamiltonian

Ĥ =
∑

i,σ=↑,↓
εin̂iσ − t

∑
i,σ=↑,↓

(
ĉ†

i+1σ ĉiσ + H.c.
)

+U
∑

i

n̂i↑n̂i↓. (1)

Here, n̂iσ = ĉ†
iσ ĉiσ is the spin-dependent occupation number

operator of site i, t > 0 is the hopping probability amplitude
between two nearest-neighbors sites, U � 0 is the screened
Coulomb interaction strength and εi represents the on-site
energy for site i. This is assumed to be a random variable
drawn from a Gaussian distribution with variance �2. The
random on-site energies describe the fluctuation of the elec-
trostatic environment around an impurity. In principle, the
hopping probability can also be chosen as a random variable.
However, for atoms or small dopant molecules embedded in
organic solid-state materials, the on-site Coulomb interaction
and electrostatic effects are quite large [46], while the hopping
is generally very small, i.e., � � t and U � t (see also the
discussion in Sec. V). Therefore, we have decided not to
include random hoppings to reduce the complexity of the
model. Furthermore, we note that a few test calculations we
performed indicate that the qualitative picture presented in the
following would not change if random hopping probabilities
were considered. Finally, we work at zero temperature and we
neglect the electron-vibration interaction, although this often
plays an important role in the behavior of organic materials
[47,48]. The extension of the model to include the electron-
vibration interaction and finite temperature effects is left for
future studies.

All results presented here are for a three-dimensional (3D)
cubic lattice of linear dimension L, i.e., the total number of
sites is N = L3.

B. The mean-field approximation

The MF Hamiltonian for the AHM reads

ĤMF =
∑

i,σ=↑,↓
(εi + U 〈n̂i−σ 〉)ĉ†

iσ ĉiσ − t
∑

i,σ=↑,↓
ĉ†

i+1σ
ĉiσ . (2)

The eigenenergies and eigenstates are εασ and |ασ 〉 = ĉ†
ασ |−〉

(|−〉 is the vacuum), i.e.,

ĤMF|ασ 〉 = εασ |ασ 〉. (3)

The expectation value 〈n̂iσ 〉 = 〈0MF |n̂iσ |0MF 〉 is taken over the
MF ground state,

|0MF〉 =
∏

εα↑�EF

ĉ†
α↑

∏
εβ↓�EF

ĉ†
β↓|−〉, (4)

where EF is the Fermi energy. The operators ĉiσ (ĉ†
iσ ) and ĉασ

(ĉ†
ασ ) are connected by the unitary transformations:

ĉ†
ασ =

∑
i

uαiσ ĉ†
iσ , (5)

ĉασ =
∑

i

u∗
αiσ ĉiσ . (6)

Then, the local spin-dependent occupation of site i is given by

〈n̂iσ 〉 =
EF∑
ασ

u∗
αiσ uαiσ , (7)

where the sum runs over all states with εασ � EF .
Since the MF Hamiltonian of Eq. (2) depends on 〈n̂iσ 〉,

which, in turn, is calculated by using the the eigenvectors
defined in Eq. (6), an iterative self-consistent solution is
required.

094413-2



IMPURITY BAND MAGNETISM IN ORGANIC … PHYSICAL REVIEW B 99, 094413 (2019)

The MF total energy is

EMF =
EF∑

α↑,β↓
(εα↑ + εβ↓) − U

EF∑
α↑,β↓

∑
i

u∗
αi↑uαi↑u∗

βi↓uβi↓, (8)

where the sums run over the states with εα↑ � EF and
εβ↓ � EF .

The magnetic excitations are readily calculated in the MF
framework. These have a single-particle character (Stoner
excitations) and energies ωMF

n = (εpσ − εh−σ ), where the in-
dex pσ (hσ ) labels a generic unoccupied (occupied) MF
state (i.e., ασ ≡ pσ if εασ > EF and ασ ≡ hσ if εασ � EF ).
Unfortunately, the MF approximation does not account for the
low-lying collective magnetic excitations (spin waves). These
can be calculated by employing the many-body perturbation
theory.

C. The Bethe-Salpeter equation

The time-dependent spin-spin correlation function is

Cij(t, 0) = −i〈0|T {Ŝ−
i (t )Ŝ+

j (0)}|0〉, (9)

where Ŝ−
i (t ) [Ŝ+

i (0)] denotes the operator Ŝ−
i = ĉ†

i↓ĉi↑ (Ŝ+
i =

ĉ†
i↑ĉi↓) in the Heisenberg picture. The state |0〉 represents the

true many-particle ground state of the AHM to be distin-
guished from the MF ground state, |0MF〉, defined in Eq. (4).
T {...} denotes the time-ordered product. The time-Fourier
transform of Cij(t, 0) defines the dynamic transverse spin
susceptibility [49],

χ−+
ij (ω) =

∫ ∞

−∞
dt eiωtCij(t, 0) , (10)

which can be expressed in the Lehmann representation [45]:

χ−+
ij (ω) =

∑
n

[ 〈0|Ŝ−
i |n〉〈n|Ŝ+

j |0〉
ω − ωn + iη

− 〈0|Ŝ+
j |n〉〈n|Ŝ−

i |0〉
ω + ωn − iη

]
.

(11)

In Eq. (11), the limit η → 0+ is implied and |n〉 is an nth
many-particle excited state of energy En, ωn = En − E0, with
E0 the ground-state energy. The Lehmann representation ex-
plicitly shows that the poles of χ−+

ij (ω) represent the energies
of the collective magnetic excitations, i.e., the spin waves.

The dynamic transverse spin susceptibility of Eq. (10) is
calculated by using the BSE. In the ladder diagram approxi-
mation, it is written as [50]

χ−+
ij (ω) = 0χ−+

ij (ω) − U
∑

k

0χ−+
ik (ω)χ−+

kj (ω), (12)

where 0χ−+
ij (ω) is the MF transverse spin susceptibility. This

is defined as

0χ−+
ij (ω) =

∫ ∞

−∞
dt eiωtCMF

ij (t, 0), (13)

with CMF
ij (t, 0) = −i〈0MF|T {Ŝ−

i (t )Ŝ+
j (0)}|0MF〉. Its Lehmann

representation reads

0χ−+
ij (ω)

=
∑
p↑,h↓

u∗
pi↑uhi↓u∗

hj↓upj↑
ω − εp↑ + εh↓ + iη

−
∑

h↑,p↓

u∗
hi↑upi↓u∗

pj↓uhj↑
ω + εp↓ − εh↑ − iη

,

(14)

where again the limit η → 0+ is implied. The poles of
0χ−+

ij (ω) are the Stoner excitations (see the discussion at the
end of Sec. II B).

As pointed out by Szczech et al. [51], the determination
of the collective magnetic excitations turns out to be a par-
ticularly simple problem in the case of the AHM. In fact,
the symmetric matrix 0χ−+(ω), whose elements are 0χ−+

ij (ω),
can be diagonalized by an orthogonal matrix V(ω) giving the
eigenvalues {λγ (ω)} (if ω does not coincide with the energy
of a Stoner excitation). Notably, V(ω) also diagonalizes the
matrix χ−+(ω) of elements χ−+

ij (ω). Thus, by solving the
BSE, we obtain

∑
ij

Vγ iχ
−+
ij (ω)Vjγ = λγ (ω)

1 + Uλγ (ω)
. (15)

As the poles of χ−+
ij (ω) coincide with the collective mag-

netic excitations, these are given by the relation

1 + Uλγ (ω) = 0. (16)

In other words, the value of ω (not equal to the Stoner
excitation energies), for which one of the eigenvalues of
0χ−+ satisfies Eq. (16), represents the energy of a collective
magnetic excitation.

Interestingly, an alternative approach to calculate the col-
lective magnetic excitations consists of reformulating the BSE
as a generalized eigenvalue problem [45]. This is equivalent to
introduce an effective Hamiltonian acting on a selected range
of particle-hole states of opposite spin. The collective mag-
netic excitations are then described as a linear combination of
processes which transfer a particle from one occupied state to
an unoccupied state of opposite spin.

To begin, the BSE is rewritten over the basis that diago-
nalizes the MF Hamiltonian. By using the unitary transforma-
tions of Eqs. (5) and (6), we obtain

χ−+
βαγ δ (ω) = 0χ−+

βαγ δ (ω)

+ − U
∑

i

∑
ε,ζ ,η,θ

uεi↑u∗
ζ i↓uηi↓u∗

θ i↑

× 0χ−+
βαεζ (ω)χ−+

θηγ δ (ω), (17)

where χ−+
βαγ δ (ω) is a short-hand notation for

χ−+
β↑,α↓,γ↑,δ↓(ω). This indicates the Fourier transform of
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Cβ↑,α↓,γ↑,δ↓(t, 0) = −i〈0|T {ĉ†
α↓(t )ĉβ↑(t )ĉ†

γ↑(0)ĉδ↓(0)}|0〉.
Then we can distinguish two possible cases

χ−+
phγ δ (ω) = 1

ω − εp↑ + εh↓ + iη

{
δh↓,δ↓δp↑,γ↑

−U
∑

i

∑
h′↓,p′↑

upi↑u∗
hi↓uh′i↓u∗

p′i↑χ−+
p′h′γ δ (ω)

−U
∑

i

∑
p′↓,h′↑

upi↑u∗
hi↓up′i↓u∗

h′i↑χ−+
h′ p′γ δ (ω)

}
,

(18)

χ−+
hpγ δ (ω) = − 1

ω + εp↓ − εh↑ − iη

{
δp↓,δ↓δh↑,γ↑

−U
∑

i

∑
p′↓,h′↑

uhi↑u∗
pi↓up′i↓u∗

h′i↑χ−+
h′ p′γ δ (ω)

−U
∑

i

∑
h′↓,p′↑

uhi↑u∗
pi↓uh′i↓u∗

p′i↑χ−+
p′h′γ δ (ω)

}
.

(19)

Here we have used the fact that 0χ−+
hpεζ (ω) is not zero only

for ε = h and ζ = p, and similarly 0χ−+
phεζ

(ω) is not zero only
for ε = p and ζ = h. Furthermore, 0χ−+

hphp(ω) and 0χ−+
phph(ω)

have been expressed through their Lehmann representation
[see Eq. (14)].

Equations (18) and (19) can then be written in matrix form:(−ω + A B
B∗ ω + C

)(
χ−+

phγ δ
(ω)

χ−+
hpγ δ

(ω)

)
=

(−δp↑,γ↑δh↓,δ↑
−δh↑γ↑δp↓,δ↓

)
.

(20)

The matrices A, B, and C have components

Ap↑h↓,p′↑h′↓ = (
εp↑ − εh↓

)
δp↑h↓,p′↑h′↓

−U
∑

i

upi↑u∗
hi↓u∗

p′i↑uh′i↓ (21)

Bp↑h↓,p′↓h′↑ = −U
∑

i

upi↑u∗
hi↓up′i↓u∗

h′i↑, (22)

Cp↓h↑,p′↓h′↑ = (
εp↓ − εh↑

)
δp↓h↑,p′↓h′↑

−U
∑

i

u∗
pi↓uhi↑up′i↓u∗

h′i↑. (23)

As shown by Eq. (20), the transverse magnetic susceptibility
diverges when

det

(−ω + A B
B∗ ω + C

)
= 0. (24)

Therefore, the magnetic excitations are calculated by solving
the matrix eigenvalue equation:(

A B
−B∗ −C

)(
Xn

Yn

)
= ωn

(
Xn

Yn

)
. (25)

The matrix on the left-hand side is called RPA matrix
and it has dimension [(Nh↑Np↓) + (Nh↓Np↑)] × [(Nh↑Np↓) +
(Nh↓Np↑)], where Nhσ (Npσ ) is the number of occupied (unoc-
cupied) states of spin σ .

Although the RPA matrix is manifestly not hermitian,
the eigenvalues ωn will be real if the MF ground state is
a stable one. A complex value for ωn signals that |0MF〉 is
unstable [52].

Real eigenvalues can be either positive or negative, with
positive (negative) eigenvalues corresponding to the pos-
itive (negative) poles of χ−+

ij (ω). In addition, it is easy
to demonstrate that χ+−

ij (ω) = χ−+
ji (−ω) with χ+−

ij (ω) =
−i

∫ ∞
−∞ dt〈0|T {Ŝ+

i (t )Ŝ−
j (0)}|0〉. Finally, when the MF solu-

tion breaks the spin-rotational symmetry, eigenvalues equal
to zero also occur (Goldstone modes) [53,54].

Xn and Yn are column vectors of elements X n
p↑h↓ and Y n

h↑p↓.
These represent the coefficients of the expansion of an excited
state |nRPA〉 with energy ωn (for ωn > 0) over the electron-hole
pairs of opposite spin; namely,

|nRPA〉 = Q̂†
n|0RPA〉,

Q̂†
n =

∑
p↑,h↓

X n
p↑h↓ĉ†

p↑ĉh↓ −
∑
p↓,h↑

Y n
h↑p↓ĉ†

h↑ĉp↓, (26)

with |0RPA〉 being the RPA ground state defined by Qn|0RPA〉 =
0. Similarly, the eigenstates that correspond to ωn < 0 are de-
excitations and read

|0RPA〉 = Q̂n|nRPA〉,
Q̂n =

∑
p↑,h↓

X n∗
p↑h↓ĉ†

h↓ĉp↑ −
∑
p↓,h↑

Y n∗
h↑p↓ĉ†

p↓ĉh↑. (27)

Therefore, the RPA matrix describes an effective Hamiltonian
acting over electron-hole pairs of opposite spin.

As the RPA eigenvectors are orthogonal and can be prop-
erly normalized [45,52,54], the operators Q̂n and Q̂†

n are qua-
siboson operators; namely, they satisfy boson commutation
relations in the weak sense,

〈[Q̂m, Q̂†
n]〉 = δmn, (28)

〈[Q̂m, Q̂m]〉 = 0, (29)

〈[Q̂†
m, Q̂†

n]〉 = 0, (30)

where 〈...〉 indicates, as before, the average on the MF ground
state.

Finally, we mention that Eq. (25) can also be obtained by
the inverse procedure. This means that we can first define
the operator Q̂n and then calculate its equation of motion.
After replacing every product of four operators ĉ†ĉ ĉ†ĉ with
its MF expression 〈ĉ†ĉ〉ĉ†ĉ, this procedure ultimately leads to
the RPA matrix eigenvalue problem [52,54].

III. MEAN-FIELD RESULTS

In this section, we will present a detailed analysis of the
MF results as a function of the screened interaction U/t and
of parameter �/t , which we use to quantify the disorder (see
Sec. II A). All results refer to cubic lattices of linear dimension
L = 8 (i.e., N = 83), unless explicitly stated otherwise.

We note that Tusch and Logan [32] have already con-
sidered the half-filling case (i.e., when the total number of
electrons is equal to the number of lattice sites N). They have
showed that, while the system with no disorder is either a
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Slater or a Mott insulator with a Neel-type antiferromagnetic
order, disorder tends to close the gap between the lower and
upper Hubbard band and a large portion of the phase diagram
is then either metallic or Anderson insulating. The magnetic
order is still mainly antiferromagnetic, but disorder removes
the Fermi surface nesting of the simple cubic lattice in 3D.
As a result, a paramagnetic phase can even appear for U > 0.
We note that very similar results (at least at a qualitative level)
were recently found also by using state-of-the-art dynamical
mean-field theory calculations [55].

In our paper, we consider different numbers of electrons,
besides the special case of half-filling, for which we have
reproduced the results by Tusch and Logan [32]. For most
of the situations inspected, we have eventually found that
the overall phenomenology is similar, independent of the
number of electrons. We therefore present only results for N/2
electrons, which corresponds to quarter filling. The system
in absence of disorder is a metal and the MF approximation
returns a first-order phase transition from a paramagnetic
to a ferromagnetic ground state at U/t ≈ 3.5, as observed
before [56]. However, we will see that these ferromagnetic
correlations are completely washed out by the disorder, while
antiferromagnetic correlations between some of the sites
appear.

Although the model investigated is very general and, in
principle, can be (and has been) used to represent an impurity
band in any semiconductor, we remark that our study aims
at addressing whether some of our results can account for
the general phenomenology proposed for Alq3 and more
generally OSCs [27–30]. This will be discussed in Sec. V.

A. General considerations about the self-consistent solution

When MF calculations are performed, different starting
states generally give different final self-consistent solutions.
This is because the potential energy surface can have many
local minima, where the calculation may end up. The search
for the true MF ground state is therefore very complicated.
To explore as many states as possible we have chosen several
initial conditions and compared their total energies defined in
Eq. (8). These initial conditions correspond to:

(1) A ferromagnetic fully spin-polarized state with 〈n̂i↑〉 =
0.5 and 〈n̂i↓〉 = 0.0 for all sites

(2) A ferromagnetic slightly spin-polarized state with
〈n̂i↑〉 = 0.3 and 〈n̂i↓〉 = 0.2 for all sites

(3) A Neel-type antiferromagnetic state
(4) A paramagnetic state
(5) Many different magnetically disordered states ob-

tained by randomly selecting the charge and the spin of every
site with the constraint that

∑
i[〈n̂i↑〉 + 〈n̂i↓〉] = N/2

In addition, we have also performed calculations starting
from configurations obtained at finite temperature and then
gradually reduced the temperature to approach the zero-
limit. This sometimes improves the convergence to the real
MF ground state, preventing the calculation from ending in
metastable minima.

The local electronic and magnetic properties of the lattice
in the MF ground state are studied by looking at the occupa-
tion and magnetization of each site:

〈m̂i〉 = 〈n̂i↑〉 − 〈n̂i↓〉. (31)

These are averaged over many disorder realizations. We per-
form arithmetic averages. Although this may be not appropri-
ate for disordered electronic systems in general [55], we have
found that the results we obtained are adequate for the purpose
of this paper.

The magnetic configuration of a state is characterized
through the Fourier transform of the z component of the
magnetization [32,57]:

Sz(k) = 1

L3

∑
i

〈m̂i〉eiki. (32)

|Sz(k)| has a sharp peak at ka = (0, 0, 0) for a ferromagnetic
state and at ka = (π, π, π ) for an antiferromagnetic state.

Following common practice in semiconductor physics,
we compute the inverse participation ratio (IPR) to analyze
whether the system is insulating or metallic. The IPR [58] is
defined as (see, for example, Ref. [58])

IPR(Eασ ) =
∑

i |uiασ |4
(
∑

i |uiασ |2)2 . (33)

The IPR gives us a direct measure of the degree of localization
of a state. For a state |ασ 〉 delocalized over Nασ sites, we have

IPR(Eασ ) ≈ 1

Nασ

. (34)

Therefore, the IPR is equal to zero in the thermodynamic
limit for a completely delocalized state. In a finite system, the
localization threshold can be derived from finite-size scaling
arguments [32,59] and it is

IPRc ≈ 1.14/(L3)0.48. (35)

A state, for which IPR > IPRc, has to be considered localized
[note that IPRc in Eq. (35) was derived at half-filling and, as
discussed in the following section, one cannot ensure that it
also applies for other cases]. Before going through the results
in the next subsection, we point out a few general features:

(i) A paramagnetic ground state is found independently
from the initial condition for small U/t (between about 1.2
and 0.2) and for any �/t .

(ii) When increasing the value of U/t above ∼1.5, the cal-
culations initiated from a paramagnetic state do not converge.

(iii) For intermediate U/t (typically 1 � U/t � 15, but
this interval generally depends on �/t) all the calculations,
initiated at a disordered or a ferromagnetic initial state, con-
verge to a disordered final state. However, this final state
is usually not the same for different initial conditions. In
the next section, we will describe better what we mean by
disordered state. For the moment, it is enough to say that in
such disordered state a clear magnetic order cannot be rec-
ognized, although many sites present a quite large magnetic
moment. This can be better understood by looking at Fig. 1(a),
which shows |Sz(k)|, in the (kx, ky ) plane at kz = 0, for a
specific realization of a disordered magnetic state. We observe
many peaks at different values of (kx, ky) but none of them
dominates over the others.

(iv) For the same intermediate U/t as in (iii), an antifer-
romagnetic initial condition leads to a solution very similar
to the disordered state, but with an enhanced peak at k =
(π/a, π/a, π/a) [see, for example, Fig. 1(b)]. This seems
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FIG. 1. Example of (a) Sz(k) in the (kx, ky ) plane at kz = 0 for the
disordered magnetic phase and (b) Sz(k) in the (kx, ky ) plane at kz =
π/a for the disordered magnetic phase, with a clear highly frustrated
Neel-type antiferromagnetic order. These results are obtained for a
lattice with L = 8.

to indicate that, although the systems is still disordered, the
magnetic moments of some sites tend to assume an antifer-
romagnetic order. An analysis of the total energies shows
that solutions which capture this tendency toward antiferro-
magnetism always have the lowest energy for U/t � 6 and
�/t � 2.

(v) For large values of U/t , the tendency toward an-
tiferromagnetism is further enhanced. The peak at k =
(π/a, π/a, π/a) becomes sharper, while the energy differ-
ence between solutions obtained from ferromagnetic and
antiferromagnetic initial conditions becomes systematically
larger.

(vi) As already found by Tusch and Logan [32] for the
half-filling case, only the magnetic order usually depends on
the initial condition, while the total occupation 〈n̂i〉 and the
magnitude of the magnetic moment |〈m̂i〉| at each site i do not.
These quantities are indeed determined only by the values of
the on-site energies.

B. Detailed description of the results

We first look at the electronic properties of the AHM
and then we focus on the magnetic ones. The analysis of
the average distribution of the magnetic moments inside the
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FIG. 2. IPR for the state at the Fermi energy as a function of
U/t for �/t = 3 (black line), �/t = 6 (red line), �/t = 7 (green
line), and �/t = 8 (blue line). The dashed horizontal line indicates
the critical IPR value.

lattice will be the key part of this section within the context of
impurity-band spin transport.

The electronic properties of the AHM can be analyzed by
inspecting the IPR for the state closer in energy to the Fermi
level. If the computed IPR is smaller than the critical IPR,
calculated through Eq. (35), we will say that the system is
metallic. Otherwise, we will call it an Anderson insulator. Yet,
to be precise, we remark that from our data for a single system
size, we cannot make any strong claim about a true metal-
insulator transition as we cannot ensure that the localization
threshold in Eq. (35) derived at half-filling [32,59] is also valid
away from that specific case. We therefore use the IPR to infer
trends toward localization/delocalization that we associate to
a more metalliclike/insulatinglike character.

Figure 2 shows the IPR for the state at the Fermi level (after
performing an average over hundreds of different disorder
realizations) as a function of the interaction strength U/t and
for several values of �/t . For U/t = 0, the system is metallic
for �/t = 3 and then becomes insulating at about �/t =
6, 7, 8. For 2 < U/t < 5, the interaction promotes an increase
in the localization lengths of the state at the Fermi level for
all �/t . For �/t ≈ 6, one can even observe a transition back
to the metallic state at U/t ≈ 5. This effect, observed also at
half-filling, was explained as due to an interaction-induced
narrowing of the effective probability distribution for the
energy of each site [32].

We now turn to the magnetic properties, which are most
relevant for our study. In Fig. 3, we sketch a “magnetic” phase
diagram, where the phase boundary is established by looking
at the parameter range where the paramagnetic MF ground
state becomes unstable. This is signaled by the appearance of
some complex eigenvalues for the RPA matrix (the error bar
in Fig. 3 accounts for the statistical error due to the average
over 100 different disorder realizations for each value of U/t
and �/t). The phase diagram shows that the ground state
is always paramagnetic for very small U/t . The charge does
not spread uniformly over the lattice, but it is distributed
according to the on-site energies. When U/t becomes larger,
a magnetic moment forms in some of the sites and the
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FIG. 3. Phase diagram for the MF AHM, which shows the border
between the paramagnetic and the disordered magnetic phase.

disordered phase, which was mentioned in the previous sub-
section, appears. Notably, for increasing �/t , the paramag-
netic phase tends to vanish and a few magnetic moments are
found to form already for small U/t .

We should remark here that a disordered magnetic phase,
which is intermediate between the paramagnetic and the
antiferromagnetic ones, is also found in the half-filling case
for lattices with L = 8 (and smaller) [32]. However, in that
case, the disordered magnetic phase presents very small mag-
netic moments |mi| (typically <0.05), which disappear by
increasing the lattice size. A direct transition between the
paramagnetic and the antiferromagnetic phases is therefore
observed [33] for linear dimensions larger than L = 8. In
contrast, in our calculations away from half-filling, |mi| can
reach values close to unity. By performing calculations for
lattice sizes up to L3 = 143, we did not find any dependence
of the general properties of the disordered magnetic phase on
the lattice size.

The converged disordered magnetic state of lowest en-
ergy always shows a gradual increase of |Sz(k)| at k =
(π/a, π/a, π/a) for �/t � 2 and U/t � 7. This indicates
that weak antiferromagnetic correlations start to build up
among the magnetic moments of some sites. To understand
in depth the origin of the disordered magnetic phase and
its peculiar dependence on �/t and U/t , we analyze some
quantities directly related to the microscopic properties of the
system. More specifically, we consider the mean charge and
the mean magnetic moment per site of on-site energy ε:

n(ε) = 1

Nε

∑
εi=ε

〈n̂i〉 , m(ε) = 1

Nε

∑
εi=ε

〈mi〉. (36)

Nε is there the number of sites with on-site energy equal to ε.
We also compute the following quantity

AF (ε) = 1

2

1

NF

1

Nε

∑
σ=↑↓

∑
α=F

∑
εi=ε

|uαiσ |2 , (37)

where NF is the number of eigenstates, whose eigenvalues are
equal to the Fermi energy, and the sum over α is restricted
to these states. AF (ε) tells us the on-site energy of the states
that contribute to the conductivity in the metallic phase. As
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FIG. 4. Left-hand side: Mean charge and magnetization as a
function of the on-site energy, i.e., n(ε) and m(ε) defined in Eq. (36).
Right-hand side: Histograms displaying the average number of sites
that have a given occupation n̄ between 0 and 2 (the bin width is 0.1).
The results are for �/t = 8 and U/t = 4 (upper panels), �/t = 8
and U/t = 8 (central panels), �/t = 8 and U/t = 12 (lower panels).

explained better in the following, the comparison of m(ε)
and AF (ε) allows us to understand the interplay between
magnetism and metallicity. Additional information on the
microscopic properties and on the behavior of the system
can also be obtained through the histograms displaying the
average number of sites that present any occupation between
0 and 2. These tell us how the charge is shared among the
different sites, i.e., how many sites of the lattice are on average
(almost) empty, half filled, and fully filled. We distinguish
three different cases: large disorder, moderate disorder, and
low disorder.

1. Large disorder

In the first place, we examine the limiting case of very large
disorder. Figure 4 shows the curve n(ε) and m(ε) at �/t = 8
and for U/t = 4, U/t = 8, and U/t = 12. The results are
averaged over 40 different disorder realizations. For such large
�/t , the system is an Anderson insulator (see Fig. 2). For
U/t = 4, n(ε) increases monotonically from 0 to 2 when ε

decreases. Sites with very high on-site energies are empty,
while sites with very low on-site energy are doubly occupied.
Intermediate values of ε correspond to partially filled sites. In
Fig. 2, m(ε) shows a peak when n(ε) ∼ 1, indicating that the
half-filled sites, i.e., the sites with one electron, are the mostly
spin polarized and they play a fundamental role in determining
the magnetic properties of the model. The histogram of the
site occupations shows that half of the sites of the lattice are
completely (or almost completely) empty, while the others
are partially filled. There are few sites almost half filled,
which sustain a magnetic moment. The appearance of these
half-filled states drives the paramagnetic-magnetic transition.

The physics becomes much more interesting when we
make U/t larger. As shown in Fig. 4, for U/t = 8 and U/t =
12, the curve n(ε) is characterized by three plateaus for which
we have n ∼ 0, n ∼ 1 and n ∼ 2. At the same time, the
histogram presents three peaks indicating that the majority of
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FIG. 5. Left-hand side: Mean charge n(ε), magnetization m(ε),
and AF (ε) (multiplied by 100). Right-hand side: Histograms dis-
playing the average number of sites that have a given occupation n̄
between 0 and 2 (the bin width is 0.1). The results are for �/t = 3
and U/t = 6 (upper panels), �/t = 3 and U/t = 10 (lower panels).

the sites are either empty, singly, or doubly occupied. This is
the result of the Hubbard-like interaction, which favors integer
site occupation. Since empty and doubly occupied sites do not
carry any magnetic moment, the only sites contributing to the
magnetic properties are the half-filled ones, which assume an
antiferromagnetic Neel-type order. In this case, |Sz(k)| indeed
features a peak at k = (π/a, π/a, π/a) similar to that in the
example of Fig. 1(b).

2. Moderate disorder

Next we make �/t smaller and the system becomes metal-
lic (see Fig. 2). Figure 5 displays n(ε) and m(ε) for U/t = 6
and U/t = 10 with �/t = 3. We now note that sites almost
never have on-site energies so low or so high to be either
doubly occupied or empty. The curve n(ε) also becomes less
steep between plateaus. This is also reflected in the histograms
of the site occupations. There are no sites with double oc-
cupancy and the number of almost empty sites is strongly
reduced as compared to the histograms of Fig. 4. Furthermore,
although the majority of the sites have occupancy equal to
either 0.1 − 0.2 or 1, we have many sites with occupancy
between 0.3 and 0.6.

Figure 5 also shows AF (ε) (multiplied by 100 for better dis-
play). This presents local maxima in regions where n(ε) varies
rapidly and a minimum in correspondence of the plateau for
n ∼ 1. This behavior is very interesting because it indicates
that singly occupied sites, which carry large magnetic mo-
ments, do not contribute strongly to the state at the Fermi level
and hence to the conductivity of the system. Charge transport
can occur only through sites with mean charge density n(ε) ∼
0.2 − 0.6. In other words, the system has two components:
the first is insulating and almost completely spin polarized,
while the second is metallic (or at least electrons are more
delocalized). This result, which is also found at half-filling
[32], is clearly reminiscent of the two-fluids model [35].
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FIG. 6. Left-hand side: Mean charge n(ε), magnetization m(ε),
and AF (ε) (multiplied by 100). Right-hand side: Histograms dis-
playing the average number of sites that have a given occupation n̄
between 0 and 2 (the bin width is 0.1). The results are for: �/t = 1
and U/t = 6 (upper panels), �/t = 1 and U/t = 10 (lower panels).

Again, with increasing U/t , the appearance of a large number
of singly occupied sites produces an enhanced peak of |Sz(k)|
at k = (π/a, π/a, π/a). This originates from the develop-
ment of antiferromagnetic order between those sites, which
belong to the insulating component of the two fluids. For large
disorder, as we discussed previously when explaining Fig. 4,
the metallic component is strongly suppressed since very few
sites have an intermediate charge density n between 0.2 and
0.6 and the physics is completely dominated by the insulating
component of the two fluids.

3. Low disorder

Finally, in Fig. 6 we display the results for �/t = 1 and
for U/t = 6. In this range, n(ε) changes monotonically and
smoothly between about 0.2 and 0.8. As shown by the his-
togram, we find that most of the sites have an occupation equal
to ∼0.4. Furthermore, the function AF (ε), plotted in Fig. 6,
is a slowly varying function. This indicates that all the sites
have nonzero weight in the state at the Fermi level and that the
metallic component of the two fluids dominates the physics.
Indeed, no enhanced peak for |Sz(k)| at k = (π/a, π/a, π/a)
can be found. A sign of the tendency of the system to the
formation of the two fluids can be seen only by increasing
the interaction up to U/t = 10 (see Fig. 6). The histogram of
site occupations indicates that the system starts to decompose
into two subsystems with different site occupancy (n ∼ 0.2
and n ∼ 0.7). At the same time, AF (ε) shows an increasing
weight coming from sites with n ∼ 0.5.

IV. MAGNETIC EXCITATIONS

In this section, we investigate the magnetic excitations. We
distinguish two types of magnetic excitations: spin waves (of
collective character) and Stoner excitations (single particle
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FIG. 7. DOS of the BSE (black line) and the MF excitations (red dashed line) for �/t = 2, U/t = 4 (a), �/t = 2, U/t = 8 (b), �/t = 2,
U/t = 12 (c), �/t = 4, U/t = 4 (d), �/t = 4, U/t = 8 (e), �/t = 4, U/t = 12 (f), �/t = 6, U/t = 4 (g), �/t = 6, U/t = 8 (h), �/t = 6,
U/t = 12 (i). The DOS is averaged over 50 disorder configurations.

excitations). The main question is whether spin waves can
emerge in an impurity band.

The energy of a Stoner excitation is readily obtained
from the difference between the energy of an unoccupied
MF state and the energy of an occupied one of opposite
spin, ωMF

n = Epσ − Eh−σ . In contrast, the collective magnetic
excitations are calculated by solving the BSE. We employ
both implementations of the BSE described in Sec. II C. Here,
at variance with the previous section, we consider lattices
of linear dimension L = 4 and L = 6. The diagonalization
of the RPA matrix introduced in Eq. (25) is an O(N3) op-
eration and the calculation of the excitation energies is very
fast for L = 4. However, we cannot perform calculations
for lager lattice sizes because of the high computer-memory
requirements. The results for L = 6 are therefore obtained
by using Eq. (16). Unfortunately, the construction of the MF
transverse spin susceptibility is an operation that scales as
O(N4) and, therefore, calculations for larger lattices are found
to be unfeasible with our implementation and the available
computational resources. At the qualitative level, we do not
find any difference in the results obtained for L = 4 or 6.

We calculate the excitations density of state (DOS) as

d (ω) = 1

L3

∑
n

δ(ω − ωn), (38)

with ωn being the energy of either a Stoner excitation, ωn =
ωMF

n , or of a collective magnetic excitation calculated through
the BSE. The results are shown in Fig. 7 for various values of

U/t and �/t after having averaged over 50 disorder realiza-
tions.

Both types of excitations extend down to ω = 0. In the case
of the Stoner excitations, this is a consequence of the metallic
or Anderson insulating nature of the MF ground state, which
implies that there is no energy gap separating the MF highest
occupied and lowest unoccupied electronic states. In contrast,
in the case of the collective excitations, the zero energy modes
are Goldstone modes.

For U/t = 4, the MF DOS and the BSE DOS are almost
indistinguishable [see Figs. 7(a), 7(d) and 7(g)]. Hence, the
magnetic excitations are only of Stoner type and there are
no spin waves. This can be further observed in Fig. 8, where
only the low energy part of the DOS, calculated for L = 6, is
displayed. In contrast, for larger U/t , the spectrum obtained
from the BSE shows a clear feature at 0 � ω � 1, which
is absent in the MF results. This indicates that spin waves
dominate the low-energy region of the magnetic-excitations
spectrum before being absorbed into the Stoner band.

A careful examination of the components of the eigen-
vectors of the RPA matrix, {X n

p↑h↓,Y n
p↓h↑}, can also be used

to determine whether the BSE excitations differ drastically
from the MF ones. Equations (26) show that if a mode
of energy ωn is a pure Stoner excitation, only one of the
components |X n

p↑h↓| (|Y n
p↓h↑|) will be equal to 1 and all the

others will vanish. In contrast, for a spin wave, we expect
many components different from zero and with an amplitude
much smaller than unity. In Fig. 9, we plot the absolute value
of the largest component of each eigenvector of the RPA
matrix, |VMAX(ωn)| = max{|X n

p↑h↓|, |Y n
p↓h↑|}, as a function of
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FIG. 8. DOS of the BSE (black line) and the MF excitations (red dashed line) for lattices with L = 6 and �/t = 2, U/t = 4 (a), �/t = 2,
U/t = 8 (b), �/t = 2, U/t = 12 (c), �/t = 4, U/t = 4 (d), �/t = 4, U/t = 8 (e), �/t = 4, U/t = 12 (f), �/t = 6, U/t = 4 (g), �/t = 6,
U/t = 8 (h), �/t = 6, U/t = 12 (i). The DOS is averaged over 50 disorder configurations.

the energy ω/t . Figure 9(a), which refers to �/t = 2 and
U/t = 4, 8, 12, shows very clearly the difference between the
excitations for small and large interaction strengths. On the
one hand, |VMAX(ω)| is a smooth function for U/t = 4 and
has an almost constant value of about 0.6. On the other hand,
it jumps from about 0.2 to about 0.6 at ω ∼ 1 for U/t = 8
and U/t = 12. This indicates a change in the character of
the spin excitations and reflects the low-energy feature that is
observed in the BSE spectrum and that is absent in the MF one

FIG. 9. |VMAX(ωn)| for �/t = 2 (a) and �/t = 6 (b). The black
line corresponds to U/t = 4, the red one to U/t = 8, and the
green one to U/t = 12. The results are averaged over 50 disorder
configurations.

(compare with the discussion about Figs. 7 and 8). The same
holds true also for �/t = 6, in spite of the slight decrease of
|VMAX(ω)| for U/t = 4 at low ω and the less steep profile for
U/t = 8, 12 [see Fig. 9(b)].

Further insights into the nature of the BSE excitations can
be obtained by looking at their spatial distribution. By using
the unitary transformations Eqs. (5) and (6) we can rewrite the
operators Q̂†

n defined in Eqs. (26), as

Q̂†
n =

∑
ij

U n
ij ĉ†

i↓ĉj↑, (39)

where the coefficients

U n
ij =

∑
p↑,h↓

X n
p↑h↓u∗

pj↑uhi↓ −
∑
p↓,h↑

Y n
p↓h↑u∗

hj↓upi↑ (40)

are normalized so that
∑

ij |U n
ij |2 = 1. As U n∗

ij =
〈nRPA|ĉ†

i↓ĉj↑|0RPA〉 (for ωn > 0), we distinguish two
“kinds” of collective excitations: (1) the pure spin-wave
excitations, whose spatial probability amplitude is given
by U n∗

ii = 〈nRPA|Ŝ−
i |0RPA〉, while U n∗

ij ≈ 0 for i �= j; 2) the
excitations that present some degrees of charge transfer and
whose spatial probability amplitude is given by U n∗

ij �= 0 with
i �= j. To reveal the nature of the excitations we therefore
calculate Sn = ∑

i |U n
ii |2. When Sn � 1 the nth excitation

involves charge transfer, while for Sn ≈ 1 it is a pure spin
wave. The value of Sn for excitations of energies 0 < ωn < 1
is reported in Table I for some representative points in the
(�/t,U/t ) phase diagram. For comparison, we have also
calculated the weights of the Stoner excitations in the on-site
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TABLE I. Sn of the BSE excitations of energies 0 < ωn < 1 for
selected points in the (�/t,U/t ) phase diagram. The results are
averaged over 50 disorder configurations.

U/t = 4 U/t = 8 U/t = 12

�/t = 2 0.05 0.32 0.3
�/t = 4 0.1 0.43 0.67
�/t = 6 0.21 0.48 0.69

spin-flip subspace. This is given by

SMF
n =

∑
i

|〈nMF|ĉ†
i↓ĉi↑|0MF〉|2 =

∑
i

|uhi↑|2|upi↓|2 (41)

for an excitation of energy ωMF
n = Ep↓ − Eh↑. The results are

listed in Table II.
We can observe that Sn is of the same order of magnitude

of SMF
n for U/t = 4 and �/t = 4. This indicates that the

spin excitations are not just characterized by a large off-site
contribution, but are mainly of Stoner type. In contrast, upon
increasing either �/t or U/t , Sn becomes at least one order of
magnitude larger than SMF

n . Low-energy excitations then tend
to become true spin-wave excitations. On the one hand, the
reduction of the charge-transfer character of the excitations
for large disorder reflects the increase of the localization
of the MF states. On the other hand, when U/t is large,
excitations involving charge-transfer are projected out of the
spectrum. This analysis complements the calculation of the
DOS and gives a more quantitative and microscopic view on
the magnetic excitations.

V. CONCLUSIONS AND PERSPECTIVES

Our results show that an impurity band described by the
AHM undergoes a magnetic transition at specific values of
U/t and of �/t . This transition is not an artifact of the small
size of the lattices considered, but it is robust against finite-
size scaling and it survives in the thermodynamic limit. Two
different behaviors can be identified in the magnetic phase:

(1) For small values of the interaction strength (i.e., U/t �
4) the system is metallic or Anderson insulating. Most of the
sites are filled with less than one electron. Only very few
sites host one full electron and develop a magnetic moment.
However, these magnetic moments are very diluted and no
long-range magnetic order (ferromagnetic or antiferromag-
netic) is found. The system has then a rather “disordered”
magnetic structure. A detailed analysis of this magnetic phase
goes beyond the scope of the present work.

TABLE II. SMF
n of the MF excitations of energies 0 < ωMF

n < 1
for selected points in the (�/t,U/t ) phase diagram. The results are
averaged over 50 disorder configurations.

U/t = 4 U/t = 8 U/t = 12

�/t = 2 0.02 0.01 0.01
�/t = 4 0.02 0.008 0.005
�/t = 6 0.02 0.009 0.004

(2) For large values of the interaction strength, namely for
U/t > 4, there are many sites, where the electrons are strongly
localized. Large magnetic moments develop at such sites. An
antiferromagnetic order is established between some of those
sites and a clear spin-wave feature emerges in the low-energy
region of the spectrum of the magnetic excitations. At the
same time, there are also a cluster of sites where electrons can
be more delocalized and no magnetic moments appear. This
“phase-separation” between the lattice sites clearly reminds
us of the two-fluid model proposed originally for doped Si.

We suggest that the second scenario may be relevant for
impurity bands in OSCs, where U/t is generally large because
of the weak electronic screening and the small overlap of the
impurity wave functions.

Within the two-fluid picture, we expect that if a region with
delocalized electrons percolates through the entire system,
a path for charge transport will be established. Conversely,
when the concentration of localized magnetic moments be-
comes large, spin waves will enable transport of pure spin
currents. A quantitative estimate of the impurities required to
observe charge and spin transport in real devices is unfortu-
nately not possible from the calculations we have presented
here as it would require multiscale simulations with material-
specific parameters obtained from first principles [60–62].
This task goes beyond the goal of the paper and we leave it
for future studies.

Besides addressing the transport characteristics, we be-
lieve that important progress in understanding the role of the
impurity bands in OSCs may come from the study of the
magnetic properties. For example, the extension of our work
to finite temperature may provide predictions for the static
and dynamic susceptibility, two quantities that can be directly
validated by experiments.

The two-fluid picture shares some similarities with the
model proposed by Yu [27,28]. In both cases, the charge
diffusion is due to hopping, while the spin diffusion is me-
diated by the magnetic coupling between localized magnetic
moments. Nonetheless, there are some notable differences.
In the model of Yu, disorder is not explicitly taken into
account and each impurity is assumed to present a localized
magnetic moment coupled via direct exchange to that of the
neighboring impurities. In contrast, the magnetic moments
in the two-fluid picture form only at some impurities as a
results of the interplay between disorder and electron-electron
interaction and the magnetic interaction is mostly driven by
super-exchange rather then by direct exchange.

In conclusion, both theory and experiments are now con-
verging toward the understanding that spin transport in hybrid
organic spin valves comprising Alq3, and maybe also in
other OSCs, proceeds via an impurity band. The challenge
ahead for theory consists of extending the current models
to include material-specific properties obtained from first-
principles calculations to perform quantitative comparisons
with the experimental results.

ACKNOWLEDGMENTS

A.D. was supported by the European Commission through
the projects HINTS (Project No. NMP3-SL-2011-263104),
ACMOL (FET Young Explorers, Project No. 618082), and the

094413-11



ANDREA DROGHETTI AND STEFANO SANVITO PHYSICAL REVIEW B 99, 094413 (2019)

Marie Sklodowska-Curie individual fellowship SPINMAN
(No. SEP-210189940). S.S was supported by the European
Research Council (QUEST project) and by Science Foun-

dation Ireland (Grant No. 14/IA/2624). Computational re-
sources were provided by the Trinity Center for High Perfor-
mance Computing.

[1] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S.
Barbanera, Solid State Commun. 122, 181 (2002).

[2] V. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nat. Mater.
8, 707 (2009).

[3] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
[4] Z. H. Xiong, D. Wu, Z. Valy Vardeny, and J. Shi, Nature 427,

821 (2004).
[5] V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P.

Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y.
Zhan, Phys. Rev. B 78, 115203 (2008).

[6] D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.-G. Zhang, T. Z.
Ward, Z. Cheng, and J. Shen, Phys. Rev. Lett. 104, 236602
(2010).

[7] R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, and K. A.
Hutchinson, Phys. Rev. B 81, 195214 (2010).

[8] M. Gobbi, F. Golmar, R. Llopis, F. Casanova, and L. E. Hueso,
Adv. Mater. 23, 1609 (2011)

[9] X. Sun, M. Gobbi, A. Bedoya-Pinto, O. Txoperena, F. Golmar,
R. Llopis, A. Chuvilin, F. Casanova, and L. E. Hueso, Nat.
Commun. 4, 2794 (2013).

[10] T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny, Science 337,
204 (2012).

[11] M. Cinchetti, K. Heimer, J.-P. Wüstenberg, O. Andreyev, M.
Bauer, S. Lach, C. Ziegler, Y. Gao, and M. Aeschlimann, Nat.
Mater. 8, 115 (2009).

[12] A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P.
Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K.
Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C.
Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha,
and E. Morenzoni, Nat. Mater. 8, 109 (2009).

[13] Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti,
P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94,
053301 (2009).

[14] Y. Q. Zhan, I. Bergenti, L. E. Hueso, V. Dediu, M. P. de Jong,
and Z. S. Li, Phys. Rev. B 76, 045406 (2007).

[15] C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C.
Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff,
and A. Fert, Nat. Phys. 6, 615 (2010).

[16] S. Sanvito, Nat. Phys. 6, 562 (2010).
[17] P. P. Ruden, J. Appl. Phys. 95, 4898 (2004).
[18] S. Steil, N. Großmann, M. Laux, A. Ruffing, D. Steil, M.

Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and
M. Aeschlimann, Nat. Phys. 9, 242 (2013).

[19] S. Müller, S. Steil, A. Droghetti, N. Großmann, S. Sanvito,
V. Meded, A. Magri, B. Schäfer, O. Fuhr, M. Ruben, M.
Cinchetti, and M. Aeschlimann, New. J. Phys. 15, 113054
(2013).

[20] A. Droghetti, S. Steil, N. Großmann, N. Haag, H. Zhang, M.
Willis, W. P. Gillin, A. J. Drew, M. Aeschlimann, S. Sanvito,
and M. Cinchetti, Phys. Rev. B 89, 094412 (2014).

[21] A. Droghetti, P. Thielen, I. Rungger, N. Haag, N. Großmann,
J. Stöckl, B. Stadtmüller, M. Aeschlimann, S. Sanvito, and M.
Cinchetti, Nat. Commun. 7, 12668 (2016).

[22] A. Droghetti, I. Rungger, M. Cinchetti, and S. Sanvito, Phys.
Rev. B 91, 224427 (2015).

[23] L. E. Hueso, I. Bergenti, A. Riminucci, Y. Q. Zhan, and V.
Dediu, Adv. Mater. 19, 2639 (2007).

[24] M. Prezioso, A. Riminucci, I. Bergenti, P. Graziosi, D. Brunel,
and V. A. Dediu, Adv. Mater. 23, 1371 (2011).

[25] A. Droghetti, M. Cinchetti, and S. Sanvito, Phys. Rev. B 89,
245137 (2014).

[26] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J.
van Wees, Phys. Rev. B 62, R4790(R) (2000).

[27] Z. G. Yu, Nature Commun. 5, 4842 (2014).
[28] Z. G. Yu, Phys. Rev. Lett. 111, 16601 (2013).
[29] A. Riminucci, P. Graziosi, M. Calbucci, R. Cecchini, M.

Prezioso, F. Borgatti, I. Bergenti, and V. A. Dediu, Appl. Phys.
Lett. 112, 209901 (2018).

[30] I. Bergenti, F. Borgatti, M. Calbucci, A. Riminucci, R. Cecchini,
P. Graziosi, D. A. MacLaren, A. Giglia, J. P. Rueff, D. Ceolin,
L. Pasquali, and V. A. Dediu, ACS Appl. Mater. Interfaces 10,
8132 (2018).

[31] A. Riminucci, Z.-G. Yu, M. Prezioso, R. Cecchini, I. Bergenti,
P. Graziosi, and V. A. Dediu, ACS Appl. Mater. Interfaces 11,
8319 (2019).

[32] M.A. Tusch and D. E. Logan, Phys. Rev. B 48, 14843 (1993).
[33] D. G. Rowan, Y. H. Szczech, M. A. Tusch, and D. E. Logan,

J. Phys.: Condens. Matter 7, 6853 (1995)
[34] M. Milovanovíc, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett.

63, 82 (1989).
[35] M. A. Paalanen, R. N. Bhatt, and S. Sachdev, Physica B 169,

223 (1991).
[36] M. A. Paalanen, S. Sachdev, R. N. Bhatt, and A. E. Ruckenstein,

Phys. Rev. Lett. 57, 2061 (1986).
[37] M. J. Hirsch, D. F. Holcomb, R. N. Bhatt, and M. A. Paalanen,

Phys. Rev. Lett. 68, 1418 (1992).
[38] M. A. Paalanen, J. E. Graebner, R. N. Bhatt, and S. Sachdev,

Phys. Rev. Lett. 61, 597 (1988).
[39] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982).
[40] D. Sun, E. Ehrenfreund, and Z. V. Vardeny, Chem. Commin 50,

1781 (2014).
[41] S. Watanabe, K. Ando, K. Kang, S. Mooser, Y. Vaynzof, H.

Kurebayashi, E. Saitoh, and H. Sirringhaus, Nat. Phys. 10, 308
(2014).

[42] D. Sun, K. J. van Schooten, M. Kavand, H. Malissa, C. Zhang,
M. Groesbeck, C. Boehme, and Z. V. Vardeny, Nat. Mater. 15,
863 (2016).

[43] D. Sun, C. M. Kareis, K. J. van Schooten, W. Jiang, G. Siegel,
M. Kavand, R. A. Davidson, W. W. Shum, C. Zhang, H. Liu,
A. Tiwari, C. Boehme, F. Liu, P. W. Stephens, J. S. Miller, and
Z. V. Vardeny, Phys. Rev. B. 95, 054423 (2017).

[44] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism
(Springer-Verlag, Berlin, 1985).

[45] J. W. Negele and H. Orland, Quantum Many-Particle Sys-
tem (Advanced Book Program, Westview Press, Boulder, CO,
1998).

094413-12

https://doi.org/10.1016/S0038-1098(02)00090-X
https://doi.org/10.1016/S0038-1098(02)00090-X
https://doi.org/10.1016/S0038-1098(02)00090-X
https://doi.org/10.1016/S0038-1098(02)00090-X
https://doi.org/10.1038/nmat2510
https://doi.org/10.1038/nmat2510
https://doi.org/10.1038/nmat2510
https://doi.org/10.1038/nmat2510
https://doi.org/10.1039/c1cs15047b
https://doi.org/10.1039/c1cs15047b
https://doi.org/10.1039/c1cs15047b
https://doi.org/10.1039/c1cs15047b
https://doi.org/10.1038/nature02325
https://doi.org/10.1038/nature02325
https://doi.org/10.1038/nature02325
https://doi.org/10.1038/nature02325
https://doi.org/10.1103/PhysRevB.78.115203
https://doi.org/10.1103/PhysRevB.78.115203
https://doi.org/10.1103/PhysRevB.78.115203
https://doi.org/10.1103/PhysRevB.78.115203
https://doi.org/10.1103/PhysRevLett.104.236602
https://doi.org/10.1103/PhysRevLett.104.236602
https://doi.org/10.1103/PhysRevLett.104.236602
https://doi.org/10.1103/PhysRevLett.104.236602
https://doi.org/10.1103/PhysRevB.81.195214
https://doi.org/10.1103/PhysRevB.81.195214
https://doi.org/10.1103/PhysRevB.81.195214
https://doi.org/10.1103/PhysRevB.81.195214
https://doi.org/10.1002/adma.201004672
https://doi.org/10.1002/adma.201004672
https://doi.org/10.1002/adma.201004672
https://doi.org/10.1002/adma.201004672
https://doi.org/10.1038/ncomms3794
https://doi.org/10.1038/ncomms3794
https://doi.org/10.1038/ncomms3794
https://doi.org/10.1038/ncomms3794
https://doi.org/10.1126/science.1223444
https://doi.org/10.1126/science.1223444
https://doi.org/10.1126/science.1223444
https://doi.org/10.1126/science.1223444
https://doi.org/10.1038/nmat2334
https://doi.org/10.1038/nmat2334
https://doi.org/10.1038/nmat2334
https://doi.org/10.1038/nmat2334
https://doi.org/10.1038/nmat2333
https://doi.org/10.1038/nmat2333
https://doi.org/10.1038/nmat2333
https://doi.org/10.1038/nmat2333
https://doi.org/10.1063/1.3078274
https://doi.org/10.1063/1.3078274
https://doi.org/10.1063/1.3078274
https://doi.org/10.1063/1.3078274
https://doi.org/10.1103/PhysRevB.76.045406
https://doi.org/10.1103/PhysRevB.76.045406
https://doi.org/10.1103/PhysRevB.76.045406
https://doi.org/10.1103/PhysRevB.76.045406
https://doi.org/10.1038/nphys1688
https://doi.org/10.1038/nphys1688
https://doi.org/10.1038/nphys1688
https://doi.org/10.1038/nphys1688
https://doi.org/10.1038/nphys1714
https://doi.org/10.1038/nphys1714
https://doi.org/10.1038/nphys1714
https://doi.org/10.1038/nphys1714
https://doi.org/10.1063/1.1689753
https://doi.org/10.1063/1.1689753
https://doi.org/10.1063/1.1689753
https://doi.org/10.1063/1.1689753
https://doi.org/10.1038/nphys2548
https://doi.org/10.1038/nphys2548
https://doi.org/10.1038/nphys2548
https://doi.org/10.1038/nphys2548
https://doi.org/10.1088/1367-2630/15/11/113054
https://doi.org/10.1088/1367-2630/15/11/113054
https://doi.org/10.1088/1367-2630/15/11/113054
https://doi.org/10.1088/1367-2630/15/11/113054
https://doi.org/10.1103/PhysRevB.89.094412
https://doi.org/10.1103/PhysRevB.89.094412
https://doi.org/10.1103/PhysRevB.89.094412
https://doi.org/10.1103/PhysRevB.89.094412
https://doi.org/10.1038/ncomms12668
https://doi.org/10.1038/ncomms12668
https://doi.org/10.1038/ncomms12668
https://doi.org/10.1038/ncomms12668
https://doi.org/10.1103/PhysRevB.91.224427
https://doi.org/10.1103/PhysRevB.91.224427
https://doi.org/10.1103/PhysRevB.91.224427
https://doi.org/10.1103/PhysRevB.91.224427
https://doi.org/10.1002/adma.200602748
https://doi.org/10.1002/adma.200602748
https://doi.org/10.1002/adma.200602748
https://doi.org/10.1002/adma.200602748
https://doi.org/10.1002/adma.201003974
https://doi.org/10.1002/adma.201003974
https://doi.org/10.1002/adma.201003974
https://doi.org/10.1002/adma.201003974
https://doi.org/10.1103/PhysRevB.89.245137
https://doi.org/10.1103/PhysRevB.89.245137
https://doi.org/10.1103/PhysRevB.89.245137
https://doi.org/10.1103/PhysRevB.89.245137
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1038/ncomms5842
https://doi.org/10.1038/ncomms5842
https://doi.org/10.1038/ncomms5842
https://doi.org/10.1038/ncomms5842
https://doi.org/10.1103/PhysRevLett.111.016601
https://doi.org/10.1103/PhysRevLett.111.016601
https://doi.org/10.1103/PhysRevLett.111.016601
https://doi.org/10.1103/PhysRevLett.111.016601
https://doi.org/10.1063/1.5038728
https://doi.org/10.1063/1.5038728
https://doi.org/10.1063/1.5038728
https://doi.org/10.1063/1.5038728
https://doi.org/10.1021/acsami.7b16068
https://doi.org/10.1021/acsami.7b16068
https://doi.org/10.1021/acsami.7b16068
https://doi.org/10.1021/acsami.7b16068
https://doi.org/10.1021/acsami.8b20423
https://doi.org/10.1021/acsami.8b20423
https://doi.org/10.1021/acsami.8b20423
https://doi.org/10.1021/acsami.8b20423
https://doi.org/10.1103/PhysRevB.48.14843
https://doi.org/10.1103/PhysRevB.48.14843
https://doi.org/10.1103/PhysRevB.48.14843
https://doi.org/10.1103/PhysRevB.48.14843
https://doi.org/10.1088/0953-8984/7/34/010
https://doi.org/10.1088/0953-8984/7/34/010
https://doi.org/10.1088/0953-8984/7/34/010
https://doi.org/10.1088/0953-8984/7/34/010
https://doi.org/10.1103/PhysRevLett.63.82
https://doi.org/10.1103/PhysRevLett.63.82
https://doi.org/10.1103/PhysRevLett.63.82
https://doi.org/10.1103/PhysRevLett.63.82
https://doi.org/10.1016/0921-4526(91)90233-5
https://doi.org/10.1016/0921-4526(91)90233-5
https://doi.org/10.1016/0921-4526(91)90233-5
https://doi.org/10.1016/0921-4526(91)90233-5
https://doi.org/10.1103/PhysRevLett.57.2061
https://doi.org/10.1103/PhysRevLett.57.2061
https://doi.org/10.1103/PhysRevLett.57.2061
https://doi.org/10.1103/PhysRevLett.57.2061
https://doi.org/10.1103/PhysRevLett.68.1418
https://doi.org/10.1103/PhysRevLett.68.1418
https://doi.org/10.1103/PhysRevLett.68.1418
https://doi.org/10.1103/PhysRevLett.68.1418
https://doi.org/10.1103/PhysRevLett.61.597
https://doi.org/10.1103/PhysRevLett.61.597
https://doi.org/10.1103/PhysRevLett.61.597
https://doi.org/10.1103/PhysRevLett.61.597
https://doi.org/10.1103/PhysRevLett.48.344
https://doi.org/10.1103/PhysRevLett.48.344
https://doi.org/10.1103/PhysRevLett.48.344
https://doi.org/10.1103/PhysRevLett.48.344
https://doi.org/10.1039/C3CC47126H
https://doi.org/10.1039/C3CC47126H
https://doi.org/10.1039/C3CC47126H
https://doi.org/10.1039/C3CC47126H
https://doi.org/10.1038/nphys2901
https://doi.org/10.1038/nphys2901
https://doi.org/10.1038/nphys2901
https://doi.org/10.1038/nphys2901
https://doi.org/10.1038/nmat4618
https://doi.org/10.1038/nmat4618
https://doi.org/10.1038/nmat4618
https://doi.org/10.1038/nmat4618
https://doi.org/10.1103/PhysRevB.95.054423
https://doi.org/10.1103/PhysRevB.95.054423
https://doi.org/10.1103/PhysRevB.95.054423
https://doi.org/10.1103/PhysRevB.95.054423


IMPURITY BAND MAGNETISM IN ORGANIC … PHYSICAL REVIEW B 99, 094413 (2019)

[46] C. Gaul, S. Hutsch, M. Schwarze, K. S. Schellhammer, F.
Bussolotti, S. Kera, G. Cuniberti, K. Leo, and F. Ortmann, Nat.
Mater. 17, 439 (2018).

[47] H. Oberhofer, K. Reuter, and J. Blumberger, Chem. Rev. 117,
10319 (2017).

[48] F. Ortmann, F. Bechstedt, and K. Hannewald, Phys Status Solidi
248, 511 (2011).

[49] R. M. White, Quantum Theory of Magnetism: Magnetic Prop-
erties of Materials (Springer-Verlag, Berlin, 2007).

[50] S. Doniach and E. H. Sondheimer, Green’s Functions for Solid
State Physicists (Imperial College Press, London, 1998).

[51] Y. H. Szczech, M. A. Tusch, and D. E. Logan, J. Phys.:
Condens. Matter 9, 9621 (1997).

[52] D. J. Rowe, Nuclear Collective Motion: Models and Theory
(Methuen, London, 1970)

[53] P. Ring and P. Schuck, The Nuclear Many-Body Problem, 3rd
ed. (Springer-Verlag, Berlin, 2004).

[54] A. Droghetti, Ph.D. thesis, Trinity College, Dublin, 2012.

[55] K. Byczuk, W. Hofstetter and D. Vollhardt, Anderson Localiza-
tion vs. Mott-Hubbard Metal-Insulator Transition in Disordered,
Interacting Lattice Fermion Systems in 50 Years of Anderson Lo-
calization, edited by E. Abrahams (World Scientific, Singapore,
2010), Chap. 20; also available in Int. J. Mod. Phys. B 24, 1727
(2010).

[56] D. R. Penn, Phys. Rev. 142, 350 (1966).
[57] C. Dasgupta and J. W. Halley, Phys. Rev. B 47, 1126

(1993).
[58] M. Berciu and R. N. Bhatt, Phys. Rev. B 69, 045202 (2004).
[59] T. M. Chang, J. D. Bauer, and J. L. Skinner, J. Chem. Phys. 93,

8973 (1990).
[60] C. Motta and S. Sanvito, J. Chem. Theo. Comp. 10, 4624

(2014).
[61] S. Roychoudhury and S. Sanvito, Phys. Rev. B 95, 085126

(2017).
[62] S. Roychoudhury and S. Sanvito, Phys. Rev. B 98, 125204

(2018).

094413-13

https://doi.org/10.1038/s41563-018-0030-8
https://doi.org/10.1038/s41563-018-0030-8
https://doi.org/10.1038/s41563-018-0030-8
https://doi.org/10.1038/s41563-018-0030-8
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1021/acs.chemrev.7b00086
https://doi.org/10.1002/pssb.201046278
https://doi.org/10.1002/pssb.201046278
https://doi.org/10.1002/pssb.201046278
https://doi.org/10.1002/pssb.201046278
https://doi.org/10.1088/0953-8984/9/44/017
https://doi.org/10.1088/0953-8984/9/44/017
https://doi.org/10.1088/0953-8984/9/44/017
https://doi.org/10.1088/0953-8984/9/44/017
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1103/PhysRev.142.350
https://doi.org/10.1103/PhysRev.142.350
https://doi.org/10.1103/PhysRev.142.350
https://doi.org/10.1103/PhysRev.142.350
https://doi.org/10.1103/PhysRevB.47.1126
https://doi.org/10.1103/PhysRevB.47.1126
https://doi.org/10.1103/PhysRevB.47.1126
https://doi.org/10.1103/PhysRevB.47.1126
https://doi.org/10.1103/PhysRevB.69.045202
https://doi.org/10.1103/PhysRevB.69.045202
https://doi.org/10.1103/PhysRevB.69.045202
https://doi.org/10.1103/PhysRevB.69.045202
https://doi.org/10.1063/1.459237
https://doi.org/10.1063/1.459237
https://doi.org/10.1063/1.459237
https://doi.org/10.1063/1.459237
https://doi.org/10.1021/ct500390a
https://doi.org/10.1021/ct500390a
https://doi.org/10.1021/ct500390a
https://doi.org/10.1021/ct500390a
https://doi.org/10.1103/PhysRevB.95.085126
https://doi.org/10.1103/PhysRevB.95.085126
https://doi.org/10.1103/PhysRevB.95.085126
https://doi.org/10.1103/PhysRevB.95.085126
https://doi.org/10.1103/PhysRevB.98.125204
https://doi.org/10.1103/PhysRevB.98.125204
https://doi.org/10.1103/PhysRevB.98.125204
https://doi.org/10.1103/PhysRevB.98.125204



