
PHYSICAL REVIEW B 99, 094411 (2019)

Magnetic phase transitions induced by pressure and magnetic field:
The case of antiferromagnetic USb2

Leonid Sandratskii
Max Planck Institute of Microstructure Physics, D-06120 Halle, Germany

(Received 30 December 2018; revised manuscript received 22 February 2019; published 11 March 2019)

Fascinating phenomena observed under applied pressure and magnetic field are attracting much research
attention. Recent experiments have shown that application of the pressure or magnetic field to the USb2

compound induce the transformations of the ground-state antiferromagnetic (AFM) structure (+ − −+) to,
respectively, ferromagnetic (FM) or ferrimagnetic structures. Remarkably, the magnetic critical temperature
of the FM state, induced by pressure, is more than two times smaller than the Néel temperature of the AFM
ground state. We performed density-functional theory (DFT) and DFT+U studies to reveal the origin of the
unusual magnetic ground state of the system and the driving mechanisms of the phase transitions. We investigate
both the magnetic anisotropy properties and the parameters of the interatomic exchange interactions. To study
pressure-induced effects we carry out calculations for reduced volume and demonstrate that the existence of the
AFM-FM phase transformation depends on the peculiar features of the magnetic anisotropy. We discuss why
the magnetic field that couples directly to the magnetic moments of atoms leads to the phase transition to the
ferrimagnetic state whereas the pressure that does not couple directly to magnetic moments results in the FM
structure. Our work demonstrates how the competition of different physical factors leads to variety of unusual
properties of the antiferromagnetic USb2.
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I. INTRODUCTION

The wide variety of physical properties observed in ura-
nium compounds [1] has been attracting much research atten-
tion to this class of materials. Several factors are responsible
for the broad spectrum of properties. One of the important
factors is the different degree of localization of the U 5 f
electrons extending from very strong in, e.g., UPd3 [2] to rel-
atively weak in, e.g., U2Ni21B6 [3]. Another important factor
is the large spin-orbit coupling (SOC) of the 5 f electrons that
leads to strong competition of the SOC-caused properties such
as magnetic anisotropy (MA) and Dzyaloshinskii-Moriya in-
teraction (DMI) and the properties whose appearance is not
linked to the presence of the SOC such as isotropic exchange
interaction of the Heisenberg type. Because of moderate val-
ues of the magnetic interactions in the uranium compounds
the external pressure and magnetic field reachable in the
modern laboratories are sufficient to initiate various phase
transformations [4–8] whose understanding is an important
tool to gain deeper insight into diverse physics of the systems.

This paper deals with the USb2 compound where recent
high-pressure [9] and high-magnetic field [10] experiments
revealed nontrivial phase transformations. The USb2 has the
crystal structure of the anti-Cu2Sb (Fig. 1) type where the
uranium atoms form layers parallel to the crystallographic ab
plane separated by the layers of Sb atoms [11]. The ground
state of USb2 is a rather special (+ − −+) antiferromagnetic
structure (Fig. 1) that is different from a simpler (+ − +−)
AFM structure observed in the related UBi2 compound [11].
Here “+” and “−” denote the directions of the atomic mo-
ments of the uranium layers parallel and antiparallel to the c
axis, respectively. Within each layer the atomic moments are

parallel to each other. The Néel temperature of USb2 at the
ambient conditions is about 200 K [12].

The Fermi surface of USb2 was studied in de Haas–van
Alphen and Shubnikov–de Haas experiments [13,14]. The
cylindrical form of the Fermi surface was found which was
explained by the layered type of the crystal and magnetic
structure. The first-principle density-functional theory (DFT)
calculation of the band structure and Fermi surface of USb2

was reported in Ref. [15]. This calculation has shown that
in the band structure there are states characterized by strong
hybridization of the U 5 f and Sb 5p atomic orbitals as well as
the U 5 f states with a small admixture of the Sb 5p orbitals.
The cylindrical form of the sheets of the calculated Fermi
surface compares well with the experiment.

An early angle-resolved photoemission spectroscopy
(ARPES) study [12] has shown the dispersion of a narrow
feature near the Fermi level that was present also in the normal
emission experiment. This result reveals that the electronic
structure of USb2 has three-dimensional (3D) character that is
in contrast to the definitely 2D character of the Fermi surface
proposed in Refs. [13,14]. In a later high-resolution ARPES
study, a kink in the 5 f -band dispersion was observed showing
the itinerant character of the 5 f electrons and importance of
the electron correlations [16].

As mentioned above, this paper was motivated by recent
experiments under pressure and magnetic field that revealed
interesting magnetic phase transformations. The applied pres-
sure leads to the first-order-type magnetic phase transition
with the new magnetic state identified as ferromagnetic [9].
In the AFM phase, the increasing pressure leads to a mono-
tonic increase of the Néel temperature up to about 240 K.
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FIG. 1. Magnetic unit cell of the (+ − −+) magnetic structure.
J1, J2, J3 are exchange parameters between corresponding layers of
U atoms.

Remarkably, immediately after the transition to the ferromag-
netic (FM) state the magnetic critical temperature (Tcr) drops
more than two times to about 90 K.

The application of the magnetic field also leads to the
phase transition that was identified as the transition to the
ferrimagnetic (FiM) state of the (+ + +−) type [10]. It is
worth emphasizing that according to this experiment the mag-
netic field that couples directly to magnetic moments leads
to the reversal of only one of the two antiparallel atomic
moments in the magnetic unit cell whereas the pressure that
does not directly couple to the atomic moments results in the
FM structure with all uranium moments being parallel.

The combination of the experimental properties including a
special (+ − −+) ground-state magnetic structure, the phase
transitions to two different uncompensated magnetic struc-
tures induced by pressure and magnetic field, and strong drop
of the critical temperature in the FM phase compared to the
ground-state AFM phase reveal the competition of various
physical trends and make USb2 a very interesting object of
theoretical study.

A microscopic mechanism of the unusual antiferromag-
netic order and pressure-induced antiferromagnetic (AFM)-
FM transition was discussed in Ref. [17]. A relatively simple
model was considered where the 3D crystal was replaced by
a film parallel to the ab plane and containing three layers
of the U atoms. In the mathematical treatment these three
layers were considered as two overlapping subsystems con-
taining two U layers each. The Hamiltonian of the minimal
model used in Ref. [17] depends on a number of parameters
specifying the energy of the U 5 f level, on-cite Coulomb
interaction of the U 5 f electrons, intersite hopping of the Sb
electrons, relative shift of the bands of two inequivalent Sb
bands, the number of electrons, and the hybridization between
U 5 f and conduction-electron states. The effect of pressure
was introduced through the variation of the hybridization

parameter and the energy of the U 5 f level. It was shown that
within this model the transition from the AFM to FM state can
be obtained.

The goal of the present paper is to advance the under-
standing of the intriguing physics of the USb2 compound on
the basis of the DFT-based calculations. The calculations are
performed for the variety of magnetic configurations allow-
ing us to address experimental phase transitions and extract
valuable information about underlying magnetic interactions.
To investigate the role of the intra-atomic electron correlations
we employ the local-density approximation plus U (LDA+U )
method. To address the high-pressure and high-field experi-
ments we perform calculations with reduced crystal volume
and applied magnetic field, respectively.

The paper is organized as follows. In Sec. II we discuss
computational details. Section III presents the results of the
calculations: Secs. III A and III B consider the magnetic struc-
tures collinear to the c axis for both ambient [18] and con-
tracted lattices, Sec. III C deals with the magnetic anisotropy
properties, Sec. III D presents calculated exchange parameters
and discusses the properties of the critical temperatures, and
Sec. III E describes the results of in-field calculations. In
Sec. IV the conclusions of the paper are formulated.

II. COMPUTATIONAL DETAILS

The calculations are performed with the augmented spher-
ical waves (ASWs) method [19,20] generalized to deal with
noncollinear magnetism, spin-orbit coupling, and applied
magnetic field [21,22]. Both LDA [23] and LDA+U [24,25]
approaches are used [26]. It is known that the LDA has
limitations in the description of the uranium compounds. For
example, the LDA underestimates the values of atomic-orbital
moments [27,28]. Several approaches were suggested to deal
with this LDA shortcoming. One of the approaches consists
in adding so-called orbital polarization terms to the energy
functional and Kohn-Sham equation [29]. Many calculations
were performed using this approach (see, e.g., [28–33]). This
somewhat empirical method allowed us to considerably im-
prove the agreement between calculations and experiments.

A better founded approach to improve the LDA perfor-
mance is the LDA+U method designed for a more consequent
account for the intra-atomic electronic correlations [24–26].
In this paper we employ the LDA+U method in the form
suggested by Dudarev et al. [34]. The method results in the
mσ dependent potential where m is magnetic quantum number
and σ is the spin projection. The potential experienced by
mσ orbital depends on the occupation matrix nmσ,m′σ and is
self-consistently determined in the LDA+U calculations. As
a trend, a higher occupation of a mσ orbital leads to a deeper
potential for this orbital stimulating an enhancement of the
orbital moment. In this respect there is an analogy with the
orbital polarization correction approach [29].

In the calculations we used experimental lattice parameters
given in Ref. [11]. The mesh of k points in the Brillouin zone
was 20 × 20 × 8 for the unit cell containing two layers of
uranium atoms and 20 × 20 × 4 for the unit cell with four
layers of uranium atoms.

To study the effect of pressure we performed calcula-
tions with reduced volume. The magnetic field enters the
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calculations through the Zeeman term with field acting on
both spin and orbital magnetic moments [35].

III. RESULTS

A. Magnetic states collinear to the c axis at ambient pressure

We begin with the study of a number of magnetic con-
figurations (+ − −+), (+ − +−), (+ + −−), (+ + +−),
(+ + ++) with atomic moments collinear to the c axis. We
will use for these structures the notations AFM-II, AFM-I,
AFM-III, FiM, FM, respectively. These magnetic states were
selected as relevant to the experimental findings. The results
of the LDA calculations for the ambient lattice parameters are
given in Table I.

As seen from the second column of Table I, the LDA
calculations give the antiferromagnetic AFM-I structure as
the lowest in energy. The experimental magnetic ground-state
AFM-II has somewhat higher energy. The energy increases for
AFM-III, FiM, and FM configurations. The competition of the
energies of the AFM-I and AFM-II magnetic structures is not
unexpected taking into account that the experimental ground
state of the related compound UBi2 is AFM-I. Obviously,
in the case of USb2 the LDA calculations do not reproduce
correctly the result of the competition between the energies of
the AFM-I and AFM-II structures.

Also the value of the atomic moment of the AFM-II
structure is considerably lower than the experimental value of
1.88μB [11]. In Table I we present calculated spin, orbital,
and total moments of the U atoms. As expected from the
third Hund’s rule, in the case of the U atom the directions of
the spin and orbital moments are opposite. The values of the
atomic moments depend on the magnetic structure. However,
this dependence is moderate. For example, the total moment
varies from 1.04μB to 1.15μB remaining in all cases distinctly
smaller than the experimental value of the moment.

Aiming at solving the problems of LDA, we performed
calculations with the LDA+U method. In Fig. 2 we compare
the U 5 f densities of states (DOS) calculated with LDA and
LDA+U methods for the AFM-II configuration of atomic
moments. The results shown in the figure are obtained for the
ambient lattice and parameter U = 100 mRy. There is clear

TABLE I. The energies and atomic magnetic moments of several
magnetic states collinear to the c axis. The LDA calculations are
performed for ambient lattice. The energy origin is at the energy of
the (+ − −+) structure. In the case of (+ + +−) structure the U
atoms are not equivalent to each other and have somewhat different
magnetic moments. In the table an average value of the atomic
moment is given. The negative values of the spin moments emphasize
their opposite direction with respect to the orbital and total moments.

Atomic moments in μBMagnetic Energy
structure (mRy/U at) spin orbital total

AFM-II (+ − −+) 0 −1.68 2.83 1.15
AFM-I (+ − +−) −0.229 −1.69 2.81 1.12
AFM-III (+ + −−) 0.386 −1.59 2.63 1.04
FiM (+ + +−) 0.265 −1.62 2.72 1.10
FM (+ + ++) 0.895 −1.55 2.64 1.09
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FIG. 2. The U 5 f density of states of the AFM-II configuration
calculated with LDA (a) and LDA+U (b) methods. The results
shown in this figure are obtained for the experimental ambient lattice
parameters. Parameter U = 100 mRy. The positive curves present
the spin-up DOS, the negative curves present the spin-down DOS.
The c axis is the axis of spin quantization. The energy origin is at the
Fermi level.

trend to the lower energy of the occupied states and higher
energy of the empty states.

The LDA+U calculations were performed for several U
values. The data obtained in the calculations are presented in
Fig. 3. The absolute values of both spin and orbital moments
increase with increasing U . The increase of the magnitude
of the orbital moment is distinctly faster than the increase of
the spin moment resulting in monotonic increase of the total
moment as a function of U . The uranium atomic moments
close to the experimental moment are obtained for the U
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FIG. 3. (a) Spin, orbital, and total magnetic moments of the
uranium atoms in the (+ − −+) state as functions of parameter U of
the LDA+U method. Broken horizontal line shows the experimental
value of the atomic moment. (b) Energy difference between (+ −
+−) and (+ − −+) states as a function of U . The calculations are
performed for the ambient lattice parameters.
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values in the interval from 60 to 100 mRy. The U dependence
of the energy difference �E = EAFM-I − EAFM-II is nonmono-
tonic. For U > 90 mRy the AFM-II structure is the lowest in
energy in correspondence with the experiment. The energies
of other three collinear states are distinctly higher than the
energies of the competing AFM-I and AFM-II states and
have the following values in the case of U = 90 mRy: 0.425,
0.504, and 1.033 mRy/U where all energies are counted from
the energy of the AFM-II state. So, the account for on-site
electron correlations within the LDA+U method improves
the agreement with experiment concerning both the value of
the atomic moment and the competition of the energies of the
AFM-II and AFM-I structures.

B. Magnetic structures collinear to the c axis for reduced volume

Aiming to understand the physical nature of the pressure-
induced AFM-FM transition we performed calculations of the
collinear structures considered in Sec. III A for the reduced
crystal volume. We expected that the energy distance between
AFM and FM states will decrease with decreasing volume
and will become zero at a certain critical volume. We did not,
however, obtain such a behavior. In this paper we will discuss
calculations performed for the lattice parameter reduced by
5%. The energy of the FM state remained distinctly higher
than the energy of the AFM-II state. The energy difference of
these two states varied between 0.894 and 1.264 mRy/U for
U varying between 70 and 100 mRy.

To understand the reason for this apparent disagreement
with the experimental observation of the pressure-induced
phase transition we need a more detailed insight into magnetic
interactions than the information provided by the calculations
of few magnetic states with atomic moments collinear to the c
axis. Therefore, in the next step we considerably increase the
number of calculated magnetic states.

The following new types of the magnetic states will be
included into consideration. First, to study the properties of
the MA we calculate collinear magnetic states with atomic
moments aligned along various directions in the crystallo-
graphic ac plane. Second, we perform calculations for se-
lected noncollinear states aiming to obtain more detailed
information on the interatomic exchange interactions.

C. Magnetic anisotropy properties

We continue with the study of the MA. This is achieved
through the evaluation of the energies of the magnetic con-
figurations obtained by the rigid rotation of selected magnetic
states within the ac plane. In these calculations the relative
directions of the atomic moments remain unchanged and only
the orientation of the moments with respect to the crystallo-
graphic axes is varied. Under the assumption of the single-
ion type of the MA, common for all magnetic structures,
similar properties of the energy E (θ ) for different collinear
magnetic configurations should be expected. Here θ is the
rotation angle measured from the c axis. In striking contrast
to this expectation, the LDA calculations give very different
results for the FM and AFM configurations [Figs. 4(a)–4(d)].
For both AFM-I and AFM-II structures the E (θ ) dependence
corresponds well to the picture of single-ion MA: E (θ ) has
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FIG. 4. Energies of magnetic states as functions of angle θ

counted from the c axis. All calculations are performed for ambient
lattice parameters. (a)–(d) U = 0 (LDA) calculations for magnetic
structures (+ − +−), (+ − −+), (+ + +−), (+ + ++), respec-
tively. (e)–(h) The same as in (a)–(d) but for U = 100 mRy. (i)–(n)
The comparison of the E (θ ) curves of AFM-I and FM structures
calculated for various values of parameter U . The values of U are
given in mRy.

the form close to a simple cosine-type function [Figs. 4(a)
and 4(b)]. In contrast to the AFM-I and AFM-II cases, the
calculation for the FM structure gives much weaker energy
variation and the energy minimum at an intermediate direction
between crystallographic c and a axes [Fig. 4(d)] [37]. The
shape and the energy position of the E (θ ) curve for FiM
structure [Fig. 4(c)] is intermediate between corresponding
curves for the AFM and FM structures.

The peculiar behavior of the FM E (θ ) [Fig. 4(d)] indicates
the importance of the interlayer hybridization. Since the po-
sitions of the Sb atoms in the layers above and below a U
atom are shifted in the ab plane with respect to the layers
of the U atoms, the lines connecting a U atom with nearest
Sb atoms are not collinear to the c axis (Fig. 1). Also the
U atoms of adjacent U layers are shifted with respect to
each other in the ab planes. The strong electron hybridization
along the lines connecting nearest atoms can result in the
magnetic easy axis deviating from the c axis. We remark
that in this case the symmetry of the crystal leads to the
presence of equivalent domains with different directions of
the deviation of the magnetization from the c axis. Because
of this symmetry, the average magnetization of all domains
with positive projections of the magnetization on the c axis
will be parallel to the c axis. However, microscopically it is of
crucial importance that the minimum energy corresponds to
the magnetic configuration with canted moments. This result
showing the importance of the interlayer hybridization is in
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correlation with the experimental conclusion [12] that the
electronic structure of USb2 should not be treated as a purely
2D one.

Since, as discussed above, the LDA does not describe
correctly the ground state of USb2 we performed calcula-
tions of the E (θ ) curves also with the LDA+U method.
The obtained changes of the E (θ ) dependencies are large. In
Figs. 4(e)–4(h), we present the E (θ ) curves for the same mag-
netic structures calculated with the LDA+U method and U =
100 mRy. In this case the difference between E (θ ) curves for
the AFM and FM structures becomes much smaller. All four
curves are now closer to each other and to the simple cosine-
type form. The amplitudes of the curves are also rather similar.
There is however a remarkable flat part in the low-θ region
of the FM curve [Fig. 4(h)]. In Figs. 4(i)–4(m) we compare
the AFM-I and FM curves calculated for different U values.
For U = 70 mRy, the FM curve is slightly nonmonotonic
with minimum at θ ∼ 30◦ [Fig. 4(h)]. The minimum becomes
very shallow for U = 80 mRy [Fig. 4(i)] and disappears with
further increase of U [Figs. 4(j) and 4(k)]. What remains is the
flat part of the curve in the low-θ region mentioned above.

It is worth commenting here on the origin of the obtained
strong dependence of the MA properties on the magnetic
configuration and value of parameter U . The reason for this
dependence is the dependence of the electronic structure on
the magnetic configuration and the value of U . The func-
tion E (θ ) is an integral characteristic of the changes in the
electronic structure caused by the variation of angle θ . The
contributions to the E (θ ) from different parts of the electronic
spectrum differ in both sign and value that makes the MA
properties a sensitive result of the complex balance of strongly
compensating each other contributions. The change of the
electronic structure due to the change of the magnetic config-
uration and/or U value influences the balance of contributions
and results in different E (θ ) dependence. Therefore the prop-
erties of the E (θ ) function cannot be predicted without direct
numerical calculation. Because of this, we do not suggest
a qualitative interpretation of the particular features of the
E (θ ) curves treating them as “accidental” consequences of the
complex changes of the electron structure.

To address the high-pressure experiment we performed
calculations of E (θ ) for reduced volume (Fig. 5). A strik-
ing property of the results is reappearance of distinct
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nonmonotonic behavior of E (θ ) in the case of FM structure.
Now it is, however, the feature of the MA obtained with the
LDA+U method. Because of the nonmonotonic character of
the FM curve the energy minimum is shifted from θ = 0 cor-
responding to the c axis to an accidental θ value. With account
for this property we obtain expected competition between
the energies of the AFM and FM states. These calculations
suggest that the competition of the energies of the FM and
AFM states revealed by the high-pressure experiment cannot
be understood if only the magnetic configurations collinear
to the c axis are considered. The position of the minimum of
the FM curve with respect to the minimum of the AFM curve
depends on the U value. For U = 100 mRy, the minimum of
the FM structure is higher. However, with decrease of the U
value to 80 and 70 mRy the relative positions of the minima
change to the opposite. This means that a trend to better
correlation with pressure experiment is obtained for values of
U decreasing with pressure. This trend seems to be physically
plausible since the smaller lattice parameter leading to in-
creased delocalization of the 5 f electrons results in decreasing
on-site electron correlation and therefore smaller U value.

We emphasize that it is just the FM energy becoming lower
than the AFM energy with decreasing volume and not the
FiM energy. In Fig. 5 we present E (θ ) curves for the FiM
structure. Although, for the θ = 0 the FiM state is lower in
energy than the FM one, with account for nonzero θ the FM
energy becomes distinctly lower.

D. Discontinuous change of the magnetic critical temperature

Our next goal is to understand the physical origin of the
strong drop of the magnetic critical temperature after the
pressure-induced AFM-FM transition. In general, the criti-
cal temperature of a given phase of the system depends on
the magnetic excitations of this state. Among characteristics
determining the properties of magnetic excitations are inter-
atomic exchange interactions.

The purpose of this section is to perform estimations
of the exchange interactions between layers of the uranium
atoms and, on this basis, to discuss the features leading to
the observed pressure dependence of the magnetic critical
temperature.

1. Interlayer exchange parameters through the energies of the
collinear magnetic states

First, we will discuss the estimation of the exchange pa-
rameters based on the energies of the four magnetic config-
urations (+ − −+), (+ − +−), (+ + −−), and (+ + ++)
with atomic moments collinear to the c axis. In each of these
four magnetic states the uranium atoms are equivalent to each
other. We consider the model Hamiltonian

H = −
∑

i j

Ji jei · e j, (1)

where Ji j are parameters of the exchange interaction between
atomic layers i and j; ei is the unit vector in the direction of
the atomic moments of layer i [38]. The differences of the
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energies of the four magnetic states calculated per magnetic
unit cell with four U atoms (Fig. 1) are

E2 − E1 = 8(J2 − 2J3), (2)

E3 − E1 = −8(J1 − J2), (3)

E4 − E1 = −8(J1 + J3). (4)

The interlayer exchange parameters J1, J2, J3 are defined in
Fig. 1. Equations (1)–(4) assume that the energy differences of
the magnetic states are solely due to the exchange interaction.
Since the low-energy magnetic structures are antiferromag-
netic it is expected that the exchange parameters estimated
according to Eqs. (2)–(4) are predominantly of the AFM
type. Indeed, all three parameters appear to be negative. For
the LDA calculation (U = 0) we get the following values
of the parameters: J1 = −0.40 mRy, J2 = −0.17 mRy, J3 =
−0.04 mRy. For U = 90 mRy, we get J1 = −0.36 mRy, J2 =
−0.15 mRy, J3 = −0.08 mRy. The relative stability of the
AFM-II and AFM-I structures depends, according to Eq. (2),
on the sign of the difference (J2 − 2J3).

The exchange parameters determined in this section re-
produce the energy differences of several collinear magnetic
states. However, it is not obvious that these parameters can
be used to estimate the energies of the magnetic excitations
about any of the collinear states involved in the estimation. We
need to carry out the calculations that provide the exchange
parameters characterizing the excitations about AFM-II and
FM states since the critical temperatures of these two states
are the quantities we are interested in. Such calculations are
discussed in the next section.

2. Exchange parameters through the energies of small deviations
of atomic moments

The calculations are performed as follows. We chose as
a reference state the collinear configuration we are going to
study and estimate the exchange parameters corresponding to
this state by evaluating the energies of the deviations of the

reference state deviation I deviation II

i

j

FIG. 6. Schematic presentation of the magnetic configurations
used in the estimation of the exchange parameters between ith and
jth layers. Left: Reference state whose exchange interactions are
studied. Only ith and jth layers are distinguished. The rest of the
system is shown by shaded areas. Middle: The atomic moments of
the ith and jth layers deviate by the same angle and in the same
direction. The directions of the atomic moments in the rest of the
system remain unchanged. Right: The atomic moments of the ith and
jth layers deviate by the same angle but in the opposite directions.
The directions of the atomic moments in the rest of the system remain
unchanged.
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FIG. 7. (a) Exchange parameters J1, J2, and J3 as functions of pa-
rameter U calculated for AFM-II state and ambient lattice parameter.
(b) The same as (a) but for the FM structure. (c) The same as (a) but
for contracted lattice. (d) The same as (b) but for contracted lattice.
(e) The mean-field estimation of the magnetic critical temperature
as a function of U for the AFM-II structure for both ambient (solid
black line) and contracted (red broken line) lattices. The left-side
scale of the ordinate axis gives the critical temperature estimated
for the Ising model. The right-side scale of the ordinate axis gives
the critical temperature estimated for the Heisenberg model. (f) The
same as (e) but for the FM structure.

atomic moments from this state. To estimate the exchange
parameter Ji j for the pair of U layers (i, j) we perform calcula-
tions of two noncollinear configurations, shown schematically
in Fig. 6. In the first configuration, the magnetic moments of
both ith and jth layers deviate within the ac plane in the same
direction (middle panel of Fig. 6). Therefore in this case the
moments of the ith and jth layers remain collinear to each
other but become noncollinear to the moments of other layers.
In the second configuration, the deviation directions for the
ith and jth layers are opposite (right panel of Fig. 6). The
deviation angle has in both cases the same value. We assume
that the anisotropy energies connected with the deviations of
the moments are approximately equal for the two configura-
tions and the difference of the energies of these configurations
provides an estimation of the exchange parameter Ji j ,

Ji j = 1
2 (EII − EI )/[1 − cos(2θ )]. (5)

In Figs. 7(a)–7(d) we present the exchange parameters for
AFM-II and FM configurations calculated for four values of
parameter U and both ambient and contracted lattices. In all
calculations we used deviation angle θ = 20◦. The compari-
son of Figs. 7(a) and 7(b) shows that the exchange parameters
calculated for AFM-II and FM structures at ambient volume
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are principally different. Even the signs of the interactions do
not coincide. We also see that these parameters differ from the
parameters obtained in Sec. III D 1 by comparing the energies
of few collinear configurations. Obviously, the parameters
reproducing the relative energies of several collinear states do
not describe the small-angle excitations of any of these states
and cannot be used for the estimation of the magnetic critical
temperature of these states.

The strong difference of the exchange parameters obtained
using the energies of different magnetic configurations is
explained by the fact that we deal with a complex many-
electron system and not with an ideal Heisenberg magnet, all
magnetic configurations of which are described by one and
the same set of the interatomic exchange parameters.

Consideration of the exchange parameters obtained for
contracted lattice [Figs. 7(c) and 7(d)] shows again a large
difference between AFM-II and FM structures. Also the ex-
change parameters calculated for the same structure but differ-
ent volumes differ strongly from each other, which is another
demonstration of the sensitivity of the exchange parameters to
the change in the electronic structure caused by the change of
magnetic configuration, volume, or parameter U .

The analysis of Figs. 7(a)–7(d) shows that the complex
character of the U and volume dependencies of the individual
exchange parameters does not allow us to establish any clear
general trends. In the next step, we will consider the more
integral quantity

J0 =
∑

i=2,3,4

J1i(e1 · ei ) (6)

that determines effective exchange field acting on the atomic
moments. This quantity allows us to make a rough estimate of
the magnetic critical temperature by applying the mean-field-
type formula

Tcr = cJ0/kB, (7)

where c = 1 for the Ising model and c = 1
3 for the Heisenberg

model. The Ising model can be considered as a limit of
infinitely strong uniaxial anisotropy. In contrast, the Heisen-
berg’s expression corresponds to negligible MA. The property
that stronger MA leads to larger critical temperature is well
known (see, e.g., Ref. [39]). The physical background of this
property is a decreased number of the low-energy excitations
in the strongly anisotropic systems.

In Figs. 7(e) and 7(f) we present the magnetic critical tem-
peratures calculated with Eq. (7) for both AFM-II [Fig. 7(e)]
and FM [Fig. 7(f)] structures and for both Ising and Heisen-
berg models. The same value of J0 was used for both models.
The calculations are performed for four values of parameter
U and two values of crystal volume. The consideration of the
blue line in Fig. 7(e) corresponding to the AFM-II structure
of ambient lattice shows that the Ising model overestimates
the value of the critical temperature whereas the Heisenberg
model underestimates its value. Obviously, although the MA
of the system plays an important role, USb2 should not be
treated as an Ising system with infinitely strong MA.

The results for the AFM-II structure presented in Fig. 7(e)
show that for U equal to 70 and 80 mRy the decreased
volume leads to decreased J0 and, correspondingly, decreased
Tcr. For U equal to 90 and 100 mRy, the trend is opposite.

This demonstrates that the magnetic critical temperatures of
the uranium compounds can, in general, both decrease and
increase with applied pressure. In our calculations discussed
in Sec. III A the U values of 90 and 100 mRy give the best
agreement with experiment concerning the description of the
AFM ground state. Therefore the trend obtained for these val-
ues of U seems to be more relevant. This trend correlates with
the experimental observation of increasing Néel temperature
of the AFM-II structure with increasing pressure [9].

The analysis of Fig. 7(f) shows that in the case of the FM
structure the trend in the variation of the critical temperature
with decreasing volume is opposite to the AFM-II case. Here,
for U equal to 70 and 80 mRy Tc increases somewhat and
for 90 and 100 mRy it decreases. For U = 100 mRy the
decrease is very strong and the estimation of Tc becomes
negative indicating the instability of the FM state. This result
in combination with the results of Sec. III C lead to the
conclusion that for the reduced volume U = 70 mRy gives a
more adequate description of the trends concerning the phase
transition to the FM state. We conclude that to describe the
pressure induced transition to the FM state the decrease of
U with decreasing volume should be taken into account. In
the case of U = 70 mRy the Heisenberg model shows good
performance giving the Curie temperature close to 100 K.

In general the critical temperature of the AFM-II structure
[Fig. 7(e)] is higher than the corresponding temperature of
the FM structure [Fig. 7(f)] that correlates well with the
experimental result. In addition, our calculations discussed in
Sec. III C have shown that there is a trend that the MA of
the AFM structure is larger than the MA of the FM structure.
Since larger anisotropy leads to larger magnetic critical tem-
perature this is an additional factor explaining the distinctly
smaller critical temperature of the FM state compared to the
AFM state.

E. Calculations with external magnetic field

To address the AFM-FiM phase transition obtained in
the in-field experiment we carried out the calculations with
applied magnetic field (see Fig. 8). The questions we want to
answer are the following: First, do our calculations support the
existence of the in-field transition from the AFM-II structure
to the FiM for the field strength close to the experimental
value [10]? In this case we deal with the competition of the
in-field energy of the FiM structure and the energy of the AFM
ground state.

The second question is closely related to the first one:
Why does the field-induced transition bring the system to
the FiM state and not to the FM state where the effect of
the Zeeman interaction with the field is expected to be about
two times larger? Indeed, in the FiM structure there are two
uncompensated U moments per supercell while in the FM
structure this is four atomic moments.

Since the in-field transition is observed at the ambient
pressure, to answer this question we compare the ener-
gies of the FiM and FM states calculated for the ambient
lattice parameters. We will discuss calculations performed
with parameter U = 90 mRy. As we have seen, this value of
U gives good agreement with experiment concerning both the
ground-state magnetic structure and the value of the uranium
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FIG. 8. Energies of FiM and FM configurations in applied mag-
netic field. The energy origin is at the energy of the antiferromagnetic
ground state.

atomic moment. We consider the results of the calculations
for applied fields of 70.5 and 94 T. These fields correspond
to the Zeeman energies of the unit magnetic moment of 1μB

equal to 0.3 and 0.4 mRy, respectively. These values of the
field are reasonably close to the experimental value of the
low-temperature magnetic critical field. (For temperature of
80 K the measured magnetic critical field is 63 T [10]. For
0 K the critical field is expected to increase somewhat.)

It is important to notice that the calculations without
applied magnetic field gave the energy of the FiM state to
be lower by 0.53 mRy/U atom than the energy of the FM
state. In-field calculations, as expected, result in the lowering
of the energies of both FiM and FM states with the energy
of the FM structure decreasing faster. However the large
energy difference of the FiM and FM structures at the ambient
conditions is the reason why the energy of the FiM structure
remains lower than the energy of the FM structure up to rather
large applied fields.

Our calculations show that the FiM state remains lower
in energy up to a field value of about 95 T. This field is
above the experimental critical field. This result supports the
experimental conclusion that the in-field transition takes place
to the FiM state. We also see that the energy of the in-field FiM
and FM structures reaches the energy of the AFM ground state
at about the same field strength that is higher than the exper-
imental critical field of about 70 T. Obviously this relation
between energies of the magnetic states predicts the in-field
transition at somewhat larger field than experimental critical
field. We remark, however, that it should not be expected that
our physical model will quantitatively reproduce the whole

complexity of the competition between properties of several
different magnetic configurations.

IV. CONCLUSIONS

This work was stimulated by recent experiments revealing
pressure induced transition from the ground-state antiferro-
magnetic structure to the ferromagnetic structure and mag-
netic field-induced transition to the ferrimagnetic structure.
Remarkably, the magnetic critical temperature of the FM
state, induced by pressure, is more than two times smaller
than the Néel temperature of the AFM ground state. We
performed LDA and LDA+U studies to reveal the origin of
the unusual (+ − −+) magnetic ground state of the system
and the driving mechanisms of the phase transitions.

We show that the use of the LDA+U method is necessary
to describe properly the competition between (+ − −+) and
(+ − +−) states and obtain the value of the U magnetic
moment close to the experimental value.

To study pressure-induced effects we carry out calculations
for reduced volume and demonstrate that the energy of the
FM state indeed becomes lower than the energy of the AFM
state. However, this feature depends crucially on the peculiar
features of the magnetic anisotropy: the easy axis of the
FM state deviates from the high-symmetry crystallographic
c axis.

We calculate interlayer exchange parameters and estimate
corresponding magnetic critical temperatures of the Ising and
Heisenberg models. We show that the value of the critical
temperature can both increase and decrease with decreasing
lattice volume depending on the value of parameter U . For
the (+ − −+) structure and U = 90 mRy and U = 100 mRy,
Tcr increases with decreasing volume that correlates with the
experimental behavior of the (+ − −+) phase. In agreement
with experiment we obtained that the estimated exchange
parameters of the FM phase give in general a smaller value of
the critical temperature than for the (+ − −+) state. In com-
bination with the revealed trend to a weaker MA of the FM
state we obtain strong arguments in favor of distinctly lower
critical temperature of the FM phase obtained experimentally.

We performed calculations with applied magnetic field and
demonstrate that for the field of H = 70.5 T, close to the
experimental critical field, the energy of the FiM state is lower
than the energy of the FM state although the magnitude of the
Zeeman energy of the FM is larger.

In general, our calculations reveal a number of important
trends in the dependence of physical quantities on parameter
U , volume, and magnetic field. In many cases we obtain
competition of different trends that correlates with the variety
of experimental properties and explains the richness of the
properties of the uranium compounds.
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