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Magic high-order harmonics from a quasi-one-dimensional hexagonal solid
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High-order harmonic generation (HHG) from atoms is a coherent light source that opens up attosecond
physics, but it is the application of HHG to solids that has brought much excitement in the last decade. Here
we report a special kind of harmonics in a quasi-one-dimensional and hexagonal barium titanium sulfide:
Under circularly polarized laser excitation, harmonics are generated only at first, fifth, seventh, and eleventh
orders. These magic harmonics appear only with circularly polarized light, not with linearly polarized light.
Neither cubic nor tetragonal cells have magic harmonics even with circularly polarized light. Through a
careful group-theory analysis, we find that two subgroups of symmetry operations unique to the hexagonal
symmetry cancel out third and ninth harmonics. This feature presents a rare opportunity to develop HHG into a
crystal-structure characterization tool for phase transitions between hexagonal and nonhexagonal structures.
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I. INTRODUCTION

High-order harmonic generation (HHG) from solids [1]
and nanostructures [2–5] has been extended to a broad scope
of materials (see references in [6–8]). With strong signals
and large tunability of energy spectra, solid-state HHG has
reshaped the landscape of HHG as a radiation source from
simple atoms, and has gradually developed into a practical
tool to characterize materials properties on unprecedented
short-time scales, where the motion of electrons can be pic-
tured frame by frame within several hundred attoseconds.
Naturally, not all the processes such as chemical reactions
require such short-time scales, but many do. For instance,
to resolve laser-induced ultrafast spin dynamics [9], a short
pulse is necessary, since it allows one to disentangle the
magnetic and electronic dynamics from nuclear vibrational
dynamics. However, condensed matters are far more complex
than atoms. The advantage of HHG over other tools has not
been materialized, though using HHG to map bands has been
proposed [10].

Recently, BaTiS3 shows a broadband birefringence in in-
frared regions [11], but it is its quasi-one-dimensionality
and strong optical anisotropy that caught our attention. Low-
dimensional materials with large oscillator strength are indis-
pensable to nonlinear optical responses, if their band gaps
(Eg) are small but nonzero. According to the well-known
scaling rule, the third-order susceptibility χ (3) is proportional
to χ (3) ∝ E−6

g [12,13]. BaTiS3 has a tiny gap, so even within
a perturbation limit, its nonlinear susceptibility is expected
to be strong, but little is known about its nonlinear optical
properties, and even less its high-order harmonic generation.

In this paper, we predict strange high-order harmonics in
hexagonal barium titanium sulfide (BaTiS3) that circularly
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(σ ) polarized light generates harmonics only at a few special
orders. Regardless of laser pulse duration and photon energy,
σ light only induces first, fifth, seventh, and eleventh har-
monics, not third and ninth harmonics. We call them magic
harmonics. Linearly (π ) polarized light only generates normal
odd-order harmonics. This finding is independent of whether
or not the system has an inversion symmetry. Neither cubic
nor tetragonal systems have magic harmonic orders even
excited with σ light. We carry out a detailed group symmetry
analysis and find that magic harmonics are associated with the
hexagonal group symmetry [14–17]. This group contains two
subgroups: subgroup A contains the identity matrix and 180◦
rotation, and subgroup B includes the four proper rotations,
C6, C2

6 , C4
6 , and C5

6 . Each subgroup only generates a normal
harmonic spectrum, but if they both are present, they generate
a destructive interference and exactly cancel out harmonics at
the third and ninth orders. The same conclusion is found for
the six improper rotations. Since cubic or tetragonal systems
do not have such magic harmonics, magic harmonics found
here present an opportunity to develop HHG into a possible
structure characterization tool for phase transitions between
hexagonal and nonhexagonal structures [18] in varieties of
materials [19–28]. Our finding complements the prior studies
using linearly polarized light [6,29,30] well.

The rest of the paper is arranged as follows. In Sec. II,
we outline our theoretical formalism. Our main results are
presented in Sec. III, where we provide the details of our
structural optimization, information of the electronic states,
and high harmonic generations, followed by a symmetry
group analysis. Finally, we conclude this paper in Sec. IV.

II. THEORETICAL FORMALISM

BaTiS3 is a quasi-one-dimensional material with Ti and
S atoms forming a chain along the c axis, with chain-chain
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FIG. 1. High harmonic generation in BaTiS3. (a) Unit cell of
BaTiS3 with group symmetry P63mc has no inversion symmetry. The
laser polarization can be either in the xy (ab) plane or along the z(c)
axis. Harmonics can be detected by a camera. (b) The same structure
projected in the ab plane, with two units along the a and b axes.
(c) Six symmetry rotations in the ab plane can be separated into two
subgroups, A (E , C3

6 ) and B (C6, C2
6 , C4

6 , C5
6 ). These two subgroups

are the cause of magic harmonics. (d) Six improper rotations can also
be categorized into two subgroups, A (σyz, σxz) and B (σ1, . . . σ4).

distance of 6.749 Å. Figure 1(a) shows its crystal structure. Ti
chains pass through face-sharing sulfur octahedra. Figure 1(b)
shows its structure projected onto the ab plane, where S atoms
form a distinctive hexagonal motif and Ba atoms fill the empty
space left behind. According to Huster [31] and Singh et al.
[11], BaTiS3 adopts a hexagonal BaNiO3 structure with space
group no. 194, P63/mmc. This structure has an inversion
symmetry, with Ti at the Wyckoff position (2a), Ba at (2d),
and S at (6h). Table I shows the Huster’s structure information.
However, Niu et al. [11] suggested a different space group no.
186, P63mc, which has a lower symmetry without inversion
symmetry and the number of symmetry operations is reduced
from 24 to 12. Which structure, Niu’s or Huster’s, is more
stable is an open question.

Theoretically, we employ the state-of-the-art density func-
tional theory [32] to optimize the BaTiS3 structure, with little
input from the experiments. We first solve the Kohn-Sham

TABLE I. Wyckoff positions of BaTiS3 determined by Huster
[31]. His structure is of BaNiO3-type and has symmetry group no.
194, P63/mmc. This structure has an inversion symmetry. The lattice
constants are a = 6.756(1) Å and c = 5.798(1) Å.

Atom Position x y z

Ti 2a 0 0 0
Ba 2d 1

3
2
3

3
4

S 6h 0.1655(10) 0.3310(10) 1/4

equation [32–34],

[
− h̄2∇2

2me
+ Vne + Vee + Vxc

]
ψik(r) = Eikψik(r), (1)

where me is the electron mass, the terms on the left-hand
side represent the kinetic energy, nuclear-electron attraction,
electron-electron Coulomb repulsion, and exchange correla-
tion [35], respectively. ψik(r) is the Bloch wave function of
band i at crystal momentum k, and Eik is the band energy.
We include the spin-orbit coupling (SOC) using a second-
variational method in the same self-consistent iteration [32],
though we find the effect of SOC is very small. WIEN2K [32]
employs the linearlized augmented plane-wave basis. In our
calculation, the dimensionless product of plane-wave cutoff
Kmax and muffin-tin radius R is RKmax = 9. Such a large
value ensures that even higher eigenstates are accurately de-
scribed. The muffin-tin radius for each element is as follows:
Rmt(Ba) = 2.5 bohr, Rmt(Ti) = 2.32 bohr, and Rmt(S) = 2.06
bohr, so the core charges are confined within the spheres. We
use a k mesh of 23 × 23 × 24, which is more than enough to
converge our results.

To simulate HHG, we employ a laser pulse with duration
48 fs and photon energy 1.6 eV. These laser parameters are
commonly used in experiments. We numerically solve the
time-dependent Liouville equation for density matrices ρk at
each k [33]

ih̄
∂ρk

∂t
= [H, ρk], (2)

where H contains both the system Hamiltonian and the inter-
action between the laser and system. The expectation value of
the momentum operator [3,36] is computed from

P(t ) =
∑

k

Tr[ρk(t )P̂k], (3)

where the trace is over band indices and crystal momentum
k. We include all the states from band 41 to 146 [see the
arrows in Fig. 2(a)], which cover a major portion of the energy
spectrum. Calculations using different parts of the energy
spectrum are also carried out, but there is no qualitative differ-
ence. To compute the harmonic signal, we Fourier transform
P(t ) to the frequency domain (see details in Ref. [7]),

P(�) =
∫ ∞

−∞
P(t )ei�tW (t )dt, (4)

where W (t ) is the window function. Each component of P(�)
requires a separate Fourier transform. We find that the window
function is necessary since small oscillations in P(t ) at the
end of the time window easily hide the harmonic structures at
high orders. We emphasize that this window function does not
alter the amplitude of the harmonic signal. We choose a hyper-
Gaussian W (t ) = exp[−b(at )8], where a and b determine the
width of the window function and the starting and ending
times. In our current study, we use a = 0.035/fs and b =
5 × 10−9 (no unit), which spans the entire region of our data.
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FIG. 2. (a) Total density of states (DOS). The arrows highlight
the excitation process of our laser pulse. States from 41 to 146
are included in our calculation. The Fermi level is denoted by a
horizontal dashed line. (b) Element-resolved partial DOS, where the
states around the Fermi level are dominated by Ti and S atoms.
(c) Partial density of states for sulfur, which is further decomposed
into different orbital characters in (d).

III. RESULTS

A. Structural optimization

Since earlier studies by Huster [31], structurally Niu
and co-workers [11] provided two possible structures
for BaTiS3 with the same group symmetry. According
to the international tables for crystallography [37],
in group 186 (P63mc), Ti Wyckoff positions are at
(2a) (0, 0, z) and (0, 0, z + 1/2), Ba positions are
at (2b) (1/3, 2/3, z) and (2/3, 1/3, z + 1/2), and S
positions are at (6c): (x,−x, z), (x, 2x, z), (−2x,−x, z),
(−x, x, z + 1/2), (−x,−2x, z + 1/2), and (2x, x, z + 1/2).
However, Niu’s positions [11] are not compatible with
these positions. For instance, Niu’s second set of the S
position is at (0.8301, 0.6603, 0.850), but it should be
(0.8301, 0.1699, 0.350). Their y position can be reproduced
by 2x − 1, where x is the x position; also one has to subtract
1/2 from their z position. In the following we first correct their
Wyckoff positions and then carry out the calculation. Our
Wyckoff positions are in compliance with the international
tables for crystallography.

We optimize both their structures, and find that the first
structure after optimization has a total energy lower than
the second structure by 4 mRy. Both the structures have a
lower energy than Singh’s structure. Our theoretical results
support a structure with group symmetry P63mc. This is the
first testable case for future experiments. Our theoretically
optimized Wyckoff positions, together with the corrected
experimental positions from Niu’s paper [11], are listed in
Table II.

TABLE II. Optimized Wyckoff positions of BaTiS3, with
group no. 186, P63mc, and lattice constants a = 6.749 Å, b =
6.749 Å, and c = 5.831 Å. S atoms are at 6c positions
(x, −x, z), (x, 2x, z), (−2x, −x, z), (−x, x, z + 1

2 ), (−x, −2x, z +
1
2 ), and (2x, x, z + 1

2 ). This structure has no inversion symmetry.
The experimental results from Niu et al. [11] are shown in the
parentheses. If there is no difference between their experiment and
our theory, only one entry is listed.

Atom Position x y z

Ba 2b 1
3

2
3 0.2989 (0.298)

Ti 2a 0 0 0.5067 (0.522)
S 6c 0.8329 (0.8301) 0.1671 (0.1618) 0.2875 (0.298)

B. Electronic states

Before we present the high harmonic generation spec-
trum of BaTiS3, we first investigate its electronic structures.
Figure 2(a) shows our total density of states (DOS). The
Fermi energy (E f ) is denoted by a dashed line. Consistent
with Singh’s results (Eg = 0.01 eV) [11], our energy gap is
very small, around Eg = 0.014 eV, on the energy scale of
room temperature. We expect some important thermal-electric
applications. Figure 2(b) shows the element-resolved partial
density of states. We notice that Ba has a large contribution
only in the lower energy window about 1 Ry below the Fermi
level. Ti (dotted line) and S (dashed line) atoms dominate
DOS around the Fermi level. The partial DOS for S is shown
in Fig. 2(c), which is further resolved into different orbitals in
Fig. 2(d). It is clear that the states at −0.5 Ry are 3s states,
while its 3p states are just around the Fermi level. As seen
below, these states provide a channel for HHG.

C. High harmonic generation

We start with the structure with group symmetry P63/mmc
[11,31]. We align the laser polarization along the x axis.
Figure 3(a) shows the harmonic spectrum on a logarithmic
scale as a function of harmonic orders. We see that all the
harmonics appear at odd orders along the x axis, which is the
original laser polarization direction. The signals along the y
and z axes are at the noise level and not shown. Next, we use
Niu’s experimental structure with group symmetry P63mc.
Figure 3(b) shows that under the same laser condition, the
harmonic signals along the x axis for these two structures
are identical [compare Figs. 3(a) and 3(b)], where all the
harmonics are at odd orders. However, qualitative differences
are observed along the z axis. P63mc has no inversion sym-
metry and harmonics along the z axis appear at even orders.
This agrees with the symmetry properties with this group
symmetry [15,17] that the even orders only appear when the
laser polarization is along the z axis. Consistent with Niu’s
observation of strong optical anisotropy [11], our zeroth-order
harmonic signal along the c axis is particularly strong; and to
obtain clean harmonics at high orders, we subtract P(−∞)
from P(t ) before we compute the power spectrum shown
in Fig. 3(b). This is our second testable result: If Huster’s
structure is correct, no harmonic signal along the z direction
is present; if Niu’s structure is correct, even harmonics along
the z axis appear.
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FIG. 3. (a) Logarithmic of high harmonic spectrum as a function
of harmonic order under x-linearly polarized laser excitation. The
crystal structure has group symmetry P63/mmc and has inversion
symmetry. All the harmonics along the x axis are odd orders. Signals
along the other axes are at noise level. (b) Harmonic signals for
the same laser pulse but for the structure with group symmetry
P63mc. This structure has no inversion symmetry, so the even order
harmonics appear along the c (z) axis (dashed line). The signal along
the x axis is similar to (a). The z component of harmonics without
treatment is shown on the top. Since the signal along the z axis is too
strong, we subtract its initial value P(−∞) from P(t ) and then carry
out the Fourier transformation to get a “cleaner” spectrum labeled
with “z (subtracted)”. Even harmonic only appears when the laser
polarization is along the z axis [15,17].

The structural symmetry is not the only information that
HHG can reveal. When we employ circularly polarized light
(σ ), to our surprise, some harmonics are mysteriously miss-
ing. Figure 4(a) shows that the third and ninth harmonics
disappear. Only the first, fifth, seventh, and eleventh har-
monics remain, magic harmonics. These magic harmonics
do not depend on whether the group symmetry is P63/mmc
[Fig. 4(a)] or P63mc [Fig. 4(b)]. Therefore, the common
symmetry operations shared by these two space groups must
be at the root of these magic harmonics. However, since we
have a huge number of k points, it is a challenge to determine
the origin of these magic harmonics. We decide to select a
single k point and resolve Pk(t ) according to its 12 symmetry
operations,

Pk(t ) =
6∑

s=1

Ps
k(t ) +

6∑
q=1

Pq
k(t ), (5)

where s refers to six proper rotations [see Fig. 1(c)] and q
runs over six improper rotations (reflections) [Fig. 1(d)]. We
symmetry-resolve Pk(t ), not its Fourier transformed Pk(ω),
because the interference only occurs in the time domain, not
in the frequency domain. Equation (5) is seemingly simple,
but harbors too many possible combinations,

12∑
i=1

(
i

12

)
.

Lax [38] has an example of an equilateral triangle, with six
symmetry operations. His example cannot directly apply to
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FIG. 4. (a) Magic high-order harmonics generated from BaTiS3

with P63/mmc symmetry under circularly polarized light (σ ) in the
xy plane, where third and ninth harmonics are missing. The light
polarization plane is within the ab plane [see Fig. 1(b)]. Note that the
x and y components are indistinguishable within numerical accuracy.
(b) Magic harmonics are also present in BaTiS3 with a symmetry
group P63mc without inversion symmetry. (c) High-order harmonics
at a crystal momentum point close to (0.05, 0.05, 0). The results
are similar for other k points. The summation is over symmetry
operations in subgroup A (E and C3

6 ). The harmonics are normal.
(d) Same as (c), but the summation is over symmetry elements
in subgroup B (C6, C2

6 , C4
6 , C5

6 ). These symmetry rotations keep
Ti atoms intact while transforming S atoms into their equivalent
positions [see Figs. 1(b) and 1(c)]. The harmonics are also normal
and appear only at odd orders. (e) Summation of all the proper
rotations on HHG signal reproduces magic harmonics seen in (a) and
(b). It is the destructive interference between these two subgroups
that cancels the third and ninth harmonics.

our problem, but we notice that in his diagram the triangle
has a mirror plane which could cancel all the even-order
harmonics. This motivates us to lay out all the proper rotations
within the ab plane [Fig. 1(c)], where we label each vertex
with a symmetry operation. C3

6 is a 180◦ rotation with respect
to the c axis, much like an inversion operation in the Lax’s
example. We immediately recognize that the identity matrix
E and rotation C3

6 , or subgroup A below, ensure that even
harmonics do not appear. This is verified by our calculation
[see Fig. 4(c)], but their harmonics are normal, and no magic
orders are observed. Note that the disappearance of the even
harmonics does not contradict the symmetry properties be-
cause the even harmonics allowed by the symmetry P63mc
appears only when the electric field is along the z axis [15,17].
In our case, our laser field polarization is in the xy plane.
Experimentally, Ghimire et al. [6], who employed linear po-
larization in the ab plane, also found no even order harmonics
for ZnO which happens to have the same group symmetry
P63mc. Therefore, our results are fully consistent with the
symmetry requirement and prior experiments [6].
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What about the remaining four proper rotations or sub-
group B? If we compare Figs. 1(b) and 1(c), we notice that
these symmetry operations bring S atoms to their equivalent
positions while keeping Ti atoms intact. These four rotation
matrices are

C6(60◦) =

⎛
⎜⎝

1
2

√
3

2 0

−
√

3
2

1
2 0

0 0 1

⎞
⎟⎠,

C2
6 (120◦) =

⎛
⎜⎝

− 1
2

√
3

2 0

−
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎠, (6)

C4
6 (240◦) =

⎛
⎜⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎠,

C5
6 (300◦) =

⎛
⎜⎝

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎞
⎟⎠. (7)

We first check whether each pair of symmetry operations
lead to magic harmonics, but this fails, so we simply combine
all of them. The results are shown Fig. 4(d), where all the
harmonics appear normal. Then we test whether mixing some
improper rotations could cause magic harmonics, but it is
unsuccessful. We also examine the prior results in magnetic
monolayers with tetragonal symmetries [7], but we do not
find any magic harmonics under the same laser condition.
After long and difficult testing, we finally come to realize
that the summation over all Ps(t ) of the proper rotation might
be able to reveal magic harmonics, and to our amazement, it
indeed works. Figure 4(e) shows magic harmonics, with the
third- and ninth-order harmonics missing. It is the destructive
interference between two symmetry subgroups A and B that
leads to magic harmonics. It is an easy task to extend this
finding to improper rotations [see Fig. 1(d)]. Different from
the proper rotations, the mirror image operations σyz and σxz

form a subgroup, with the four remaining operations from σ1

to σ4 forming another subgroup. These two subgroups play
the same role as the two subgroups for the proper rotations.
Once we add their contributions up, we again reproduce the
magic harmonics. We also examine other hexagonal systems
and reach the same conclusion. These magic harmonics are

a hallmark of hexagonal structure, which is likely to have
important applications in the future. For instance, hexagonal-
cubic crystal structure transformation was found in many
technologically important materials: aluminum nitride [19],
GaN [20], BN [21–23], zinc oxynitride layers [24], NaYF4

[25], Eu2O3 [26], CdTe [27], and others [28]. Our finding
suggests a simple protocol to determine whether a hexagonal-
cubic phase transition occurs by checking whether these
magic harmonics appear.

IV. CONCLUSION

We have demonstrated magic high-order harmonics in
hexagonal and quasi-one-dimensional solid BaTiS3. Our re-
sults reflect the usefulness of group theory and the power
of high harmonic generation as a structural characterization
tool. Specifically, we show how harmonics are generated
sensitively depends on crystal structures and laser polariza-
tion. Whether BaTiS3 adopts P63/mmc or P63mc symmetry
determines whether even order harmonics appear along the
c axis. The qualitative difference is found under circularly
(σ ) polarized light excitation between the hexagonal structure
for BaTiS3 and tetragonal structure [7]. σ light produces no
magic harmonics in tetragonal systems, but it generates magic
harmonics in hexagonal systems. These magic harmonics
are the hallmark of the hexagonal structure, and potentially
provide a tool to investigate phase transitions in a wide scope
of materials. One ideal system to realize our prediction could
be BaVS3. At room temperature BaVS3 adopts P63/mmc
symmetry, but transforms to an orthorhombic structure be-
tween 70 and 240 K [39]. Therefore, our finding will motivate
experimental and theoretical investigations in other research
fields.
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