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Topological transitions of isofrequency surfaces are studied in the long-wavelength approximation for a
biaxial gyroelectromagnetic medium influenced by an external static magnetic field. For the lossless case, the
topological transitions from a closed ellipsoid to open type-I and type-II hyperboloids as well as a bihyperboloid
are demonstrated. Conditions for critical points where the topological transitions occur are found out. It is
revealed that material losses in the constituents of the composite medium strongly influence the dispersion of
the extraordinary waves. In particular, the loss-induced topological transitions take place for these waves. It is
shown that the loss-induced topological transitions from a type-I hyperboloid to a bihyperboloid appear in the
frequency band where the real part of at least one principal component of the anisotropic constitutive parameter
(permittivity or permeability tensor) is close to zero, whereas its imaginary part is high.
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I. INTRODUCTION

During the past decade hyperbolic metamaterials have been
a subject of intense study due to their specific dispersion
features that are unattainable in conventional media [1]. At
present they are realized experimentally in the microwave,
terahertz, and optical ranges and demonstrate several unusual
properties, including negative refraction [2], strong enhance-
ment of spontaneous emission [3], broadband infinite density
of states [4], subwavelength imaging [5], focusing [6], and
signal routing [7].

Hyperbolic dispersion appears in extremely anisotropic
media (also known as indefinite media [8]). In such me-
dia, at least one constitutive parameter is necessarily a
tensor quantity η̂ = [ηxx, 0, 0; 0, ηyy, 0; 0, 0, ηzz] (here η is
either permeability μ or permittivity ε), whereas one of the
principal components of the tensor η̂ differs in sign from
other principal components. A medium is called a hyperbolic
uniaxial crystal or a hyperbolic biaxial crystal when the ten-
sor’s diagonal components satisfy one of the following con-
ditions: ηxx < 0 < ηyy = ηzz and ηxx < 0 < ηyy < ηzz. In the
indefinite media, the topological transitions of isofrequency
surfaces appear when the real part of a particular component
of the permittivity or permeability tensor changes sign.

Typically, hyperbolic dispersion is observed in nonmag-
netic metamaterials characterized by an indefinite permittivity
tensor and scalar permeability (μxx = μyy = μzz = 1). Since
the negative value of permittivity is an ordinary property
for metals under the plasmonic conditions, the design of
hyperbolic metamaterials usually incorporates metallic com-
ponents. In such a design the metamaterials are made either
in the form of a superlattice which combines metallic and

*tvr@jlu.edu.cn; tvr@rian.kharkov.ua

dielectric layers [9–11] or a lattice of conducting wires em-
bedded into a dielectric host [12–15]. Regardless of design,
the overall structure is considered as an effective medium
under the long-wavelength approximation, which imposes
limitation on the size of structural components [16]. Alterna-
tively, hyperbolic metamaterials can be implemented utilizing
the indefinite permeability tensor. This feature emerges in
a narrow frequency band for metamaterials composed of
metallic split-ring resonators [17].

The hyperbolic dispersion exists also in natural media
featuring gyroelectric (e.g., plasma or semiconductor) or gy-
romagnetic (e.g., ferrite) properties under the influence of
an external static magnetic field. Under saturated magnetiza-
tion such media become extremely anisotropic in a specific
frequency band due to clear-cut plasma or ferromagnetic
resonance. This leads to the appearance of a hyperbolic form
of isofrequency surfaces related to particular waves (in optics
of anisotropic media [18–21], the waves whose propagation is
influenced by the external static magnetic field are denoted
as extraordinary waves, otherwise they are called ordinary
waves). In the general case of a biaxial gyroelectric or gyro-
magnetic medium there are topological transitions of isofre-
quency surfaces for the extraordinary waves from a closed
ellipsoid (0 < ηxx < ηyy < ηzz) to open a type-I (ηxx < 0 <

ηyy < ηzz) asymmetric hyperboloid or a type-II (ηxx < ηyy <

0 < ηzz) asymmetric hyperboloid [13,22]. For ordinary waves,
the dispersion properties are characterized by isofrequency
surfaces in the form of a closed ellipsoid.

The topological transitions of isofrequency surfaces are
usually studied separately for gyroelectric [19] or gyromag-
netic media [20,21]. However, it is demonstrated [23–32] that
the semiconductor and magnetic materials combined together
into a unified gyroelectromagnetic structure (superlattice)
with tensorlike forms of both permittivity and permeability
gives unprecedented flexibly for manipulating the dispersion
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of both surface and bulk waves. In particular, in such a
superlattice the topological transitions from a closed ellipsoid
to open type-I and type-II hyperboloids as well as a bihy-
perboloid are observed for the extraordinary waves [33]. The
bihyperboloid is a form of isofrequency surface, which was
discovered recently and arises from simultaneous tuning of
superlattice geometry and external static magnetic field.

Typically, in order to simplify simulations and descrip-
tion of obtained results, actual losses in constituents of
a metamaterial are totally ignored assuming ε̂ and μ̂ to
be real-valued tensors. In fact, such an approximation is
good for conventional isotropic and anisotropic media (εii �
1, μii � 1, εi j = μi j = 0, i �= j, i, j = x, y, z) in which in-
trinsic losses are only responsible for attenuation of propa-
gated electromagnetic wave [34,35].

However, recently it has been reported [36] that the pres-
ence of intrinsic losses in the ε-near-zero medium can play a
positive role in the wave propagation. For instance, it can en-
hance transmission and collimate the field inside the medium.
Moreover, it was experimentally observed [37,38] that in the
μ-near-zero metamaterial constructed from two-dimensional
transmission lines with lumped elements (resistors), a topo-
logical transition of isofrequency surfaces from a closed ellip-
soid to an open type-I hyperboloid appears. This topological
transition is related to variation of the imaginary part of
permeability for fixed values of both the real part of perme-
ability and the frequency. It is called loss-induced topological
transition, and it is qualitatively different from transitions
associated with the sign change in the real part of permittivity
or permeability. Several wave effects, namely, collimation
and field enhancement during the wave propagation, were
observed experimentally in the transmission-line-based meta-
material [37] supporting loss-induced transitions. The loss-
induced transitions were also found in the two-dimensional
transmission line metamaterials with an arbitrary positive real
part of permeability [38] and in a one-dimensional periodic
structure composed of graphene sheets deposited on dielectric
layers [39].

In the present paper our main goal is to reveal character-
istics of the topological transitions of isofrequency surfaces
for the waves propagating through a gyroelectromagnetic
structure. The existence of such transitions is expected since
in the frequency bands near the plasma or ferromagnetic
resonance, the gyroelectromagnetic structure behaves as an
ε-near-zero or μ-near-zero medium. In these frequency bands,
the intrinsic losses in constitutive materials are usually high
and can lead to the appearance of loss-induced topological
transitions which are of our particular interest.

The rest of the paper is organized as follows: In Sec. II
we formulate and solve the problem related to the bulk waves
propagating through a biaxial gyroelectromagnetic medium.
Then in Sec. III, we discuss the topological transitions of
isofrequency surfaces in the idealized lossless biaxial gyro-
electromagnetic medium and reveal the specific conditions of
their occurrence. In Sec. IV we extend the theory to account
for intrinsic losses of actual materials incorporated into the
structure and show the characteristics of loss-induced topolog-
ical transitions, which appear under certain geometrical and
material parameters of the superlattice. Finally, in Sec. V we
summarize the paper. The expressions for tensors describing

constitutive properties of ferrite and semiconductor materials
are given in the Appendix for clarity.

II. DISPERSION RELATION FOR BULK WAVES

We study topological transitions of isofrequency surfaces
related to a periodic (along the y axis) multilayered structure
(superlattice) of magnetic (ferrite) and semiconductor layers
with thicknesses dm and ds, respectively. The structure is
infinitely extended along the transverse directions [Fig. 1(a)].
The period of the structure is d = dm + ds. All layers of
the superlattice are magnetized uniformly by an external
static magnetic-field �M directed along the z axis transversely
to the structure periodicity. Under the influence of such a
magnetization, individual magnetic and semiconductor layers
of the superlattice are characterized by the combination of
tensor constitutive parameters μ̂m, εm and μs, ε̂s. For clarity,
the tensors μ̂m and ε̂s and their components as functions of
frequency are given in Fig. 1(b) (see also the expressions for
components of the tensors μ̂m and ε̂s in the Appendix).

We suppose that all characteristic dimensions of the su-
perlattice, namely, its period and the thicknesses of the con-
stitutive layers, satisfy the long-wavelength limit, that is,
dm � λ, ds � λ, d � λ, where λ is the wavelength inside
the medium. In this case, the standard homogenization pro-
cedure of the effective medium theory [40] is applied to
derive averaged expressions for effective parameters of the
superlattice. The results of the homogenization procedure
are checked against those of the rigorous transfer-matrix
technique [41,42], and a good correlation is found for the
chosen structure parameters and frequency. Therefore, the su-
perlattice is closely approximated by an infinite bigyrotropic
medium [Fig. 1(c)], which is characterized by relative effec-
tive permeability μ̂eff and relative effective permittivity ε̂eff ,
each in the form of the second-rank tensors (all details on
the homogenization procedure are omitted here and can be
found in Ref. [43]). For the homogenized medium all principal
components of permittivity and permeability have different
values, namely, εxx �= εyy �= εzz and μxx �= μyy �= μzz, and the
nondiagonal element corresponds to a biaxial bigyrotropic
(εxy = −εyx �= 0 and μxy = −μyx �= 0) crystal. In this crys-
tal one of the optical axes is directed along the structure
periodicity (the y axis), whereas the second one coincides
with the direction of the external magnetic field (the z axis).
It should be noted, that the anisotropy of the structure is
strongly dependent on both the ratio between thicknesses of
the magnetic and semiconductor layers and the magnetic-field
strength. The corresponding dispersion characteristics of the
components of relative effective permeability μ̂eff and relative
effective permittivity ε̂eff are given in Fig. 1(d) for reference.

In the following discussion we consider a plane uniform
electromagnetic wave with angular frequency ω and wave-
vector �k which propagates in a biaxial gyroelectromagnetic
medium along an arbitrary direction as shown in Fig. 1(c). The
electric- (�E ) and magnetic- (�H) field vectors can be expressed
as

�E (�H ) = �E0(�H0) exp[i(kxx + kyy + kzz − ωt )], (1)

where kx = k sin θ cos ϕ, ky = k sin θ sin ϕ, and kz =
k cos θ are the Cartesian coordinates of the wave-vector �k.
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FIG. 1. The problem sketch related to: (a) a magnetic-semiconductor superlattice influenced by an external static magnetic-field �M;
(c) resulting homogenized medium (biaxial gyroelectromagnetic medium). Dispersion curves (real parts) of the tensor components of:
(b) permeability μ̂m and permittivity ε̂s of magnetic and semiconductor layers, respectively; (d) relative effective permeability μ̂eff and relative
effective permittivity ε̂eff of the homogenized medium with δm = δs = 0.5. For the magnetic layers, under saturation magnetization of 2930 G,
the parameters are as follows: ω0/2π = 4.2 GHz, ωm/2π = 8.2 GHz, b = 0, εm = 5.5. For the semiconductor layers, the parameters are as
follows: ωp/2π = 10.5 GHz, ωc/2π = 9.5 GHz, ν/2π = 0 GHz, εl = 1.0, μs = 1.0.

From Maxwell’s equations, the dispersion equation, which
relates ω = k0c to �k = {kx, ky, kz} and describes propagation
of electromagnetic waves through an unbounded gyroelectro-
magnetic medium, can be written as follows (the required
mathematical manipulations are omitted here and can be
found in Refs. [20,34]):

(εzzμzz )−1
{
k4

x εxxμxx + k4
y εyyμyy + k4

z εzzμzz + k2
x k2

y

× (εxxμyy + εyyμxx ) + k2
x k2

z (εxxμzz + εzzμxx ) + k2
y k2

z

× (εyyμzz + εzzμyy) − k2
0

[
k2

x (εxxεzzμ⊥ + μxxμzzε⊥)

+ k2
y (εyyεzzμ⊥ + μyyμzzε⊥) + k2

z εzzμzz(εxxμyy

+ εyyμxx − 2εxyμxy)
]} + k4

0ε⊥μ⊥ = 0, (2)

where ε⊥ = εxxεyy + ε2
xy and μ⊥ = μxxμyy + μ2

xy are two
generalized transverse effective constitutive parameters of
homogenized medium. For clarity, the dispersion curves of
parameters ε⊥ and μ⊥ are shown in Fig. 1(d) by solid yellow
lines.

At a constant frequency biquadratic dispersion Eq. (2)
is known as Fresnel’s equation for wave normals [34] and
describes a fourth-order (quartic) surface in the kx, ky, and
kz coordinate space (in the k space). Such a surface is called
an isofrequency surface (or, alternatively, the Fresnel wave
surface or surface of wave vectors). In normalized terms of
κ = k/k0, Eq. (2) can be written as [33]

Aκ4 + Bκ2 + C = 0, (3)

whose solution is

κ2 = (B ±
√

B2 − 4AC)/2A. (4)

Here, A = (εzzμzz )−1(ε sin2 θ + εzz cos2 θ )(μ sin2 θ + μzz

cos2 θ ), B =−[(εxxμyy +μxxεyy − 2εxyμxy) cos2 θ+(εzzμzz )−1

(ε⊥μμzz + μ⊥εεzz ) sin2 θ ], C = ε⊥μ⊥, ε = εxx cos2 ϕ + εyy

sin2 ϕ, and μ = μxx cos2 ϕ + μyy sin2 ϕ.

We should note, that both Eqs. (2) and (3) represent
in different forms the dispersion equation for bulk waves
propagating in an unbounded biaxial gyroelectromagnetic
medium. The solution of this dispersion equation gives us
the possibility to reveal characteristics of the electromagnetic
field inside the structure for the given set of geometrical and
material parameters of the superlattice, so the direct problem
is formulated and solved here. Recently an elegant solution of
the corresponding inverse problem has been reported [44].

For a lossless medium, the isofrequency surfaces are re-
lated to the purely real roots of Eq. (3). In the general case,
Eq. (3) yields two real roots κ1 and κ2, and two isofrequency
surfaces exist for any frequency. In accordance with accepted
notation [35], one of such roots [with upper sign + in Eq. (4)]
is related to the ordinary waves, whereas another one [with
lower sign − in Eq. (4)] is related to the extraordinary waves.
When one of the roots κ1 or κ2 is a purely imaginary quantity
and corresponds to propagation of an evanescent wave, only
one isofrequency surface exists at the given frequency.

Furthermore, in a lossy medium, the components of effec-
tive constitutive tensors ε̂eff and μ̂eff are complex, that is, εi j =
ε′

i j + iε′′
i j and μi j = μ′

i j + iμ′′
i j for i, j = x, y, z. In this case,

all four roots of Eq. (3) are complex quantities (κi = κ ′
i +

iκ ′′
i , i = 1–4) and describe propagation of complex waves.

Their amplitudes may either decay or grow exponentially dur-
ing the wave propagation. Complex waves with exponentially
decaying amplitude (κ ′′

i > 0) correspond to the proper waves
[45,46], otherwise (κ ′′

i < 0) they are related to the improper
waves, which are nonphysical solutions for a passive medium.

III. LOSSLESS TOPOLOGICAL TRANSITIONS

Our objective here is to study the topological transitions
of isofrequency surfaces related to the waves propagating
through an idealized lossless gyroelectromagnetic medium.
Although we neglect losses, all other parameters of the given
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superlattice are set equal to typical values for actual ma-
terials. In particular, in this paper we follow the results of
Ref. [24] and study the superlattice made of barium cobalt
(e.g., Ba3Co2Fe24O41) [47] and doped-silicon [48] layers.
This choice explained by the fact that under the influence of an
external magnetic field the characteristic resonant frequencies
for these materials are closely spaced [see Fig. 1(b)]. All
geometrical and material parameters of the magnetized super-
lattice are summarized in the caption of Fig. 1. For all our
subsequent calculations the frequency parameter is assumed
to be k0 = 155.5 m−1 ( f ≈ 7.4 GHz).

In the superlattice under study, the externally applied static
magnetic field can essentially change the dispersion char-
acteristics of the medium since it simultaneously influences
both permeability and permittivity of magnetic and semi-
conductor layers, respectively. The dispersion characteristics
depend also on the direction of structure periodicity and ratio
between filling factors of the magnetic and semiconductor
constituents of the superlattice (we introduce corresponding
filling factors as dimensionless parameters written in the form
δm = dm/d, δs = ds/d , and δm + δs = 1). Nevertheless, it is
revealed [33] that the topological transitions of isofrequency
surfaces appear due to the changes in the principal values of
tensors of relative effective permeability μ̂eff and relative ef-
fective permittivity ε̂eff . At a constant external magnetic-field
strength, these parameters are functions of the superlattice
filling factors only.

For the given parameters of the superlattice, the follow-
ing relations between the values of principal components
of tensors μ̂eff and ε̂eff hold: μzz > μyy > μxx and εyy >

εxx > εzz. The principal values εyy, εxx, and μyy are always
positive quantities, and μzz = 1 regardless of the value of
δm (δm ∈ [0.0, 1.0]). Moreover, several representative regions
can be distinguished by different combinations of positive and
negative values of principal components εzz and μxx, which
depend on δm [corresponding regions are denoted by Roman
numerals “I–IV” and depicted in different colors in Fig. 2(a)].
They are as follows: (Region I) δm ∈ [0.0, 0.05), where εzz <

0 and μxx > 0; (Region II) δm ∈ [0.05, 0.16), where εzz < 0
and μxx < 0; (Region III) δm ∈ [0.16, 0.95), where εzz > 0
and μxx < 0; (Region IV) δm ∈ [0.95, 1.0], where εzz > 0 and
μxx > 0.

These different combinations of values of εzz and μxx

correspond to distinct forms of isofrequency surfaces arising
from certain topological transitions. These transitions appear
when either value εzz or μxx goes to zero at some δm. These
values separate topologically distinct sets of solutions of
Eq. (3) [we depict the transition points in Fig. 2(a) by stars].
Therefore, we plot the corresponding set of isofrequency
surfaces in Figs. 2(b)–2(h) for Regions I–IV, respectively,
where in the k space each component of the wave vector
is normalized by k0. In the plotted data, green and blue
surfaces correspond to the ordinary and extraordinary waves,
respectively.

In Region I all principal components of μ̂eff are positive
and |μ2

xy| < |μxxμyy|, whereas the component εzz of ε̂eff is
negative. As is typical for the hyperbolic metamaterial [11],
the isofrequency surfaces arise in the forms of an ellipsoid for
the ordinary waves and a twofold type-I uniaxial hyperboloid
for the extraordinary waves [Fig. 2(b)]. A distinctive feature

FIG. 2. (a) The change in the values of principal components
μxx and εzz as the parameter δm varies at a fixed frequency. (b)–(h)
The forms of isofrequency surfaces related to waves propagating
through a lossless superlattice for different values of the parameter
δm. Green and blue surfaces correspond to behaviors of ordinary and
extraordinary waves, respectively.

of the hyperboloid is its slight compression along the z axis,
which coincides with an additional anisotropy axis along the
direction of an external magnetic field. Such a composite
feature of isofrequency surfaces (known as the mixed-type
dispersion [49]) is conditioned by the hybrid character of
Eq. (3) and appears when hyperbolicity in the permittivity
tensor and gyrotropy in the permeability tensor exist simul-
taneously [21,49]. Moreover, from Figs. 3(a) and 3(b) one
can conclude that the rotation symmetry of the isofrequency
surfaces relative to the z axis is broken. The resulting form of
isofrequency surfaces is typical for a biaxial crystal [22].

As the parameter δm increases, the ellipsoidlike surface is
deformed gradually in such a way that its thickness decreases
at the ellipsoid center and the surface transits to a toroid.
Once the condition |μ2

xy| = |μxxμyy| is fulfilled, the thickness
of the ellipsoid at the center reduces to zero [Figs. 3(a)
and 3(b)]. Subsequently, in the part of Region I where the
condition |μ2

xy| > |μxxμyy| holds, the isofrequency surface of
the ordinary waves transits to a toroidlike form as shown in
Fig. 2(c). Similar features have been recently reported for a
hyperbolic-gyromagnetic metamaterial [21].

When both principal components εzz and μxx become
negative quantities (Region II), there is a topological transition
to a bihyperbolic topology for the isofrequency surface of the
extraordinary waves. In this case there are two onefold type-II
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FIG. 3. The cross-section views of the isofrequency surfaces
for different values of the parameter δm. The inset of panel (f)
demonstrate disappearance of self-intersection points. Green and
blue curves correspond to behaviors of ordinary and extraordinary
waves, respectively.

hyperboloids with orthogonal revolution axes [Figs. 2(d), 2(e),
and 3(c)]. Such an unusual bihyperbolic topology is a result
of simultaneous effects of both the structure periodicity and
an external magnetic field [33]. The isofrequency surface of
the ordinary waves transits to an ellipsoidlike form since
the condition |μ2

xy| < |μxxμyy| is satisfied. This ellipsoid is
surrounded by the bihyperbolic surface.

For the third set of parameters (Region III), all principal
values of relative effective tensors are positive except for μxx.
There is a topological transition of the isofrequency surface
of the extraordinary waves to a type-I biaxial-hyperboloid
oriented along the x axis [Fig. 2(f)]. As the parameter δm

increases further, this surface gradually transits to a type-I
uniaxial hyperboloid as shown in Fig. 2(g). In this case the
isofrequency surfaces are strongly compressed along the z
axis under the influence of an external static magnetic field.
Another effect of this field is the absence of the degeneracy
points (also known as self-intersection points [34]) in the
isofrequency surfaces [Fig. 3(f)]. In turn, this means the
disappearance of the conical refraction in anisotropic crystals
[19,22] since the isofrequency surfaces split apart in these
self-intersection points under an action of the external mag-
netic field [50,51].

Finally, in Region IV (δm � δs) all principal components
of ε̂eff and μ̂eff are positive quantities, the isofrequency surface
is in the form of a single ellipsoid as shown in Fig. 2(h). In
this region εxy → 0, εxx ≈ εyy ≈ εzz → εm, and the disper-
sion characteristic of a gyromagnetic (ferrite) bulk medium
is dominant. For such a medium the topological transitions
are well described (see, for instance, Ref. [20] and references
therein).

IV. LOSS-INDUCED TOPOLOGICAL TRANSITIONS

The topological transitions and forms of isofrequency sur-
faces presented so far have been limited to the lossless case.
However, if the operating frequency is close to the character-
istic frequency of either ferromagnetic or plasma resonance,
the intrinsic losses in constitutive materials of the superlattice
are significant and thus cannot be ignored. In lossy media,
components of the wave-vector�k are complex quantities (ki =
k′

i + ik′′
i , i = x, y, z, where k′

i represents the phase change
and k′′

j corresponds to the decay rate), therefore losses may
modify the forms of isofrequency surfaces [22,38,39]. These
modifications are the subject of our further study. Of our
prime interest are the conditions of occurrence of the loss-
induced topological transitions of the isofrequency surfaces.
To find these conditions, we again consider regions studied
above for different δm’s. To be specific, we have chosen the
following values: δm = 0.02, δm = 0.06, and δm = 0.2 which
are representative values for Region I [Fig. 2(b)], Region II
[Fig. 2(d)], and Region III [Fig. 2(f)], respectively. Since there
are no peculiarities in Region IV, it is not considered in our
further investigation.

In our model losses in magnetic and semiconductor layers
are described by parameters b and ν, respectively (see the
Appendix). Parameter b is the dimensionless one, whereas
parameter ν has frequency units. For clarity, the dependence
of both the real and the imaginary parts of the principal
components of tensors μ̂eff and ε̂eff on b and ν is shown in
Fig. 4 for two values of δm.

When δm = 0.02 (Region I) there are two combined con-
ditions 0 < μ′

xx < 1 and −1 < ε′
zz < 0 on the real parts of

the principal components of tensors μ̂eff and ε̂eff . Since μ′
xx

is a small positive quantity, the superlattice behaves as a
μ-near-zero medium, which features isofrequency surfaces in
the form of an ellipsoid for ordinary waves and a type-I hy-
perboloid for extraordinary waves [Fig. 5(a)]. The revolution
axis of the hyperboloid is oriented along the z axis.

Since losses are introduced to the system (ν �= 0 and
b �= 0, that is, μ′′

i j �= 0 and ε′′
i j �= 0) the roots of Eq. (3) are

now complex for both ordinary and extraordinary waves.
Propagated waves decay exponentially, so they belong to the
proper waves. Because of the wave attenuation in the system,
the isofrequency surface of the extraordinary waves does not
expand to infinity, and the type-I hyperboloid transforms to
closed form [Fig. 5(b)]. The hyperbolic isofrequency surface
of the extraordinary waves bends in the opposite direction at
the finite value of �k intersecting the ellipsoidlike isofrequency
surface of the ordinary waves. In fact, a gradual increase in
losses diminishes the size of the closed hyperboloidlike area
and finally reduces it to zero. We should note that such loss-
induced topological transitions of the isofrequency surface of
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FIG. 4. (a) Real and imaginary parts of components of tensors, tensor μ̂eff as function of the dimensionless parameter b and (c) and
(d) tensor ε̂eff versus parameter ν given in gigahertz for two fixed values of δm. The dashed and solid lines correspond to δm = 0.02 and
δm = 0.2, respectively. The other parameters are the same as in Fig. 1.

the extraordinary waves are quite usual for the hyperbolic
metamaterials (see, for instance, Ref. [22]).

For the similar set of parameters and δm = 0.2 (Region III),
other conditions −1 < μ′

xx < 0 and 0 < ε′
zz < 1 are true. In

this case the superlattice behaves as an ε-near-zero medium.
For such a medium, loss-induced topological transitions, and
forms of the isofrequency surfaces are similar to those de-
scribed in the previous case. The sole exception is the revo-
lution axis of the hyperboloid, which is now oriented along
the x axis [Figs. 6(a) and 6(c)].

FIG. 5. The forms of isofrequency surfaces related to waves
propagating through a superlattice characterized by different intrinsic
losses inherent in actual magnetic and semiconductor materials.
For these materials corresponding conditions −1 < ε′

zz < 0 and
0 < μ′

xx < 1 hold, and the value of δm = 0.02 is assumed fixed.
Parameters of the lossy system are as follows: (a) b = 1 × 10−4, ν =
1 × 10−2 GHz; (b) b = 5 × 10−2, ν = 1 × 10−2GHz; (c) b = 1 ×
10−4, ν = 2 GHz; (d) b = 5 × 10−2, ν = 2 GHz. The green and
blue surfaces are relative to ordinary and extraordinary waves,
respectively.

Since the superlattice of interest consists of magnetic and
semiconductor subsystems, these subsystems are both influ-
enced by an external magnetic field. In this case the topologi-
cal forms are distinct from those typical for traditional hyper-
bolic metamaterials. Indeed, when ε′

zz < 0 at a constant value
of b, a nontrivial transition of the isofrequency surface of
the extraordinary waves appears with an increase in ν. The
size of the closed hyperboliclike area gradually decreases in
the direction of the z axis, whereas it is expanded along both
the x axis and the y axis. A complicated shape of the isofre-
quency surface of the extraordinary waves is conditioned by
the loss-induced topological transitions from a type-I hyper-
boloid to a combination of two hyperboloids having orthogo-
nal revolution axes. Therefore, with an increase in the losses in
the semiconductor component, the corresponding hyperbolic

FIG. 6. The same as in Fig. 5 but for conditions 0 < ε′
zz <

1, −1 < μ′
xx < 0, and δm = 0.2. Parameters of the lossy system

are as follows: (a) b = 1 × 10−4, ν = 1 × 10−2 GHz; (b) b = 5 ×
10−2, ν = 1 × 10−2 GHz; (c) b = 1 × 10−4, ν = 5 GHz; (d) b =
5 × 10−2, ν = 5 GHz.
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FIG. 7. The cross-section views of several stages of the loss-
induced topological transitions of the isofrequency surface for the ex-
traordinary waves; (a) and (b) δm = 0.02 and b = 2 × 10−2; (c) and
(d) δm = 0.2 and ν = 1 × 10−2 GHz.

area becomes dominant, and the complicated bihyperboliclike
shape appears [Figs. 5(c) and 5(d)].

When μ′
xx < 0, ν is fixed, and b increases, the similar

loss-induced transitions are observed in the superlattice with
the dominant magnetic component [Fig. 6(b)]. In this case the
closed isofrequency surface of the extraordinary wave under-
goes compressing along both the x axis and the y axis and is
expanded along the z axis. The variation of the closed area
is accompanied by change in the shape of the isofrequency
surface for the extraordinary waves [Figs. 6(b) and 6(d)]. We
have added Fig. 7 to demonstrate peculiarities of these topo-
logical transitions which can be revealed from corresponding
cross-section views calculated at particular values of δm (an
animation of these transitions in the full range of parameters
b and ν is available in the Supplemental Material [52]).

The most interesting is Region II where conditions μ′
xx <

0 and ε′
zz < 0 for principal components of tensors μ̂eff and

ε̂eff hold. The superlattice behaves as an anisotropic double-
negative and double-positive media for the extraordinary and
ordinary waves, respectively. For the extraordinary waves the
isofrequency surface appears in a form of bihyperboloid [33],
which is significantly different from forms obtained above for
Regions I and III [Fig. 8(a)].

Although such a form of the isofrequency surface is quite
intriguing, it corresponds to the nonphysical solutions of
Eq. (3) for small losses in the system. This means that the
corresponding roots of Eq. (3) describe the propagation of
the improper waves. In Fig. 8(a) we plot the isofrequency
surface for the extraordinary improper waves with the yellow
color.

The most complex effect is the competition between the
losses in magnetic and semiconductor subsystems. It changes

FIG. 8. The same as in Fig. 5 but for conditions −1 < ε′
zz <

0, −1 < μ′
xx < 0, and δm = 0.06. Parameters of the lossy material

are as follows: (a) b = 1 × 10−4, ν = 1 × 10−2 GHz; (b) b = 1 ×
10−2, ν = 1 × 10−2 GHz; (c) b = 1 × 10−4, ν = 2 GHz; (d) b =
2 × 10−2, ν = 2 GHz. The yellow surface corresponds to extraor-
dinary improper waves, whereas the green and blue surfaces corre-
spond to ordinary and extraordinary proper waves, respectively.

the propagation conditions for the extraordinary waves. Thus,
under a certain level of either magnetic or semiconductor
losses these waves become proper ones. In this case the
isofrequency surface of the extraordinary waves acquires a
loss-induced topological transition to a type-I hyperboloid
with the revolution axis oriented either along the z axis
[Fig. 8(b)] or the x axis [Fig. 8(c)] when either a magnetic
(μ′′

i j � ε′′
i j) or a semiconductor (ε′′

i j � μ′′
i j) subsystem, re-

spectively, is dominant (an animation of these loss-induced
transitions can be found in the Supplemental Material [52]).
Thus, one may conclude that in Region II the dispersion
conditions of the extraordinary waves can be significantly
modified (up to opposite conditions) by losses injected selec-
tively into constitutive materials of the superlattice. Moreover,
if there is no competition between the losses in subsys-
tems, then the loss-induced bihyperboliclike topology arises
[Fig. 8(d)].

V. CONCLUSIONS

We have studied the topological transitions of isofrequency
surfaces in a biaxial gyroelectromagnetic medium influenced
by an external static magnetic field. It has been demonstrated
that in the case of a lossless structure the topological transi-
tions from a closed ellipsoid to a bihyperboloid, or open type-
I or type-II hyperboloids can be achieved. Such transitions
of isofrequency surfaces occur at the critical points where
principal components of the effective permeability and/or
permittivity tensors change their sign.
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The realization of the loss-induced topological transitions
of the isofrequency surfaces was studied in detail. We have
demonstrated that several distinctive loss-induced topological
transitions of the isofrequency surface of the extraordinary
waves can be achieved by providing selective injection of
losses into magnetic and semiconductor subsystems of the
superlattice. It has been revealed that the loss-induced topo-
logical transition from a type-I hyperboloid to a bihyperboloid
occurs when the real part of the principal component of
permittivity and/or permeability is close to zero, whereas its
imaginary part is high.

ACKNOWLEDGMENT

The authors acknowledge Jilin University’s hospitality and
financial support and useful discussions and collaboration
with V. I. Shcherbinin.

APPENDIX: CONSTITUTIVE PARAMETERS OF FERRITE
AND SEMICONDUCTOR LAYERS

The expressions for the tensors’ components of the un-
derlying constitutive parameters of magnetic μ̂m → ĝm and

semiconductor ε̂s → ĝs layers can be written in the form

ĝ j =

⎛
⎜⎝

g1 ig2 0

−ig2 g1 0

0 0 g3

⎞
⎟⎠. (A1)

For magnetic layers [53,54] the components of tensor ĝm

are g1 = 1 + χ ′ + iχ ′′, g2 = ′ + i′′, g3 = 1, and χ ′ =
ω0ωm[ω2

0 − ω2(1 − b2)]D−1, χ ′′ = ωωmb[ω2
0 + ω2(1 + b2)]

D−1,′ = ωωm[ω2
0 − ω2(1 + b2)]D−1, ′′ = 2ω2ω0ωmbD−1,

D = [ω2
0 − ω2(1 + b2)]2 + 4ω2

0ω
2b2, where ω0 is the Larmor

frequency and b is the dimensionless damping constant.
For semiconductor layers [55] the components of tensor

ĝs are g1 = εl [1 − ω2
p(ω + iν){ω[(ω + iν)2 − ω2

c ]}−1], g2 =
εlω

2
pωc{ω[(ω + iν)2 − ω2

c ]}−1, g3 = εl{1− ω2
p[ω(ω+iν)]−1},

where εl is the part of the permittivity of the lattice, ωp is the
plasma frequency, ωc is the cyclotron frequency, and ν is the
electron collision frequency in plasma.

Relative permittivity εm of the ferrite layers as well as
relative permeability μs of the semiconductor layers are scalar
quantities.

[1] L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, Prog.
Quantum Electron. 40, 1 (2015).

[2] C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt. 14,
063001 (2012).

[3] A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, Phys. Rev. B
87, 035136 (2013).

[4] Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, Appl. Phys.
Lett. 100, 181105 (2012).

[5] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315,
1686 (2007).

[6] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye,
Appl. Phys. Lett. 84, 2244 (2004).

[7] P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S.
Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S.
Kivshar, G. A. Wurtz, and A. V. Zayats, Nat. Commun. 5, 3226
(2014).

[8] D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[9] J. Schilling, Phys. Rev. E 74, 046618 (2006).

[10] S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, Opt. Express 21,
14982 (2013).

[11] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photonics
7, 948 (2013).

[12] C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S.
Kivshar, Adv. Mater. 24, 4229 (2012).

[13] J. Sun, J. Zeng, and N. M. Litchinitser, Opt. Express 21, 14975
(2013).

[14] M. S. Mirmoosa, S. Y. Kosulnikov, and C. R. Simovski,
Phys. Rev. B 92, 075139 (2015).

[15] M. S. Mirmoosa, S. Y. Kosulnikov, and C. R. Simovski,
Phys. Rev. B 94, 075138 (2016).

[16] O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, Phys. Rev. A 85,
053842 (2012).

[17] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

[18] R. K. Fisher and R. W. Gould, Phys. Rev. Lett. 22, 1093 (1969).
[19] E. V. Kuznetsov and A. M. Merzlikin, Opt. Commun. 405, 164

(2017).
[20] E. G. Lokk, J. Commun. Technol. Electron. 62, 251 (2017).
[21] R.-L. Chern and Y.-Z. Yu, Opt. Express 25, 11801 (2017).
[22] K. E. Ballantine, J. F. Donegan, and P. R. Eastham, Phys. Rev.

A 90, 013803 (2014).
[23] M. I. Kaganov, N. B. Pustyl’nik, and T. I. Shalaeva, Phys. Usp.

40, 181 (1997).
[24] R.-X. Wu, T. Zhao, and J. Q. Xiao, J. Phys.: Condens. Matter

19, 026211 (2007).
[25] R. H. Tarkhanyan and D. G. Niarchos, Phys. Status Solidi B

245, 154 (2008).
[26] O. V. Shramkova, Prog. Electromagn. Res. M 7, 71 (2009).
[27] R. Tarkhanyan, D. Niarchos, and M. Kafesaki, J. Magn. Magn.

Mater. 322, 603 (2010).
[28] V. R. Tuz and V. I. Fesenko, in Contemporary Optoelectronics,

edited by O. Shulika and I. Sukhoivanov, Springer Series in Op-
tical Sciences Vol. 199 (Springer, Dordrecht, The Netherlands,
2016), pp. 99–113.

[29] V. R. Tuz, J. Magn. Magn. Mater. 419, 559 (2016).
[30] V. I. Fesenko, I. V. Fedorin, and V. R. Tuz, Opt. Lett. 41, 2093

(2016).
[31] V. R. Tuz, V. I. Fesenko, I. V. Fedorin, H.-B. Sun, and W. Han,

J. Appl. Phys. 121, 103102 (2017).
[32] V. R. Tuz, V. I. Fesenko, I. V. Fedorin, H.-B. Sun, and V. M.

Shulga, Superlattice. Microst. 103, 285 (2017).
[33] V. R. Tuz, I. V. Fedorin, and V. I. Fesenko, Opt. Lett. 42, 4561

(2017).
[34] L. D. Landau and E. M. Lifshitz, Electrodynamics of Contin-

uous Media (Volume 8 of A Course of Theoretical Physics)
(Pergamon, Oxford, 1960).

[35] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves (IEEE-Wiley, New York, 1994).

094404-8

https://doi.org/10.1016/j.pquantelec.2014.10.001
https://doi.org/10.1016/j.pquantelec.2014.10.001
https://doi.org/10.1016/j.pquantelec.2014.10.001
https://doi.org/10.1016/j.pquantelec.2014.10.001
https://doi.org/10.1088/2040-8978/14/6/063001
https://doi.org/10.1088/2040-8978/14/6/063001
https://doi.org/10.1088/2040-8978/14/6/063001
https://doi.org/10.1088/2040-8978/14/6/063001
https://doi.org/10.1103/PhysRevB.87.035136
https://doi.org/10.1103/PhysRevB.87.035136
https://doi.org/10.1103/PhysRevB.87.035136
https://doi.org/10.1103/PhysRevB.87.035136
https://doi.org/10.1063/1.4710548
https://doi.org/10.1063/1.4710548
https://doi.org/10.1063/1.4710548
https://doi.org/10.1063/1.4710548
https://doi.org/10.1126/science.1137368
https://doi.org/10.1126/science.1137368
https://doi.org/10.1126/science.1137368
https://doi.org/10.1126/science.1137368
https://doi.org/10.1063/1.1690471
https://doi.org/10.1063/1.1690471
https://doi.org/10.1063/1.1690471
https://doi.org/10.1063/1.1690471
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1038/ncomms4226
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1103/PhysRevE.74.046618
https://doi.org/10.1103/PhysRevE.74.046618
https://doi.org/10.1103/PhysRevE.74.046618
https://doi.org/10.1103/PhysRevE.74.046618
https://doi.org/10.1364/OE.21.014982
https://doi.org/10.1364/OE.21.014982
https://doi.org/10.1364/OE.21.014982
https://doi.org/10.1364/OE.21.014982
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1002/adma.201200931
https://doi.org/10.1002/adma.201200931
https://doi.org/10.1002/adma.201200931
https://doi.org/10.1002/adma.201200931
https://doi.org/10.1364/OE.21.014975
https://doi.org/10.1364/OE.21.014975
https://doi.org/10.1364/OE.21.014975
https://doi.org/10.1364/OE.21.014975
https://doi.org/10.1103/PhysRevB.92.075139
https://doi.org/10.1103/PhysRevB.92.075139
https://doi.org/10.1103/PhysRevB.92.075139
https://doi.org/10.1103/PhysRevB.92.075139
https://doi.org/10.1103/PhysRevB.94.075138
https://doi.org/10.1103/PhysRevB.94.075138
https://doi.org/10.1103/PhysRevB.94.075138
https://doi.org/10.1103/PhysRevB.94.075138
https://doi.org/10.1103/PhysRevA.85.053842
https://doi.org/10.1103/PhysRevA.85.053842
https://doi.org/10.1103/PhysRevA.85.053842
https://doi.org/10.1103/PhysRevA.85.053842
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1103/PhysRevLett.22.1093
https://doi.org/10.1103/PhysRevLett.22.1093
https://doi.org/10.1103/PhysRevLett.22.1093
https://doi.org/10.1103/PhysRevLett.22.1093
https://doi.org/10.1016/j.optcom.2017.08.022
https://doi.org/10.1016/j.optcom.2017.08.022
https://doi.org/10.1016/j.optcom.2017.08.022
https://doi.org/10.1016/j.optcom.2017.08.022
https://doi.org/10.1134/S1064226917030147
https://doi.org/10.1134/S1064226917030147
https://doi.org/10.1134/S1064226917030147
https://doi.org/10.1134/S1064226917030147
https://doi.org/10.1364/OE.25.011801
https://doi.org/10.1364/OE.25.011801
https://doi.org/10.1364/OE.25.011801
https://doi.org/10.1364/OE.25.011801
https://doi.org/10.1103/PhysRevA.90.013803
https://doi.org/10.1103/PhysRevA.90.013803
https://doi.org/10.1103/PhysRevA.90.013803
https://doi.org/10.1103/PhysRevA.90.013803
https://doi.org/10.1070/PU1997v040n02ABEH000194
https://doi.org/10.1070/PU1997v040n02ABEH000194
https://doi.org/10.1070/PU1997v040n02ABEH000194
https://doi.org/10.1070/PU1997v040n02ABEH000194
https://doi.org/10.1088/0953-8984/19/2/026211
https://doi.org/10.1088/0953-8984/19/2/026211
https://doi.org/10.1088/0953-8984/19/2/026211
https://doi.org/10.1088/0953-8984/19/2/026211
https://doi.org/10.1002/pssb.200743071
https://doi.org/10.1002/pssb.200743071
https://doi.org/10.1002/pssb.200743071
https://doi.org/10.1002/pssb.200743071
https://doi.org/10.2528/PIERM09041305
https://doi.org/10.2528/PIERM09041305
https://doi.org/10.2528/PIERM09041305
https://doi.org/10.2528/PIERM09041305
https://doi.org/10.1016/j.jmmm.2009.10.023
https://doi.org/10.1016/j.jmmm.2009.10.023
https://doi.org/10.1016/j.jmmm.2009.10.023
https://doi.org/10.1016/j.jmmm.2009.10.023
https://doi.org/10.1016/j.jmmm.2016.06.070
https://doi.org/10.1016/j.jmmm.2016.06.070
https://doi.org/10.1016/j.jmmm.2016.06.070
https://doi.org/10.1016/j.jmmm.2016.06.070
https://doi.org/10.1364/OL.41.002093
https://doi.org/10.1364/OL.41.002093
https://doi.org/10.1364/OL.41.002093
https://doi.org/10.1364/OL.41.002093
https://doi.org/10.1063/1.4977956
https://doi.org/10.1063/1.4977956
https://doi.org/10.1063/1.4977956
https://doi.org/10.1063/1.4977956
https://doi.org/10.1016/j.spmi.2017.01.040
https://doi.org/10.1016/j.spmi.2017.01.040
https://doi.org/10.1016/j.spmi.2017.01.040
https://doi.org/10.1016/j.spmi.2017.01.040
https://doi.org/10.1364/OL.42.004561
https://doi.org/10.1364/OL.42.004561
https://doi.org/10.1364/OL.42.004561
https://doi.org/10.1364/OL.42.004561


LOSSLESS AND LOSS-INDUCED TOPOLOGICAL … PHYSICAL REVIEW B 99, 094404 (2019)

[36] S. Feng, Phys. Rev. Lett. 108, 193904 (2012).
[37] H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen,

Phys. Rev. B 91, 045302 (2015).
[38] K. Yu, Z. Guo, H. Jiang, and H. Chen, J. Appl. Phys. 119,

203102 (2016).
[39] Z. Guo, H. Jiang, Y. Sun, Y. Li, and H. Chen, Appl. Sci. 8, 596

(2018).
[40] V. Agranovich, Solid State Commun. 78, 747 (1991).
[41] V. R. Tuz, O. D. Batrakov, and Y. Zheng, Prog. Electromagn.

Res. B 41, 397 (2012).
[42] V. R. Tuz, J. Opt. 17, 035611 (2015).
[43] V. R. Tuz, I. V. Fedorin, and V. I. Fesenko, in Surface Waves,

edited by F. Ebrahimi (IntechOpen, Rijeka, 2018), Chap. 6.
[44] T. Mulkey, J. Dillies, and M. Durach, Opt. Lett. 43, 1226

(2018).
[45] A. Ishimaru, Electromagnetic Wave Propagation, Radiation,

and Scattering (Prentice Hall, Englewood Cliffs, NJ, 1991).
[46] P. Yu, V. I. Fesenko, and V. R. Tuz, Nanophotonics 7, 925

(2018).

[47] R. X. Wu, J. Appl. Phys. 97, 076105 (2005).
[48] S. M. Sze and J. C. Irvin, Solid-State Electron. 11, 599

(1968).
[49] P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, Opt. Express 22,

25710 (2014).
[50] A. G. Khatkevich and S. N. Kurilkina, J. Appl. Spectrosc. 51,

1329 (1989).
[51] A. Belsky and M. Stepanov, Opt. Commun. 204, 1 (2002).
[52] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.094404 for visualization of the loss-
induced topological transitions of isofrequency surfaces related
to Figs. 5, 6, and 8 of the paper.

[53] A. G. Gurevich, Ferrites at Microwave Frequencies (Heywood,
London, 1963).

[54] R. E. Collin, Foundation for Microwave Engineering (Wiley-
Interscience, New York, 1992).

[55] F. Bass and A. Bulgakov, Kinetic and Electrodynamic Phe-
nomena in Classical and Quantum Semiconductor Superlattices
(Nova Science, Hauppauge, NY, 1997).

094404-9

https://doi.org/10.1103/PhysRevLett.108.193904
https://doi.org/10.1103/PhysRevLett.108.193904
https://doi.org/10.1103/PhysRevLett.108.193904
https://doi.org/10.1103/PhysRevLett.108.193904
https://doi.org/10.1103/PhysRevB.91.045302
https://doi.org/10.1103/PhysRevB.91.045302
https://doi.org/10.1103/PhysRevB.91.045302
https://doi.org/10.1103/PhysRevB.91.045302
https://doi.org/10.1063/1.4952378
https://doi.org/10.1063/1.4952378
https://doi.org/10.1063/1.4952378
https://doi.org/10.1063/1.4952378
https://doi.org/10.3390/app8040596
https://doi.org/10.3390/app8040596
https://doi.org/10.3390/app8040596
https://doi.org/10.3390/app8040596
https://doi.org/10.1016/0038-1098(91)90856-Q
https://doi.org/10.1016/0038-1098(91)90856-Q
https://doi.org/10.1016/0038-1098(91)90856-Q
https://doi.org/10.1016/0038-1098(91)90856-Q
https://doi.org/10.2528/PIERB12042603
https://doi.org/10.2528/PIERB12042603
https://doi.org/10.2528/PIERB12042603
https://doi.org/10.2528/PIERB12042603
https://doi.org/10.1088/2040-8978/17/3/035611
https://doi.org/10.1088/2040-8978/17/3/035611
https://doi.org/10.1088/2040-8978/17/3/035611
https://doi.org/10.1088/2040-8978/17/3/035611
https://doi.org/10.1364/OL.43.001226
https://doi.org/10.1364/OL.43.001226
https://doi.org/10.1364/OL.43.001226
https://doi.org/10.1364/OL.43.001226
https://doi.org/10.1515/nanoph-2018-0026
https://doi.org/10.1515/nanoph-2018-0026
https://doi.org/10.1515/nanoph-2018-0026
https://doi.org/10.1515/nanoph-2018-0026
https://doi.org/10.1063/1.1883718
https://doi.org/10.1063/1.1883718
https://doi.org/10.1063/1.1883718
https://doi.org/10.1063/1.1883718
https://doi.org/10.1016/0038-1101(68)90012-9
https://doi.org/10.1016/0038-1101(68)90012-9
https://doi.org/10.1016/0038-1101(68)90012-9
https://doi.org/10.1016/0038-1101(68)90012-9
https://doi.org/10.1364/OE.22.025710
https://doi.org/10.1364/OE.22.025710
https://doi.org/10.1364/OE.22.025710
https://doi.org/10.1364/OE.22.025710
https://doi.org/10.1007/BF00659944
https://doi.org/10.1007/BF00659944
https://doi.org/10.1007/BF00659944
https://doi.org/10.1007/BF00659944
https://doi.org/10.1016/S0030-4018(02)01191-4
https://doi.org/10.1016/S0030-4018(02)01191-4
https://doi.org/10.1016/S0030-4018(02)01191-4
https://doi.org/10.1016/S0030-4018(02)01191-4
http://link.aps.org/supplemental/10.1103/PhysRevB.99.094404

