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Magnon dark mode of an antiferromagnetic insulator in a microwave cavity
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Magnon dark mode, which possesses long coherence time, has been observed in transmission experiments of
a microwave cavity loaded with two yttrium iron garnet spheres. Due to two sublattice magnetizations, it seems
likely to exhibit magnon dark mode in an isolated antiferromagnet (AFM). To demonstrate such possibility,
we developed two distinct approaches based on the magnon-photon Hamiltonian of AFM-embedded cavity and
the transfer matrix method, respectively. The numerical and analytical results show that the magnon dark mode
can not be obtained in AFM due to different mode polarization of two magnon modes for propagation parallel
to applied field and unequal frequencies for propagation perpendicular to applied field. Contrary to previous
theoretical work, our calculation includes both mode polarization and propagation direction of waves explicitly,
which are important for correctly describing the coupling between cavity photons and AFM magnons. Moreover,
it is found that the cavity resonance remains unperturbed even when the magnon-photon coupling is present.
This behavior is attributed to the competition between two types of magnon-photon interactions. The results
reported here are important for understanding cavity optomagnonics in AFM, ferrimagnet, and other magnets
with multiple sublattice magnetizations.
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I. INTRODUCTION

Thanks to the rapid progress in the field of quantum
information, diverse quantum phenomena have been revealed
for the coupling between photon and atom, spin, and su-
perconducting qubit [1–12]. In order to achieve both strong
coupling and long coherent time, the advances in hybrid quan-
tum systems have given rise to remarkable progress [13–17],
especially in the field of spin-photon interaction [18,19]. Due
to the fact that all spins in a ferromagnet are aligned by strong
exchange interaction, the collective excitation, i.e., magnon,
has become a potential candidate for application in hybrid
quantum devices. Strong coupling between cavity photon and
magnon (cavity magnon polariton) has been observed at both
low and high temperatures [20–31], as well as magnetically
induced transparency and the Purcell effects, etc. [32].

Strong coupling between cavity photon and magnon veri-
fied by some experiments to date is a key factor for realizing
the magnon-based hybrid quantum manipulations. However,
the resonance nature of the magnon-photon interaction causes
extra damping in addition to the intrinsic damping of ferro-
magnet, which deteriorates the coherence time of the system.
One of the possible solutions, proposed recently by Zhang
et al. [33], is to exploit the magnon dark mode, which is
the coherent superposition state of multiple magnon modes.
Under certain conditions, the spin precessions in two or more
magnons are out of phase and thus destructive interference
dominates the interaction which reproduces the dark state of
magnons. An important property of magnon dark mode is
that it is decoupled from the cavity mode and thus preserves

long coherence time. In the experiment of Zhang et al. [33],
several independent yttrium iron garnet (YIG) spheres are
loaded in the microwave cavity and the magnon dark mode
is clearly obtained. However, the rapid tuning of magnon
frequency of each YIG sphere becomes a serious problem
[33], which limits the potential application for quantum ma-
nipulation. In an antiferromagnet (AFM), there are two dif-
ferent magnon modes which seem likely to exhibit magnon
dark mode. Recently, Yuan and Wang studied the magnon-
photon coupling in an AFM-embedded cavity theoretically
[34]. The Hamiltonian derived in Ref. [34] shows that two
magnon modes of AFM can couple with a common photon
mode, which implies that the magnon dark mode is possible
to appear. However, the mode polarization and propagation
direction of electromagnetic wave, which are important to
correctly describe the magnon modes of AFM [35–37], are not
involved. Therefore, it is still necessary to carry out a further
and systematic study on the cavity magnon polariton of AFM.

Moreover, very recently, Johansen and Brataas studied
the cavity-mediated coupling between ferromagnetic reso-
nance (FMR) and antiferromagnetic resonance (AFMR) [38].
This work focused on one of two AFMR magnon modes
and discussed strong coupling between this mode and FMR
mode, which provides considerable insights into the strength
and mechanisms of magnon-magnon coupling. However, the
magnon dark mode of an AFM, which is the main result of
our paper, has not been studied in Ref. [38].

In this paper, we studied the possibility of creating magnon
dark mode in an AFM insulator based on both semiclas-
sical and classical methods. The semiclassical method is
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based on the Hamiltonian of an AFM-embedded cavity which
is obtained by first diagonalizing the magnetic Hamilto-
nian to obtain magnon modes and then deriving the Hamil-
tonian for magnon-photon coupling. The second method,
i.e., the classical method, is the transfer matrix method
which solves for the microwave transmission through multi-
ple magnetic/nonmagnetic layers [39–41]. Both methods, in
which the mode polarization and propagation direction are
considered explicitly, reproduce physically consistent results.

The remainder of this paper is organized as follows. In
Sec. II, we provide a comprehensive description of trans-
fer matrix method and the Hamiltonian method for cavity
magnon polariton of AFM. Section III is devoted to the analy-
sis of numerical results of microwave transmission coefficient.
The magnon dark mode is discussed based on both numerical
and analytical results. We discussed the difference in method
and physics between our work and a similar work published
recently [34]. Moreover, we studied a regime in which the
cavity resonance is not affected by magnon-photon interaction
due to the competition between two types of magnon-photon
interactions. Finally, we conclude our findings in Sec. IV.

II. THEORY AND METHOD

In order to study cavity magnon polariton of AFM, we
consider two theoretical methods. The first one is the transfer
matrix method which has been widely used to deal with
the propagation of electromagnetic wave [35–37]. To do so,
we solve the Maxwell’s equations and the Landau-Lifshitz-
Gilbert (LLG) equation simultaneously to give the propa-
gation state. Then, the transfer matrix is built up and the
transmission coefficient of an AFM-loaded microwave cavity
is calculated carefully. The second method used in this paper
is the Hamiltonian method which is implemented by deriving
the Hamiltonian with pure magnetic interaction, pure photon
field, and magnon-photon interaction. In these two methods,
the numerical results are obtained based on the transfer matrix
method since it considers realistic cavity geometry and AFM
material specifics. The derived Hamiltonian is used to provide
physical explanation and analysis to numerical results. There-
fore, the values of parameters in the Hamiltonian are not given
explicitly.

A. Transfer matrix method

The dynamics of two sublattice magnetizations ( �MA,B) in
an AFM is described by the LLG equations [42–46]

d �MA,B

dt
= −γ �MA,B × (�Heff +�h) + αG �MA,B × d �MA,B

dt
, (1)

where �h is the microwave magnetic field, αG is the
Gilbert damping rate, and γ is the gyromagnetic ratio. The
effective magnetic field is �H (A,B)

eff = H0�y ± HA�y − λ �MB,A for
each sublattice magnetization. Here, H0, HA, and HE = λM0

are the static magnetic field, anisotropy field, and exchange
field. | �MA| = | �MB| = M0 is the saturation magnetization. λ

describes the exchange coupling strength between sublattice
magnetizations A and B.

Under the small-angle precession approximation, we can
linearize the above LLG equations. Due to the presence of

two sublattice magnetizations, we need to consider the to-
tal dynamic magnetization, i.e., �m = �mA + �mB, to construct
the magnetic susceptibility tensor. Here, only the dynamic
magnetization (mx,z) is given. The linearization of the LLG
equation gives rise to(

mx

mz

)
=

(
χL iχT

−iχT χL

)(
hx

hz

)
, (2)

where the longitudinal and transverse susceptibilities take the
form of

χL,T = γ M0(γ HA − iαGω)

ω2
0 − (ω + γ H0)2

± γ M0(γ HA − iαGω)

ω2
0 − (ω − γ H0)2

. (3)

Here, ω2
0 = (γ HA − iαGω)(γ HA + 2γ HE − iαGω). In the ab-

sence of damping, the susceptibilities reduce to the familiar
form given by Mills and Burstein [47].

Next, we introduce the Maxwell’s equations

∇ × �e = −∂�b

∂t
= −μ0

∂ (�h + �m)

∂t
, (4)

∇ ×�h = ε0εr
∂�e

∂t
, (5)

where �e, �b, �h, and �m are electric field, magnetic induction,
magnetic field, and dynamic magnetization. μ0, ε0, and εr

are vacuum permeability, vacuum permittivity, and relative
permittivity.

Eliminating the electric field �e and substituting Eq. (2)
into the Maxwell’s equations, we obtain two equations for
hx,z. The forms of these two equations depend on the angle
between the static magnetic field �H0 and propagation direction
�k. As �H0 ‖ �k, we have

(
(1 + χL )k2

0 − k2 iχT k2
0

−iχT k2
0 (1 + χL )k2

0 − k2

)(
hx

hz

)
= 0 (6)

with k2
0 = ε0εrμ0ω

2. Letting the determinant be zero gives
rise to two solutions of k, i.e.,

k2
± = (1 + χL ± χT )k2

0 . (7)

By analyzing the eigenvectors of Eq. (6), we find that k+
and k− correspond to pure right and left circularly polarized
states, respectively. Moreover, these pure circularly polarized
states of AFM are different from those of ferromagnetic
material in which only the k+ state is allowed to propagate.
This is because only the right circularly polarized state k+ is
excited as �H0 is along the +�y [48]. But, for an AFM, both
right and left circularly polarized states are excited for an
applied field and, therefore, the k− state does contribute to the
magnon-photon coupling.

As �H0 ⊥ �k, we obtain only one propagation state

k2 = (1 + χL )2 − χ2
T

1 + χL
k2

0 . (8)

The analysis of eigenvector shows that this state is elliptically
polarized. With the propagation states k, we can write the
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transfer matrix equation [26](
ed

y

hd
x

)
=

(
cos(kd ) iZ sin(kd )

i 1
Z sin(kd ) cos(kd )

)(
e0

y

h0
x

)
(9)

which connects the electric/magnetic fields at one surface
(z = 0) and those at another surface (z = d). Z = μ0μsω

k is
impedance and the effective permeability μs is determined by
k = ω

c

√
εrμs.

After the transfer matrix is constructed, we can now solve
for the problem of microwave propagation in an AFM-loaded
cavity and obtain the microwave transmission coefficient S21.
In the calculations, a well-designed microwave cavity with
circular waveguide and two circular-rectangular transitions
at each end of waveguide are used. Such a cavity has been
used in cavity magnon polariton experiments of YIG [26].
The length of cavity is 85.0 mm. In the transition region, the
microwave in the circular waveguide is strongly reflected and
thus a standing wave forms inside the cavity. The reflection
coefficient is 0.997 and the phase change due to the reflec-
tion is 215◦. The difference between the orientations of left
and right rectangular waveguides is described by θ which
equals 45◦ in our calculations. These parameters reproduce
the observed cavity resonance frequency in experiment. The
thickness of AFM layer is 0.5 mm and the relative permittivity
is 15.0. More details of method and cavity geometry can be
found in Ref. [26].

B. Magnon-photon coupling Hamiltonian

In order to explain numerical results and make physics
more transparent, we derive a magnon-photon coupling
Hamiltonian for an AFM in cavity. The Hamiltonian consists
of three terms, i.e., the magnon, photon, and magnon-photon
interactions.

1. Magnon Hamiltonian

In the theory, we express two sublattice magnetizations
of AFM by field variable �MA,B(�r). Such a treatment has
been used in the derivation of Hamiltonian for ferromagnetic
system [49]. The magnon Hamiltonian consists of four types
of interaction, i.e., the exchange, anisotropy, Zeeman, and
magnetostatic energy.

We first discuss the exchange interaction in an AFM and
write the exchange energy density as

Hex = J �MA(�r) · �MB(�r), (10)

where J is the exchange constant. To proceed, we introduce
the Holstein-Primakoff (HP) transformation [50] for magneti-
zation M±(�r) = Mx(�r) ± iMy(�r):

M+
A (�r) =

√
2gμBM0

∑
k

e−i�k·�rak,

M+
B (�r) =

√
2gμBM0

∑
k

ei�k·�rb†
k,

M−
A (�r) =

√
2gμBM0

∑
k

ei�k·�ra†
k,

M−
B (�r) =

√
2gμBM0

∑
k

e−i�k·�rbk,

Mz
A(�r) = M0 − gμB

∑
k,k′

ei(�k−�k′ )·�ra†
kak′ ,

Mz
B(�r) = −M0 + gμB

∑
k,k′

ei(�k−�k′ )·�rb†
kbk′ , (11)

where g is the g factor and μB is the Bohr magneton. In the HP
transformation, only the lowest-order term is kept and all other
high-order terms are omitted under the small-angle precession
approximation.

Substituting the HP transformation into Eq. (10) and inte-
grating the exchange energy density, we obtain the Hamilto-
nian of exchange interaction

Hex =
∫

Hexd�r = wex

∑
k

[akb−k + a†
kb†

−k + b†
kbk + a†

kak],

(12)

where wex = gμBJ .
Similarly, we write the Zeeman energy density as Hz =

−H0[Mz
A(�r) + Mz

B(�r)] and obtain the Hamiltonian of Zeeman
interaction

Hz = gμBH0

∑
k

[a†
kak − b†

kbk]. (13)

The anisotropy energy density is Ha =
K

M2
0
[(M2

Ax + M2
Ay) + (M2

Bx + M2
By)] and thus the anisotropy

Hamiltonian is written as

Ha = wa

∑
k

[a†
kak + b†

kbk], (14)

where wa = gμBK
M0

with the anisotropy constant K .
Another important effect is the magnetostatic interaction in

which the demagnetizing field is written as

�Hde = −4π�k · �m
k2

�k, (15)

where �m = (MAx�x + MAy�y) + (MBx�x + MBy�y). As�k ‖ �H0, i.e.,
�k ⊥ �m, the demagnetizing field vanishes. Hence, the magnon
Hamiltonian is expressed by

Hpara
m = Hex + Hz + Ha =

∑
k

(wex + wa + gμBH0)a†
kak

+ (wex + wa − gμBH0)b†
kbk + wex(akb−k + a†

kb†
−k ).

(16)

In order to decouple the operators a and b, we implement
the Bogoliubov transformation [49]

ak = uαk + vβ
†
−k,

b−k = uβ−k + vα
†
k (17)

with

u2(v2) = wex + wa

2
√

w2
a + 2wexwa

± 1

2
. (18)
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The diagonalized Hamiltonian is

Hpara
m =

∑
k

[εpara
+ α

†
k αk + ε

para
− β

†
k βk] (19)

with magnon energy ε
para
± = √

w2
a + 2wawex ± gμBH0.

As �k ⊥ �H0, the demagnetizing field in Eq. (15) reproduces
the magnetostatic energy, i.e., Hd = − 1

2
�Hde · ( �MA + �MB). For

convenience, we consider the wave vector along the x di-
rection. Then, the magnon Hamiltonian Hperp

m = Hex + Hz +
Ha + Hd is written as

Hperp
m =

∑
k

(wex + wa + 2wd + gμBH0)a†
kak

+ (wex + wa + 2wd − gμBH0)b†
kbk

+ (wex+2wd )(akb−k+a†
kb†

−k )+2wd (akb†
k + a†

kbk )

+ wd (aka−k + a†
ka†

−k ) + wd (bkb−k + b†
kb†

−k ), (20)

where wd = πgμBM0.
In order to diagonalize Hperp

m , we introduce an operator
transformation [51] ⎛

⎜⎜⎝
ak

bk

a†
−k

b†
−k

⎞
⎟⎟⎠ = F

⎛
⎜⎜⎝

αk

βk

α
†
−k

β
†
−k

⎞
⎟⎟⎠, (21)

where F is a 4 × 4 matrix, the detailed form of which is
determined by obtaining the diagonalized Hamiltonian

Hperp
m =

∑
k

[εperp
+ α

†
k αk + ε

perp
− β

†
k βk]. (22)

The form of eigenenergy ε
perp
± is cumbersome and will not

be presented here. But, as H0 = 0, the eigenenergy can be
expressed in a simple form

ε
perp
− =

√
w2

a + 2wawe,

ε
perp
+ =

√
w2

a + 2wawe + 8wawd , (23)

which are the same as those published previously [47].

2. Photon Hamiltonian

In order to reproduce the bare photon Hamiltonian, we
introduce the vector potential

�A = A0�λ=L,R(�eλaλei�k·�r + �e∗
λa†

λe−i�k·�r ), (24)

where A0 is the amplitude of vector potential. aL,R

(a†
L,R) represents the creation (annihilation) operator of left

(right) circularly polarized photons. The unit vectors �eL,R =
(∓�x − i�y)/

√
2.

Based on the quantization of the electromagnetic field, we
obtain the photon Hamiltonian

Hph = h̄ωaa†
LaL + h̄ωaa†

RaR. (25)

Here, the polarization of photon is given explicitly. We do
so because two magnon modes of AFM are polarized. For
example, as �k ‖ �H0, the α and β modes are left and right
circularly polarized, respectively. The requirement of spin

angular momentum conservation results in the fact that the
polarizations of both photon and magnon should be the same
in magnon-photon interaction. However, we usually do not
designate the mode polarization in FMR. This is because the
polarization of FMR mode is definite when the static magnetic
field is fixed. For example, the FMR mode is right circularly
polarized as �H0 ‖ �z.

3. Magnon-photon Hamiltonian

Finally, we discuss the magnon-photon coupling and de-
rive the coupling Hamiltonian. The first step is to give the
form of microwave magnetic field based on the relation
�h = ∇ × �A. Then, we define the coupling energy density as
Hmp = −�h · ( �MA + �MB) and integrate the energy density to
give the coupling Hamiltonian. In the derivation, two types of
transformations, i.e., Eqs. (17) and (21), are used.

As �k ‖ �H0, the coupling Hamiltonian is

Hpara
mp = (u + v)

(
Hpara

RWA + Hpara
CR

)
, (26)

where u and v are the transformation coefficients determined
by Eq. (18). Here,

Hpara
RWA = g0

∑
k

[(aRβ
†
−k + a†

Rβ−k ) + (aLα
†
−k + a†

Lα−k )]

(27)

describes the resonant magnon-photon interaction while

Hpara
CR = g0

∑
k

[(aRαk + a†
Rα

†
k ) + (aLβk + a†

Lβ
†
k )] (28)

describes the off-resonant interaction. In Eqs. (27) and (28),
g0 = h0

√
gμBM0 with h0 the amplitude of microwave mag-

netic field.
As �k ⊥ �H0, the coupling Hamiltonian also consists of

resonant and off-resonant parts, i.e.,

Hperp
RWA = g0

∑
k

{aR[(F13 + F43)α†
−k + (F14 + F44)β†

−k]

+ H.c.} + {aL[(F23 + F33)α†
−k

+ (F24 + F34)β†
−k] + H.c.} (29)

and

Hperp
CR = g0

∑
k

{aR[(F11 + F41)αk + (F12 + F42)βk] + H.c.}

+ {aL[(F21 + F31)αk + (F22 + F32)βk] + H.c.},
(30)

where Fi j is the matrix element in the ith row and jth column
of the matrix F in Eq. (21).

It should be noted that the magnon mode under consider-
ation is the AFMR mode, in which one photon excites one
magnon and the energy should be conserved. This allows us
to work within the rotating-wave approximation (RWA) [12].
That is to say, all terms in Hpara

CR and Hperp
CR which do not

conserve energy can be neglected. Only Hpara
RWA and Hperp

RWA are
considered in our work. Moreover, we focus on the AFMR
mode with a small wave vector and thus will drop the symbol
of k in the Hamiltonian from now on.
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FIG. 1. |S21| spectra of an AFM loaded microwave cavity calcu-
lated based on the transfer matrix method. Panels (a) and (b) are for
�k ‖ �H0 with propagation state k− and k+, while (c) and (d) for�k ⊥ �H0.
In (a)–(c), the parameters used are M0 = 0.15 T, HA = 0.1 T , and
HE = 1.5 T . In (d), the parameters, which are taken from experimen-
tal data of CuCl2 · 2H2O [58–60], are M0 = 0.01 T, HA = 0.3 T ,
and HE = 1.0 T . The inset in (d) shows the enlarged region of the
crossing point at zero magnetic field.

III. RESULTS AND DISCUSSIONS

Having presented theoretical details, we next show numer-
ical results and the physics behind magnon-photon coupling.
Figures 1(a) and 1(b) show the transmission spectra |S21|
calculated with the transfer matrix method as �k ‖ �H0. In the
calculations, the magnon modes in Figs. 1(a) and 1(b) are
obtained by selecting the k− and k+ states as the propagating
state, respectively. Due to the magnon-photon coupling, both
α and β modes show characteristic anticrossing features when
the cavity resonance crosses the magnon mode. This can
be explained based on the above derivation, where the total
Hamiltonian is written as

Hpara = [ωaa†
RaR + ωββ†β + g(aRβ† + a†

Rβ)]

+ [ωaa†
LaL + ωαα†α + g(aLα† + a†

Lα)], (31)

where the quantities g0, u, and v are absorbed into g. For
each polarization, we can introduce the transformation a =
A cos θ + B sin θ and b = B cos θ − A sin θ to diagonalize the
Hamiltonian. The eigenenergy is written as

ω = (ωc + ωm) ±
√

(ωc − ωm)2 + 4g2

2
. (32)

Here, cos θ and sin θ are coefficients to be determined. ωm =
ωα,β and ωc = ωa. Equation (32) reproduces the anticrossing
features shown in Figs. 1(a) and 1(b) quite well.

Our theory predicts that, despite the existence of two
magnon modes in AFM, two types of polarization are com-
pletely decoupled. The α (β) magnon mode is excited by
the left (right) circularly polarized photon. This indicates that
spin angular momentum is conserved in the magnon-photon
coupling of AFM. As is known, the magnon dark mode is
formed by the simultaneous coupling of two magnon modes
with one common photon. Therefore, we will expect that the
magnon dark mode will not be obtained in experiments as
�k ‖ �H0.

Figure 1(c) shows the transmission coefficient as �k ⊥ �H0.
In contrast to the case of �k ‖ �H0 with two wave vectors k±,
there is only one propagation state shown in Eq. (8). But,
Fig. 1(c) presents two magnon modes. This is because the de-
magnetizing field mixes two circular polarizations and thus a
single propagation state contains information of both magnon
modes. In such case, the mode polarization is no longer pure
circular, but becomes elliptical. Due to the mixture of two
circular polarizations, it seems possible for a photon to couple
with two magnon modes simultaneously. To demonstrate the
magnon dark mode, we consider a simplified Hamiltonian of
Eq. (29):

HD = h̄ωaa†a + h̄ωαα†α + h̄ωββ†β

+ gα (aα† + αa†) + gβ (aβ† + βa†), (33)

where α (α†), β (β†), and a (a†) are the creation (annihi-
lation) operators of two magnons α and β and one cavity
photon a. gα (gβ ) is the coupling strength between cavity and
two magnon modes. In order to have magnon dark mode, we
define two operators

B = gαα + gββ

G
, (34)

D = gβα − gαβ

G
(35)

for the bright (B) and dark (D) modes with G =
√

g2
α + g2

β .
We notice that the above transformation is performed under
the small-angle precession approximation, i.e., the deviation
of magnetization with respect to static magnetic field is
small. This approximation justifies the HP transformation and
thus the transformation of bright and dark modes. From an
experimental point of view, there are two conditions under
which such approximation may be invalid. The first one takes
place at high microwave power, which may drive the system
into the nonlinear regime. The second one occurs when the
magnetic field is high, i.e., the spin-flop transition where the
magnetization switches to a direction perpendicular to static
magnetic field. In this paper, these two cases are beyond our
consideration.

Then, the Hamiltonian, i.e., Eq. (33), is transformed to

HD
T = h̄

g2
αωα + g2

βωβ

G2
B†B + h̄

g2
αωβ + g2

βωα

G2
D†D + h̄ωaa†a

+ gαgβ

G2
(ωα − ωβ )(B†D + D†B) + h̄G(aB† + Ba†).

(36)
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As ωα = ωβ , the Hamiltonian becomes HD
T = h̄ωαB†B +

h̄ωαD†D + h̄ωaa†a + h̄G(aB† + Ba†). This clearly implies
that the dark mode (D) is completely decoupled from the
cavity mode. Hence, in order to have magnon dark mode,
the condition of ωα = ωβ should be satisfied. But, as shown
in Fig. 1(c), there appears a frequency splitting between two
magnon modes due to the demagnetizing field. We therefore
conclude that the magnon dark mode is hard to form due to
unequal magnon frequencies as �k ⊥ �H0.

Based on the above analysis, one can see that the de-
magnetizing field plays an important role in reproducing
the frequency splitting at zero magnetic field. Despite the
large splitting in Fig. 1(c), it is actually small in real-
istic AFM materials. As seen in Eq. (23), the demagne-
tizing field is responsible for the frequency splitting. To
measure it, we define a ratio ε+−ε−

ε−
≈ wd

wex
. Taking MnF2,

for example [46], the ratio is estimated to be about 10−3.
This indicates that the effect of demagnetizing field on
AFMR is small. Therefore, in the case of �k ⊥ �H0, two
magnon modes at zero magnetic field are still of circularlike
polarizations.

In our calculation, the system under consideration is a thin
film and some other material factors are not considered. First,
the demagnetizing field gives rise to the frequency splitting
as �k ⊥ �H0. This is no longer true for a spheroidal AFM
sample. In a magnetized sphere, we can use the demagnetizing
tensor to express the demagnetizing field since the calcula-
tion based on Eq. (15) becomes complicated [48]. Since the
demagnetizing factors are uniform, i.e., Nx = Ny = Nz, two
magnon modes at zero magnetic field are degenerate and no
frequency splitting is present [52–54]. Therefore, the behavior
of a spheroidal sample is analogous to the case of �k ‖ �H0 of
a thin film. Second, the boundary condition is not considered
in our paper. We do so because the magnetization precession
of AFMR mode is in phase in the entire sample and thus
the boundary condition does not play a significant role. In
some magnon modes, e.g., standing spin wave, the boundary
condition becomes important and needs to be carefully treated
[27,55]. Third, the hard-axis anisotropy has been introduced
for describing the AFMR in Ref. [38]. As such anisotropy
is present in our calculation, it will reproduce a frequency
splitting at zero magnetic field and prevents the formation of
magnon dark mode.

As mentioned in the Introduction, Yuan and Wang derived
a Hamiltonian for an AFM in cavity and diagonalize the
Hamiltonian to reproduce the eigenenergy of AFM-cavity
system [34]. The derivation in Ref. [34] does not consider
the demagnetizing field and thus corresponds to the case of
�k ‖ �H0 of our work. However, there are obvious differences in
the method and physics between our work and Ref. [34]. First,
the mode polarization is not explicitly considered in Ref. [34].
This is important since two magnon modes of AFM belong
to distinct polarizations. The requirement of spin angular
moment conservation dictates the excitation of α (β) magnon
mode by left (right) circular photons as �k ‖ �H0. If the mode
polarization is not included as done in Ref. [34], the derived
Hamiltonian will make possible the simultaneous coupling
of α and β magnon modes with a common photon. Second,
as explained above, it is likely to form magnon dark mode

based on the Hamiltonian in Ref. [34]. However, our theory
shows that the magnon dark mode can not be obtained due
to unequal polarizations as �k ‖ �H0 and unequal frequencies
as �k ⊥ �H0. Third, the demagnetizing field, which is important
for realizing the mixture of α and β magnon modes, is not
considered in Ref. [34].

Bose et al. [35] and Manohar et al. [36] studied the
magnon-photon coupling in AFM and calculated the disper-
sion relation and reflection spectra, respectively. But, both
research works did not consider the cavity and thus the physics
belongs to magnon polariton, instead of cavity magnon polari-
ton studied here. Moreover, Okuma studied the coupling be-
tween cavity photon and nonreciprocal magnon of AFM [56].
The mixture between α and β magnon modes is mediated by
the Dzyaloshinskii-Moriya (DM) interaction, instead of the
demagnetizing field considered in our work. The magnon-
photon coupling is reflected by spin pumping and magnon
Bose-Einstein condensate in Ref. [56] while by microwave
transmission in our work.

Although the above-mentioned gap between two magnon
modes prevents the formation of magnon dark mode, it pro-
vides a possibility of exhibiting a type of magnon-photon
interaction. Such a feature has not been demonstrated in previ-
ous studies of cavity magnon polariton. In Fig. 2, we show the
transmission coefficient as �k ⊥ �H0 for various values of HE .
When the exchange field HE increases, the frequencies of two
magnon modes at zero magnetic field increase according to
Eq. (23). Here, we focus on the cavity mode at about 16.5 GHz
(denoted with red arrow). As HE = 1.5 T [Fig. 2(a)], only
the upper magnon mode is coupled with the cavity. Due to
magnon-photon interaction, the line of cavity resonance bends
to lower frequency. In contrast, at HE = 1.9 T [Fig. 2(c)], the
lower magnon mode crosses the cavity resonance and thus
the line of cavity resonance bends to higher frequency. The
above two results represent two limiting cases because only
one magnon mode dominates the magnon-photon coupling. If
the cavity resonance lies within the gap between two magnon
modes, it will experience two types of interaction from two
magnon modes. These two magnon-photon couplings will
compete, which results in the fact that the bend of cavity res-
onance will depend on the strength of two types of magnon-
photon interaction. Under appropriate condition, as shown in
Fig. 2(b), two magnon-photon interactions cancel with each
other, which makes the cavity resonance almost unperturbed.
This provides a means of tuning two types of magnon-photon
interactions which are potentially important for magnetic and
electromagnetic applications.

Although the cavity magnon polariton of AFM is poten-
tially important, two key concerns for possible AFM materials
should be clarified. The first is the damping rate of AFM. If the
damping rate is too large to distinguish the anticrossing gap,
the strong coupling regime will not be observed in experiment.
The second is the high precession frequency of AFM. Un-
like the conventional ferromagnetic material, the precession
frequency of AFM is in general up to several hundred GHz,
e.g., 247 GHz for MnF2 at 24.7 K and zero magnetic field
[57]. However, the resonance frequency of cavity currently
used in most of experiments is usually about 10–20 GHz,
which makes the resonant coupling between cavity photon and
AFM magnons difficult. Here, we propose several possible
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FIG. 2. |S21| spectra of an AFM loaded microwave cavity calculated based on the transfer matrix method with M0 = 0.15T, HA = 0.1T
and (a) HE = 1.5T , (b) HE = 1.65T , (c) HE = 1.9T .

AFM material which could be used to observe the cavity
magnon polariton in future experiments. The first is the cop-
per chloride, i.e., CuCl2 · 2H2O. Gerritsen et al. performed
antiferromagnetic resonance measurement for a 3-cm-thick
sample and found that the resonance field is about 0.3 T at
the resonance frequency 9.4 GHz [58,59]. Date’s experiment
gives rise to the resonance magnetic field of 0.47 T at 9.8 GHz
[60]. The linewidth H is very narrow, e.g., 0.086 T, which
is comparable to that found in cavity magnon polariton of
YIG. Based on experimental data, we estimate the exchange,
anisotropy fields, and magnetization which are 1.0, 0.3, and
0.01 T respectively. Figure 1(d) shows the |S21| spectra of
CuCl2 · 2H2O with the above estimated parameters. It is found
that, due to small magnetization, the demagnetizing field
induces only a small splitting at zero magnetic field. More-
over, this material is antiferromagnetic in the liquid-helium
temperature range, which increases greatly the difficulty in
implementing such an ultralow temperature experiment. The
second material is the methylaminated potassium fulleride
(CH3NH2)K3C60 which presents the linewidth H = 0.05 T
at 9.6 GHz and 15 K, which can meet the strong coupling
condition within the microwave frequency range [61]. But,
the measurement temperature is still very low. The third
possibility is the Cr2O3 which shows the linewidth H =
0.1 T at 9.3 GHz and room temperature [62,63]. The field
parameters are estimated to be HA ∼ 10−2 T, HE ∼ 100 T, and
M0 ∼ 10−2 T. Compared to CuCl2 · 2H2O, Cr2O3 has a larger
exchange field, which results in a smaller frequency splitting
at zero magnetic field.

Finally, we would like to further comment on the spin-
flop transition [64,65] usually observed in AFM. Since the
cavity resonance frequency is usually within the Ku band of
microwave frequency, the magnetic field is low. Moreover, the
discussion on magnon dark mode is at zero magnetic field
where both magnon modes may have equal frequencies. Al-
though the spin-flop transition can reduce the AFM resonance
frequency and resonance field, it is still large for our purpose.

It is certainly an interesting topic to discuss the effect of
spin-flop transition on the cavity magnon polariton of AFM
if the cavity resonance frequency can be promoted to several
tens of GHz.

IV. CONCLUSION

In summary, we investigate the cavity magnon polariton of
AFM based on two different methods. In the first method, we
consider the details of AFM and cavity and derive the transfer
matrix for AFM-loaded cavity. Our results show that, as the
propagation is parallel to static magnetic field, two circular
polarizations are completely decoupled. This makes impos-
sible the coupling of two magnon modes with a common
photon mode and magnon dark mode. When the propagation
is perpendicular to static magnetic field, the demagnetizing
field mixes two polarizations and thus enables the simultane-
ous coupling of two magnon modes with a photon. However,
due to the frequency splitting induced by the demagnetizing
field, the magnon dark mode is hard to form. Moreover,
the frequency splitting provides a possible means to tune
cavity magnon polariton of AFM. As the cavity resonance is
inside the gap, it will experience two types of magnon-photon
coupling. Under appropriate condition, the cavity resonance
remains unperturbed due to the cancellation of two types of
magnon-photon interactions. We also discussed several AFM
materials which may be used for observing cavity magnon
polariton in future experiments.
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