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Operators in ergodic spin chains are found to grow according to hydrodynamical equations of motion. The
study of such operator spreading has aided our understanding of many-body quantum chaos in spin chains.
Here we initiate the study of “operator spreading” in quantum maps on a torus, systems which do not have a
tensor-product Hilbert space or a notion of spatial locality. Using the perturbed Arnold cat map as an example,
we analytically compare and contrast the evolutions of functions on classical phase space and quantum operator
evolutions, and identify distinct timescales that characterize the dynamics of operators in quantum chaotic
maps. Until an Ehrenfest time, the quantum system exhibits classical chaos, i.e., it mimics the behavior of
the corresponding classical system. After an operator scrambling time, the operator looks “random” in the initial
basis, a characteristic feature of quantum chaos. These timescales can be related to the quasienergy spectrum of
the unitary via the spectral form factor. Furthermore, we show examples of “emergent classicality” in quantum
problems far away from the classical limit. Finally, we study operator evolution in nonchaotic and mixed quantum
maps using the Chirikov standard map as an example.
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I. INTRODUCTION

The study of chaos and ergodicity in many body sys-
tems has recently acquired a major revival of interest, with
the discovery of phenomena such as many-body localization
[1–4], and its connections to several fundamental questions
regarding black holes, the scrambling of quantum information
and quantum gravity [5–8]. This has led to the many recent
explorations of the dynamics of quantum systems by means
of diagnostics that are sensitve to such questions, many of
which build on advances in quantum information theory. For
example, quantum chaos has been explored both analytically
and numerically in several systems by means of operator
and entanglement growth [9–16], behavior of out-of-time or-
dered correlators (OTOC) [5,7,17–22], random matrix theory
[6,23–26], and a variety of other methods [27–33]. These
studies have led to the introduction of new physical quantities
which have shed light on the definition and meaning of many
body quantum chaos. These include the butterfly and entan-
glement velocities defined using operator and entanglement
growths, and frame potentials defined using the concept of
unitary designs from random matrix theory.

Of particular interest to this paper is the use of the Heisen-
berg picture—in the analysis of operator evolution and in the
calculation of OTOCs. This use of the Heisenberg picture,
which is standard in the study of quantum field theory and
many body systems, is relatively new to the analysis of
quantum chaos. Here the traditional approach, which was pri-
marily developed in the study of single particle systems [34]
relies, as single particle quantum mechanics does typically,
on the Schrödinger picture. Our overall aim in this paper is
to reexamine single particle quantum chaos in the Heisenberg
picture building on the insights generated in the study of many
body quantum chaos.

Before turning to this reexamination we briefly mention
some landmarks in the study of single-particle quantum chaos
which is by now a venerable and well-developed subject. The
observation that the differences in quantizations of classically
regular and chaotic systems is exhibited in the eigenstate
level statistics has been known for long, and it led to the
notion of quantum chaos [35,36]. Several examples of quan-
tum chaos including quantizations of classical billiards, the
quantum kicked rotor, and more generally quantum maps
[37–46] were subsequently studied. Apart from the study of
the eigenstate level statistics, which is predicted by random
matrix theory for chaotic quantum systems, several other
diagnostics of quantum chaos were subsequently used (see,
for example, Ref. [47] for a review). These include certain
semiclassical “trace formulas” that relates classical orbits of
the classical system to the density of states of the quantized
system [48,49], as well as quantum measures, for example,
spectral form factors [40,50], nodal domains [51], as well as
the well-known Loschmidt echo [52–54]. Several works have
studied quantum chaos in the Schrödinger picture employing
phase-space representations of wave functions such as the
Wigner and Husimi functions [55–57]. Finally, some works
have even explored the Heisenberg picture [42,58], although
the time-evolved operators were not directly studied.

As noted above, in this work, we aim to fill this lacuna
by studying quantum chaos in single-particle systems via
the Heisenberg evolution of operators. Naively, the Heisen-
berg evolution resembles the evolution in phase space as the
operator evolution equations are quantized versions of the
classical dynamical equations. As the solutions of the latter
exhibit classical chaos we are led to ask how we can diagnose
chaos in a quantum system from studying the evolution of
operators. The work on many body systems leads to more
specific questions, e.g., is there a notion of operator spreading
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in a quantum chaotic systems that do not have a tensor
product Hilbert space and what does this say about quantum
chaos?

To answer these, we focus on quantum maps on a toroidal
phase space which we review in Sec. II, for example, the
Arnold cat map and its perturbed version, whose classical
limits have been well-studied [59–62]. Studying the evolution
of operator coefficients in a fixed basis (analogous to Pauli
strings in spin chains [11,14,15]) provides a natural single-
particle parallel to the studies of operator spreading in many-
body quantum systems. We choose an operator basis that maps
on to the Fourier basis of smooth functions on phase space
in the classical limit, allowing us to compare and contrast
quantum operator evolutions and their classical counterparts,
smooth functions on phase space. We introduce the basis
and derive the equations of motion for operators as well
as classical functions in Sec. III. Before we study quantum
evolution, we define the classicality of evolution from an
operator point of view in Sec. IV. There, we distinguish the
usual semiclassical (coherent state) basis and the Fourier basis
in which we study operator evolution, and demonstrate the ex-
istence of a kind of classicality that arises away from the usual
classical limit of the quantum map, which we call emergent
classicality. The evolution of operators in such systems are
analogous to Clifford circuits, where operators do not spread
in a certain basis.

In Sec. V, we study operator evolution in the quantum
chaotic limit (defined by the usual diagnostics of quantum
chaos), where we show that the set of nonvanishing operator
coefficients “spread” over the operator basis, diagnosed by the
growth of Shannon entropy of the set of operator coefficients.
We identify three distinct regimes of operator evolution:
(i) early time semiclassical evolution (up to an Ehrenfest time
tE ), where the operator evolution in the quantum problem
mimics the evolution of smooth functions on classical phase
space, (ii) intermediate-time evolution, where the operators
start to deviate from the classical behavior and maximally
spread in operator space, and (iii) late-time evolution (after
an operator scrambling time tscr) where the operator evolu-
tion has no classical analog and exhibits features of random
matrix theory. The regime (i) has been well-studied in works
of classical-quantum correspondence where it is known that
the quantum system behaves classically up to an “Ehrenfest
time” that depends on the Lyapunov exponent of the classical
system and the Planck’s constant [63–65]. On the other hand,
regime (iii) has been studied in the context of thermalization
of isolated systems, where late-time expectation values of
observables are determined by the “diagonal ensemble,” the
expectation values of observables in the eigenstates of the time
evolution unitary [1,66]. We show the basis independence of
the results in Sec. VI (up to certain caveats that we discuss),
and connect operator evolution to the spectral form factor, a
well-known diagnostic of quantum chaos. Finally in Sec. VII,
we discuss operator evolution in the Chirikov standard map,
an example of a quantum map that is not completely com-
pletely quantum chaotic. There we show that regular and
chaotic regions in phase space can be distinguished using the
operator evolution diagnostics we discuss. In all, we show
the existence of “operator spreading” that occurs in quantum
maps which can be used to characterize various regimes of

quantum operator evolution, and distinguish chaotic quantum
maps from nonchaotic ones.

II. CLASSICAL MAPS AND THEIR QUANTIZATION

We first review the historical introduction of quantum maps
by “quantizing” maps defined on a classical phase space. Note
that the quantum map thus obtained from a given classical
map is not necessarily unique. In this work, we choose the
classical map obtained by a particular quantization prescrip-
tion and view the quantum map as the fundamental system
that exhibits a classical description in a certain limit.

A. Classical Maps

We start with area-preserving discrete-time classical maps
on phase space that has the topology of a torus T2, defined by
coordinates

0 � q < 1, 0 � p < 1. (1)

Under the action of the map, any point on the torus at time
t, (q, p) ≡ (q(t ), p(t )) is mapped to another point on the torus
(q′, p′) ≡ (q(t + 1), p(t + 1)), such that the Jacobian of the
transformation is 1. A class of well-known area-preserving
maps are the Arnold cat maps [67,68]. These read(

q′
p′

)
=
(

a b
c d

)(
q
p

)
mod 1, (2)

where a, b, c, d are non-negative integers satisfying the
area-preserving condition ad − bc = 1. The Lyapunov
exponent of the cat map of Eq. (2) is given by
λ = ln ((a + d + √

a2 + 4bc − 2ad + d2)/2). If a + d > 2,
the cat map is chaotic, i.e., it has a nonzero Lyapunov
exponent [59].

A family of maps that are related to the cat maps are the
perturbed cat maps [60,69], and their well-known form reads(

q′
p′

)
=
(

a b
c d

)(
q
p

)
+ κ

2π
cos(2πq)

(
b
d

)
mod 1. (3)

While (a, b, c, d ) can be arbitrary integers, in this work
we will use a commonly studied example of (a, b, c, d ) =
(2, 1, 3, 2). Such a map is known to be fully chaotic for
κ � 0.33 [60]. Since q and p are the coordinates on a torus,
it is useful to rewrite the map Eq. (2) in terms of analytic
variables on a torus x and z, defined as

z = e2π iq x = e2π ip. (4)

In these variables, the perturbed cat map of Eq. (3) reads

x′ = x2z3 exp

[
iκ

2
(z + z−1)

]
,

z′ = xz2 exp

[
iκ

2
(z + z−1)

]
. (5)

An alternate way to specify the maps on a torus is in terms
of a generating function S(q′, q), such that

p = −∂S(q′, q)

∂q
p′ = ∂S(q′, q)

∂q′ , (6)
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where q and q′ are treated as independent variables. The
generating function will be useful for the quantization of the
map in the next section. For example, the generating function
for the perturbed cat maps defined in Eq. (2) reads

S(q, q′) = dq′2

2b
− qq′

b
+ aq2

2b
+ κ

4π2
sin(2πq). (7)

B. Quantum maps

Since the perturbed cat maps are area-preserving, one can
quantize the maps on a torus [37,60,70–74]. While there
are several approaches to quantization, we follow the one
described in Ref. [60]. We first define a Hilbert space that
is compatible with the topology of a torus. That is, the wave
functions ψ (q) and ψ̃ (p) satisfy

ψ (q + 1) = ψ (q), ψ̃ (p + 1) = ψ̃ (p), (8)

resulting in the quantization of p = j/N and q = k/N for
some j, k ∈ N [60]. Alternately, this constraint can be inter-
preted as the Planck’s constant being allowed to only take
values h̄ = 1

2πN for some N ∈ N. The semiclassical limit h̄ →
0 thus corresponds to N → ∞.

This N-dimensional Hilbert space is identical to that of a
single particle moving on a one-dimensional periodic lattice
with N sites. Since position and momentum operators do
not commute, the phase space can be viewed as an N × N
grid with each cell depicting the uncertainty of the position
and momentum. However, note that in contrast to physical
particles moving on a periodic lattice, the maps we work with
do not have any locality on the lattice. Alternately, the Hilbert
space is that of the lowest Landau level in a quantum Hall
system on a torus with N flux quanta [75].

Since the Hilbert space is finite-dimensional, one can de-
fine a discrete position basis {|qj〉}, where q j = j/N . In the
position basis, the matrix elements of the unitary UN that
describes the quantum map read [60]

(UN ) j′, j ≡ 〈q j′ |UN |q j〉

= 1√
N

∣∣∣∣∂2S(q′, q)

∂q′∂q

∣∣∣∣1/2

q j′ ,q j

exp(2π iNS(q j′ , q j )),

(9)

where S(q′, q) is the generating function that satisfies the
properties of Eq. (6). Using Eqs. (7) and (9) for the perturbed
cat maps, UN reads

(UN ) j′, j = 1√
Nb

exp

[
2π i

Nb

(
d j′2

2
− j j′ + a j2

2

)

+ iκN

2π
sin

(
2π j

N

)]
. (10)

While UN is not guaranteed to be unitary unless it satisfies a
certain “Egorov” property,[60,76,77] we numerically find that
when b = 1, UN is unitary for several valid values of (a, c, d ).
As mentioned before, we view the unitary of Eq. (10) as a
fundamental quantum system that has the classical limit of
Eq. (3) as N → ∞.

Chaos in the quantized maps is usually detected by the
eigenvalue spacing statistics [35,60]. That is, if λn = eiφn are

the eigenvalues of the unitary UN , the distribution P(s) of
the nearest neighbor level spacings sn = (φn+1 − φn)N/2π

(φN ≡ φ0) differs for a chaotic and a nonchaotic quantum
map. For example, in the perturbed cat map for κ � 0.33,
the distribution is expected to exhibit level repulsion, and is
described by the circular orthogonal ensemble (COE), which,
in the N → ∞ limit is the same as the Gaussian orthogonal
ensemble (GOE) [60]. While we numerically observe that the
nature of the level statistics fluctuates significantly with N ,
we typically find that when N is prime, the perturbed cat map
exhibits GOE level statistics.

III. HEISENBERG PICTURE AND
EQUATIONS OF MOTION

A. Basis

Quantum maps in the semi-classical limit are typically
studied in a basis of coherent states (minimum uncertainty
wave packets) {|q p〉} [78–80]. In the h̄ → 0 (N → ∞) limit,
the dynamics of these coherent states mimic the dynamics of
individual points in phase space. Several approaches to con-
struct such sets of states for a particle on a finite-dimensional
periodic lattice or for a quantum Hall system on a torus are
known [81–83]. However, it is known to be impossible to ob-
tain an N-dimensional orthogonal basis (for finite N) of wave
functions on a torus that is local in phase space [84], although
orthogonalization of coherent states can be implemented in
the continuum as well as the N → ∞ limit [80,85]. This
hinders an analytical exploration of the classical (N → ∞)
and quantum (finite N) dynamics in the same language in the
Schrödinger picture, although phase-space representations of
quantum mechanics [86] such as the Wigner quasiprobability
representations of wave functions (density matrices) have
been employed [55,87,88].

However, as we show, operators in the Heisenberg picture
have natural classical analogues that can be studied analyti-
cally. Since the operator Hilbert space in this system is N2-
dimensional, a “local” operator basis {|q p〉〈q p|} constructed
using the coherent states exists, and while {|q p〉} is an over-
complete basis of states, {|q p〉〈q p|} is a complete basis of
operators. While such an operator basis is not orthogonal in
general, we believe that an N2-dimensional local orthogonal
basis {Pq,p} that resembles the coherent state operator basis
{|q p〉〈q p| can be constructed. In the semiclassical limit, each
operator basis element Pq0,p0 can be identified with δ(q −
q0, p − p0) that corresponds to a δ function at a point (q0, p0)
in the phase space of the classical problem. To obtain a basis
that can be studied analytically, we use a compact “position”
operator Z =∑ ei2πqPq,p and “momentum” operator X =∑

ei2π pPq,p to generate an N2-dimensional “Fourier” basis
{X mZn} for any finite N . The semiclassical limit of each basis
element X mZn is the classical Fourier “basis element” xmzn,
where x and z are defined in Eq. (4). With this identification,
we have obtained a natural analog of quantum operators in
the classical limit, complex-valued functions on phase space.
While this correspondence has been known for long [86,89],
we study the equations of motion of quantum maps in such
Fourier bases to analytically study classical and quantum
dynamics.
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B. Equations of motion

In an N-dimensional Hilbert space, the natural representa-
tion of the position and momentum operators Z and X are the
ZN clock operators that obey

X N = ZN = 1 XZ = ωZX, ω ≡ e
2π i
N . (11)

Using the expression for the unitary of the perturbed cat
map in Eq. (10), the Heisenberg equations of motion for X
and Z is derived in Appendix A. For the perturbed cat map
with (a, b, c, d ) = (2, 1, 3, 2), they read [see Eqs. (A16) and
(A17)]

X ′ = ω−3X 2Z3 exp

[
κN

4π
(ω − ω−1)(ω−1Z + ωZ−1)

]
,

Z ′ = ω−1XZ2 exp

[
κN

4π

(
ω

1
2 − ω− 1

2
)(

ω− 1
2 Z + ω

1
2 Z
)]

,

(12)

where X ′ and Z ′ are the time-evolved X and Z operators. In the
limit of N → ∞ (ω → 1), using the fact that N (ω j − ω− j ) →
4π i j, Eq. (12) reduces to the evolution equation of x and z’s
in Eq. (5).

Using the Heisenberg equations of motion, we derive the
evolution of arbitrary operators written in the “Fourier” basis.
We start with an operator O, defined as

O =
∑
m,n

Qm,nX mZn. (13)

The operator evolution equation can be written as

O′ =
∑
m,n

Qm,nX ′mZ ′n ≡
∑
m,n

Q′
m,nX mZn, (14)

where O′ is the time-evolved operator. The relation of the
time-evolved operator coefficients {Q′

m,n} to the initial co-
efficients {Qm,n} is derived using Eq. (12). As derived in
Appendix B [see Eq. (B9)], the explicit evolution equation can
be written as a matrix equation:

Q′ = MQQ (15)

where Q (Q′) is the vector of quantum coefficients {Qm,n}
({Q′

m,n}), and MQ is adjoint evolution (super-)operator with
matrix elements [see Eq. (B7)]

〈m′, n′|MQ|m, n〉

= ω−3m2−n2−3mn
N−1∑
s=0

{
δ

(N )
m′,2m+nδ

(N )
n′,3m+2n+s

∞∑
p=−∞

is+pN

×Js+pN

[
κN

π
sin
(π
N

(2m + n)
)]

ω(m+ n
2 )(pN−s)

}
, (16)

where Jν (x) is the νth Bessel function of the first kind and
δ

(N )
a,b = 1 if and only if a = b mod N , else 0. Since MQ

is a quantum evolution operator, it is a unitary N2 × N2-
dimensional matrix.

As discussed earlier, the classical analog of Heisenberg
evolution is the evolution of L∞ functions on phase space,

F =
∑
m,n

Cm,nxmzn. (17)

The evolution of the classical coefficients can then be com-
puted using Eq. (5)

F ′ =
∑
m,n

Cm,nx′mz′n =
∑
m,n

C′
m,nxmzn, (18)

where F ′ is the time-evolved function. The set of time-
evolved coefficients {C′

m,n} is related to the initial coefficients
{Cm,n} using a matrix evolution equation similar to Eq. (15)
[see Eq. (B3)],

C′ = MCC, (19)

where C (C′) is the (infinite-dimensional) vector of classical
coefficients {Cm,n} ({C′

m,n}) and MC is the evolution operator
with matrix elements [see Eq. (B2)]

〈m′, n′|MC |m, n〉 =
∞∑

s=−∞
[isJs(κ (2m + n))

×δm′,2m+nδn′,3m+2n+s]. (20)

In Eq. (20), one might recognize that MC is the classical
Koopman operator written in the Fourier basis [59,90]. Thus,
as noted in previous works [90,91], the quantum analog of
the Koopman operator MC is the adjoint evolution operator
MQ. The classical-quantum correspondence is established by
studying the evolution of quantum coefficients in a ZN × ZN

“phase space” to the evolution of classical coefficients in
a Z × Z space. Moreover, since the total weights of the
coefficients (

∑
m,n |Qm,n|2 and

∑
m,n |Cm,n|2) are conserved

(by virtue of unitary evolution), one can view this problem
as the evolution of weights in the Fourier phase space.

IV. CLASSICAL EVOLUTION AND EMERGENT
CLASSICALITY

In this section, we provide an operator interpretation of the
classicality of evolution and show that classicality can arise in
quantum problems even away from the usual classical limit. In
the classical map, every point (q, p) on phase space is mapped
onto one other point (q′, p′) on phase space. In the classical
limit of the quantum map, this property can be interpreted
as the evolution of a basis element Pq,p ∼ |q p〉〈q p| into a
different basis element Pq′,p′ ∼ |q′ p′〉〈q′ p′|. The existence of
such a “special” basis in which time evolution is merely a
shuffling of basis elements (without any phases) is interpreted
as the classicality of an evolution. That set of basis elements
is in one-to-one correspondence with the “phase space” of the
system. For example, in the usual classical limit, the phase
space is the infinite set {Pq,p}, or equivalently the set of all
points {(q, p)} on a torus. Properties of classical evolution
require the definition of a metric or a measure over this
phase space. For example, in classical maps, the set of basis
elements is {Pq,p} and the associated metric is the Euclidean
distance on the usual phase space. Notions of ergodicity,
classical chaos, mixing or exactness correspond to various
behaviors of shuffling of these basis elements. For example,
classical chaos is the exponential separation of two nearby
basis elements (with respect to the defined metric on phase
space). Similarly, a classical system is said to be ergodic when
the evolution of a single basis goes through all or almost all
basis elements over a long time.
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While such a “special” basis does not exist for typical
quantum systems, certain quantum systems exhibit “emer-
gent” classicality, as we now show for the quantized un-
perturbed Arnold cat map. We focus on the evolution of
coefficients in the unperturbed cat map (κ = 0) of Eq. (2)
with (a, b, c, d ) = (2, 1, 3, 2). In this limit, the classical and
quantum coefficient evolution matrix elements Eqs. (16) and
(20) reduce to

〈m′, n′|MQ|m, n〉 = ω−3m2−n2−3mnδ
(N )
m′,2m+nδ

(N )
n′,3m+2n,

〈m′, n′|MC |m, n〉 = δm′,2m+nδn′,3m+2n. (21)

In terms of coefficient evolution, Eq. (21) reduces to

C′
2m+n,3m+2n = Cm,n,

Q′
(2m+n,3m+2n) mod N = ω−3m2−n2−3mnQm,n. (22)

In Eq. (22), each coefficient evolves into one other coeffi-
cient (or equivalently, each basis element evolves into one
other basis element). This is an example of classicality in
the Fourier basis {xmzn}. The quantum operator coefficients
behave similarly up to a phase that is picked up at each step
of the evolution. However, since the phase is commensurate
(i.e., of the form e2π ip/q, where p, q ∈ Z), the quantum evo-
lution exhibits emergent classicality on timescales of O(N )
or lesser. As a consequence, notions of classical ergodicity
and classical chaos can be applied to these systems. Note that
for generic finite-dimensional quantum systems, even though
there always exists an eigenstate basis in which the operator
evolution is merely a multiplication by a phase, the phases that
the basis elements acquire are incommensurate, i.e., they are
of the form e2π ir , where r is irrational. Thus such cases do not
qualify as emergent classicality.

Quantum systems that exhibit emergent classicality and
have finitely many degrees of freedom have a finite recurrence
time, and thus the spectrum of the unitary is entirely composed
of roots of unity. For example, the quantized Arnold cat
map with an N-dimensional Hilbert space, the recurrence
time is known to be CN [92], where C is an O(1) constant.
Indeed, such systems typically do not exhibit any of the usual
signs of quantum chaos such as level repulsion or Wigner-
Dyson statistics, as noted for the quantized cat map at κ = 0
[70,92,93]. Another set of well-known examples of quantum
systems that exhibit emergent classicality are Clifford circuits
[94–96], where, in spite of absence of level repulsion, alter-
nate notions of chaos and ergodicity apply in certain cases
[11]. It is not clear whether these emergent classical systems
are quantum integrable, since usual definitions of integrability
in quantum mechanics hold only in systems with an infinite-
dimensional Hilbert space (i.e., the thermodynamic limit in
spin chains or the semiclassical limit for quantum maps), or
for a continuous family of systems with a finite-dimensional
Hilbert space [97–100].

To summarize, the perturbed cat map exhibits classicality
in three different limits. First, in N → ∞ limit when κ �= 0,
where the {Pq,p} basis is the only basis in which the operator
evolution is classical. Second, when κ = 0 for finite N , where
the operator evolution is classical only in the {X mZn} basis.
Third, in the N → ∞ limit, when κ = 0, where the operator
evolution is classical in both the {Pq,p} and {X mZn} bases.

Before moving on to quantum systems, two comments on
the behavior of classically chaotic maps in the Fourier ({xmzn})
basis are in order, which we illustrate these using the evolution
of classical coefficients in the κ = 0 limit. Following Eq. (22),
an initial set of coefficients {C(0)

m,n} evolve into coefficients
{C(t )

m,n} that do not vanish for larger m and n, and at time t � 1,
the initial and final coefficients are related by

C(0)
m,n ≈ C(t )

eλt ([m/2+n/(2
√

3)],[(
√

3/2)m+n/2])
, (23)

where λ = ln (2 + √
3), the classical Lyapunov exponent of

the unperturbed cat map and [ ] denotes the integer part.
Firstly, according to Eq. (23), any initial smooth function on
phase space thus evolves into a “rough” function on phase
space at late times. The exponential growth of “roughness” is
classical chaos, and its rate is characterized by the Lyapunov
exponent λ. Secondly, the statement of classical ergodicity
says that in an ergodic map, the only eigenfunction of the
evolution operator MC (Koopman operator) is the uniform
(constant) function [101]. In the Fourier basis, the time evolu-
tion of coefficients in an ergodic classical map satisfy

C(0)
0,0 = C(t )

0,0, (24)

which is consistent with Eq. (23).

V. REGIMES OF QUANTUM EVOLUTION

In a chaotic quantum system, we do not expect any special
basis in which classicality emerges. That is, in general the
operator coefficients spread in any basis. We illustrate the
nature of the evolution of coefficients in a chaotic quantum
map. Useful quantities to study the time evolution of the
coefficients are the classical and quantum entropies SC (t ) and
SQ(t ) defined as

SC (t ) ≡ −
∑
m,n

∣∣C(t )
m,n

∣∣2 ln
∣∣C(t )

m,n

∣∣2,
SQ(t ) ≡ −

∑
m,n

∣∣Q(t )
m,n

∣∣2 ln
∣∣Q(t )

m,n

∣∣2, (25)

where {C(t )
m,n} and {Q(t )

m,n} are the sets of classical and quantum
coefficients at time t . The coefficients are normalized such that∑

m,n

∣∣C(t )
m,n

∣∣2 = 1,
∑
m,n

∣∣Q(t )
m,n

∣∣2 = 1. (26)

To establish a classical-quantum correspondence, we
choose the initial classical functions and quantum operators
such that the set of coefficients {C(0)

m,n} and {Q(0)
m,n} are the same

and they satisfy the property

Q(0)
m,n = C(0)

m,n = 0 if m > m0 or n > n0, m0, n0 � N.

(27)

The property of Eq. (27) ensures the smoothness of the
initial function on the classical phase space and, as we will
see, enables the estimation of an Ehrenfest time for simple
operators.

As discussed in the previous section, in the κ = 0 problem,
every coefficient is mapped on to one other coefficient. Thus
the initial set of coefficients do not spread in Fourier space.
Consequently, the classical and quantum entropies defined in
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FIG. 1. Operator coefficient evolution of an initial operator XZ for κ = 0.1 and N = 503 at various times. Note that the Fourier phase
space has periodic boundary conditions. (a) t = 0: initial operator. (b) t = 4, for t < tE , early times: ror t < tE , the operator coefficients are
localized in the Fourier phase space. (c) t = 8, intermediate times: for tE < t < tscr, the localized set of operator coefficients spread enough to
wrap around the Fourier phase space. (d) t = 14, late times: for t > tscr, the coefficients are essentially uniformly spread throughout the Fourier
phase space.

Eq. (25) are conserved [SC (t ) = SC (0), SQ(t ) = SQ(0) ∀t].
However, when κ �= 0, the quantum coefficients (and entropy)
behave differently, and their evolution can be classified into
three distinct regimes. The evolution of operator coefficients
for various times is pictorially depicted in Fig. 1. Note that in
this section, we will only be concerned about the scaling of the
timescales with N and κ , not quantitatively accurate estimates.

A. Early times

At early times in the perturbed cat map for small κ , we
expect a qualitative behavior similar to the unperturbed cat
map. For very small κ , each Fourier coefficient follows the
mapping of Eq. (23), along with a small “spreading” since
for any κ > 0, i.e., a single basis element evolves into a
superposition of several basis elements. This is evident by
writing down the matrix elements of Eq. (20) in a more
suggestive form

〈2m + n, 3m + 2n + s|MC |m, n〉 = isJs(κ (2m + n)). (28)

As shown in Eq. (C5) in Appendix C, |Jν (x)| can be con-
sidered to vanish when |ν| > |x| and |x| � 1. The typical

spreading ξ in the n direction of a coefficient (m, n) in Eq. (28)
is thus

ξ ≈ κ (2m + n). (29)

If the set of classical coefficients has an “area” (number of
nonzero coefficients) AC , the approximate width in the m
direction is

√
AC , and hence the change in the area at every

step is given by

�AC (t ) ≈ 2ξ
√

AC (t − 1) = 2κ (2m + n)
√

AC (t − 1)

≈ 2c0κeλt
√

AC (t − 1), (30)

where c0 is a constant that depends on the initial choice of
coefficients. In Eq. (30), we have used the fact that m and n for
the set of nonvanishing coefficients grows exponentially with
the Lyapunov exponent λ [see Eq. (23)]. Consequently, we
can estimate the area and the entropy of the coefficients to be

AC (t ) ≈ AC (0) + c2
0κ

2

λ2
e2λt ⇒ SC (t ) ≈ ln AC (t )

≈ ln

(
AC (0) + c2

0κ
2

λ2
e2λt

)
∼ 2λt + constant. (31)
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FIG. 2. The classical (C) and quantum (Q) coefficient entropies
of the early time evolution of an initial operator XZ in the perturbed
cat map with κ = 0.01. The dashed line shows SC (t ) of Eq. (31)
with c0 ≈ 5.88 and AC (0) = 1. Note that the classical and quantum
entropies deviate after an Ehrenfest time that can be estimated [using
Eq. (32)] to be tE ≈ 5.24 for N = 1001.

We compare the classical and quantum evolutions by choosing
a classical function on phase space and a quantum operator
whose coefficients {C(0)

m,n} and {Q(0)
m,n}, respectively, are the

same and they satisfy the property of Eq. (27). For small
m0, n0, and large N , the quantum coefficients mimic the
classical coefficients since Eq. (16) reduces to Eq. (20) in this
limit. Since Eqs. (16) and (20) differ only when m, n ∼ O(N ),
the evolution of the quantum and classical coefficients differ
only when the magnitudes of coefficients Q(t )

m,n and C(t )
m,n

are significant for m, n ∼ O(N ). For a small κ , since all
the coefficients evolve roughly according to Eq. (23) (up to
small spreading), this timescale (Ehrenfest time tE ) can be
estimated to be

eλtE max(m0, n0) ∼ N ⇒ tE ∼ 1

λ
ln N, (32)

where we have assumed max(m0, n0) � N . This behavior
of the classical and quantum entropies is shown in Fig. 2.
The area and the entropy of the coefficients at the Ehrenfest
time are

AQ(tE ) ≈ AC (tE ) ≈ c2
0κ

2N2

λ2
,

SQ(tE ) ≈ SC (tE ) ≈ 2 ln

(
c0κN

λ

)
. (33)

Since the quantum and classical coefficients are similar for
t < tE , classicality (as discussed in the previous section)
approximately holds for the quantum problem in the Pq,p

basis. That is, a given basis element Pq,p approximately
evolves into Pq′,p′ .

B. Intermediate times

Once the evolution of quantum coefficients deviates from
the classical evolution, there is a timescale until which the

FIG. 3. The quantum coefficient entropies of the evolution of an
initial operator X Z at intermediate and late times. Note that the
entropy saturates at an operator scrambling time that obeys Eq. (39).

quantum operator undergoes Hamming spreading over the
Fourier basis until the operator coefficients look random in
this basis. This is the time at which the growth of the quantum
entropy SQ(t ) saturates, for example as seen in Fig. 3. We
call this the operator spreading time, the time at which the
operator has a roughly uniform weight on each of the Fourier
basis elements. To estimate this timescale, we note that for
κ � 1, Eq. (16) can be approximated to be

〈2m + n, 3m + 2n + s|MQ|m, n〉

≈ isJs

(
κN

π
sin
(π

N
(2m + n)

))
ω−s(m+ n

2 ). (34)

Similar to the early time case, the we assume a typical
spreading ξ in the n direction. Since the approximation for the
Bessel function Jν (x) depends on whether |x| � 1 or |x| � 1
[see Appendix C)] the typical spreading s in Eq. (34) can be
estimated to be [see Eqs. (C2) and (C6)]

ξ ∼
{

1
ln ( 1

κN ) if κN � 1

κN if κN � 1
. (35)

Similar to Eq. (30), the area of the coefficients obey

�AQ(t ) ≈ 2ξ
√

AQ(t − 1). (36)

The area AQ(t ) quantum coefficients thus grows quadratically,√
AQ(t ) −√AQ(tE ) ≈ ξ (t − tE )

⇒ AQ(t ) ≈
(

c0κN

λ
− ξ ln N

λ
+ ξ t

)2

, (37)

and the entropy SQ(t ) grows logarithmically.

SQ(t ) ≈ ln AQ(t ) ≈ 2 ln

(
c0κN

λ
− ξ ln N

λ
+ ξ t

)
. (38)

This behavior continues until the area of the coefficients is
O(N2). Thus the operator scrambling time can be estimated
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to be

tscr ∼ tE + CN

ξ
, (39)

where C is a constant and tE is the Ehrenfest time of Eq. (32).
Substituting Eqs. (35) and (32) in Eq. (39), we obtain

tscr ∼ ln N

λ
+
{

N ln
(

1
κN

)
if κN � 1

1
κ

if κN � 1
. (40)

Thus we expect a crossover between the two behaviors when
κN ∼ O(1). The κN � 1 regime in Eq. (40) resembles the
“emergent classical” behavior of the κ = 0 limit of the per-
turbed cat map discussed in Sec. IV and is not representative
of generic chaotic quantum systems. Note that a slightly dif-
ferent form of the operator scrambling time was conjectured
in Ref. [102].

C. Late times

After an operator scrambling time, a small set of initial
operator coefficients evolves into one that has an equal weight
on all of the basis elements of the semiclassical basis. That is,
the quantum entropy SQ(t ) nearly saturates the bound

SQ � 2 ln N. (41)

This is a characteristic feature of quantum chaos, and this
entropy saturation holds for most initial operators after the
operator scrambling time. In particular, one can choose any
initial operator Ppq ∼ |q p〉〈q p| (for any q and p) and expect
the operator coefficients of U †PpqU to be uniformly spread in
operator space after an operator scrambling time. That is,

Tr((U †)t |q p〉〈q p|Ut X ) ∼ Tr((U †)t |q′ p′〉〈q′ p′|Ut X )

⇒ 〈q p|Ut X (U †)t |q p〉 ∼ 〈q′ p′|Ut X (U †)t |q′ p′〉, (42)

which shows that expectation values of X (or any basis ele-
ment) equilibriate to the same value at late times irrespective
of the initial a coherent state |q p〉. Thus the operator scram-
bling time is the same as the state scrambling time, the time at
which any initial coherent state wave packet centered at (q, p)
on phase space uniformly spreads throughout the system.

It is important to reconcile certain aspects of the late-time
classical evolution discussed in Sec. IV and late-time quantum
evolution. The classical and quantum late-time behaviors are
both governed by the eigenstates of MC and MQ that have an
eigenvalue of unit magnitude. The outcomes differ in these
cases. MQ has N2 eigenstates with eigenvalue of magnitude
1. If {|φm〉} are eigenstates of the quantum unitary U with
eigenvalues {exp(iφm)}, {|φm〉〈φn|} are the eigenstates of MQ

with eigenvalues {exp(i(φm − φn))}. As discussed in Sec. IV,
MC for classically chaotic systems has a single eigenfunction,
which is the constant function on phase space. Thus most
(N2 − 1) quantum eigenstates do not have a clear meaning in
the N → ∞ limit and it has to be the case that all except one
of the quantum eigenstates map onto singular functions on the
classical phase space.

FIG. 4. The quantum coefficient entropies of the evolution of an
initial operator with a low entropy in the perturbed cat map with κ =
0.01 in the bases {X mZn} and {RX mZnR†}, where R is a randomly
chosen unitary. We find that for several choices of R, the operator
scrambling time is of the order of tscr computed analytically for the
{X mZn} basis.

VI. BASIS INDEPENDENCE AND THE
SPECTRAL FORM FACTOR

One might worry that the study of operator evolution with a
different choice of basis in Sec. V (instead of {X mZn}) might
lead to a different behavior of the operator coefficients. In a
fully quantum chaotic system, we find that for any generic
choice of basis {RX mZnR†}, where R is a random unitary, the
entropy of the operator coefficients SQ(t ) does not equilibriate
until a timescale of the operator scrambling time of Eq. (39),
as shown in Fig. 4. However, the growth of SQ(t ) is not mono-
tonic in the {RX mZnR†} basis, and even though SQ(t ) reaches
its maximum value at early times, its shows recurrences to
low values at early times. We thus believe that quantum chaos
is characterized by the late-time saturation of entropy SQ(t )
for most initial operators and most choices of operator bases.
An important caveat for finite-dimensional quantum systems
is that one can always choose the operator basis {|φm〉〈φn|}
formed by the eigenstates of the time evolution unitary U
in which operator coefficients do not spread irrespective of
whether the system is quantum chaotic or integrable. The exis-
tence of this special basis is related to the difficulty of defining
integrability and chaos in finite-dimensional systems [97–99].

Of course, in order to observe a classical-quantum corre-
spondence and an Ehrenfest time in the evolution of operator
coefficients, the choice of an operator basis is more restrictive.
A quantum map is formally said to have a classical limit if
it satisfies the Egorov condition, a strong version of which
loosely states that in the semiclassical (N → ∞) limit of
the quantum map, the time evolution of smooth functions on
phase space and quantum operators commute (see Eq. (13) of
Ref. [60]). Due to the restriction of the Egorov condition to
the behavior of smooth functions on phase space, in order
to establish a classical-quantum correspondence, it is natural
to use a quantum basis that limits to a basis of smooth
functions on phase space as a classical basis. Other choices
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of quantum bases do not have a clear meaning in the classical
limit, at least from the perspective of the Egorov condition.
Thus, by imposing the condition that the quantum basis maps
on to a basis of smooth functions in the classical limit, we
rule out most choices of bases, for example the operator basis
formed by eigenstates of the unitary (as discussed in Sec. V C
not all of them can map on to smooth functions in the classical
limit). Clearly the quantum basis {X mZn} and the classical
Fourier basis {xmzn} itself satisfy the required properties. We
believe the behavior of the coefficients and entropy should
remain qualitatively the same with any other choice basis
that satisfies the required properties, although it is not clear
how to construct an analytical example that is different from
{X mZn}. However, we note that weaker versions of the Egorov
condition (see Ref. [103] for an example) could lead to
alternate sensible choices of bases in both the quantum and
classical limits, an interesting avenue for future work.

We now relate the operator evolution described in Sec. V
to the spectral form factor, a widely used diagnostic of quan-
tum chaos, further elucidating the basis independence of our
results. The spectral form factor K (t ) is defined as [6,50,104]

K (t ) ≡ |Tr(Ut )|2 =
∑
m,n

ei(φm−φn )t , (43)

where {φm} are the quasienergies of the unitary matrix of
the quantum map. In generic nonintegrable systems, K (t ) is
believed to show three distinct features: a dip, a ramp and
a plateau [6,27]. These features can be seen numerically for
several systems [6] and also in cases where K (t ) can be
analytically computed [27,105]. When U is an N × N CUE
random matrix, K (t ) assumes the following values [106]:

K (t ) =
⎧⎨⎩N2 if t = 0

|t | if 0 < |t | � N
N if |t | � N

. (44)

To relate operator evolution to the spectral form factor,
we note that after an operator basis transformation K (t ) of
Eq. (43) can be written as

K (t ) =
N2∑
i=1

Tr(Ôi(0)†(U †)t Ôi(0)Ut )

=
N2∑
i=1

Tr(Ô†
i (0)Ôi(t )), (45)

where {Ôi(0)} is a complete orthonormal basis of operators
at t = 0 and {Ôi(t )} are the time-evolved basis operators. If
Ôi(t ) is expressed in the basis of {Ôi(0)} as

Ôi(t ) =
N2∑
i=1

gi j (t )Ô j (0), (46)

then

K (t ) =
N2∑
i=1

gii(t ). (47)

In the previous section, we studied the evolution for the
operator coefficients in the Fourier basis {X mZn}. Choosing
{Oi(0)} to be the Fourier basis in Eq. (46), we obtain

K (t ) =
N∑

m,n=1

gm,n;m,n(t ), (48)

FIG. 5. The smoothened spectral form factor K (t ) for the per-
turbed cat map with κ = 0.1 and N = 503. Typically the dip time tdip

appears to be of the order of operator scrambling time tscr and the
plateau time tplat of the order of Ntscr.

where

gm,n;m,n(t ) ≡ 1

N
Tr(Z−nX −mX (t )mZ (t )n), (49)

the operator coefficient of X (t )mZ (t )n corresponding to the
basis element X mZn.

The behavior of gm,n;m,n(t ) of Eq. (49) can be deduced us-
ing the evolution of operator coefficients of the initial operator
X mZn, and its overlap with X mZn. At t = 0, K (t ) = N2 since
gm,n;m,n(0) = 1. At early times, gm,n;m,n(t ) decreases as the
operator coefficients of X (t )mZ (t )n move away from (m, n),
as illustrated in Fig. 1(b). In Eq. (48), if gm,n;m,n(t ) has a
magnitude of 1/N and a random phase, we obtain K (t ) as
a sum of N2 terms with random phases and magnitudes of
O(1/N ), thus K (t ) ∼ O(1). This time, when K (t ) ∼ O(1) is
known as the dip-time in literature [6,27]. In the perturbed
cat map, gm,n;m,n(t ) has a magnitude of 1/N first when t ∼
tscr, when all of the operator coefficients have a magnitude
O(1/N ) since the operator entropy SQ(t ) saturates to SQ(t ) ≈
2 ln N . Thus we expect

tdip ∼ tscr, (50)

which we also observe numerically, e.g., in Fig. 5. It is thus
reasonable to assume that evolution by Utscr is equivalent to
evolution by a single time-step with a Haar random matrix.

At times greater than the dip time, K (t ) exhibits a linear
increase on average, characteristic of evolution by a random
matrix [24]. Furthermore, at timescales much larger than the
inverse smallest spacing of the quasienergy spectrum, any
ei(φm−φn )t is a random phase, and hence K (t ) ∼ O(N ) due
to the N2 random phases in Eq. (43). Thus, in the operator
language, the phases of the N2 terms in Eq. (48) are correlated
at late times, although they have a magnitude of O(1/N ).
In the perturbed cat map, since the evolution by Utscr is
equivalent to random matrix evolution by one time step, the
plateau time can be estimated to be N [107] in units of the
operator scrambling time,

tplat ∼ Ntscr. (51)
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This timescale is also observed in Fig. 5. We believe that
Eq. (51) is the correct scaling of the plateau time as opposed
to N (the inverse of the naive estimate of the smallest spacing)
because we numerically find that tplat → ∞ as κ → 0
(tscr → ∞).

Note that while we observe the timescales of Eqs. (50) and
(51) to typically hold numerically in smoothened plots of K (t )
(e.g., Fig. 5), their precise physical interpretation is unclear.
Firstly, since the spectral form-factor is not self-averaging
[108], and we have a single unitary U , rigorous definitions
of the dip and plateau times are not clear. Furthermore, since
we have a single unitary U corresponding to a cat map, how
does one define the randomness of Ut ? Moreover, even within
random matrix theory, notions of randomness for N × N
random matrices are defined in the N → ∞ limit. In the
perturbed cat map, this limit corresponds to the semiclassical
limit, further clouding the definition of randomness in the
quantum problem.

We note that our analysis in Secs. V and VI has some over-
lap with the recent work of Ref. [102], where the perturbed
cat map was numerically studied using several diagnostics.
Furthermore, the Ehrenfest time and the operator scrambling
time we have obtained are related to timescales that appear in
the early time decay and long time saturation of OTOCs in
the perturbed cat map studied in Ref. [109]. Thus, as shown
in Ref. [109], the operator scrambling time tscr can perhaps
be related to Ruelle-Pollicott resonances [47], determined by
the spectrum of the Koopman operator MC [see Eqs. (19) and
(20)].

VII. REGULAR SYSTEMS AND MIXED PHASE SPACES

To illustrate some difference with nonchaotic systems, we
now study a map very similar to the one of Eq. (3). Commonly
known as the Chirikov standard map [110], the classical map
reads(

q′
p′

)
=
(

1 1
0 1

)(
q
p

)
+ κ

2π
sin(2πq)

(
1
1

)
mod 1. (52)

This map has a zero Lyapunov exponent at κ = 0 and is
known to be nonchaotic for small κ < κc ≈ 1 [60,110,111].
An interesting feature of the Chirikov standard map is that for
a certain range of κ the phase space is mixed, i.e., it has both
regular and chaotic regions that co-exist in different parts of
phase space [60,112]. In terms of the natural variables on a
torus [see Eq. (4)], the standard map reads

z′ = xz exp
[
−κ

2
(z − z−1)

]
,

x′ = x exp
[
−κ

2
(z − z−1)

]
. (53)

Similar to the Arnold Cat map, the classical and quantum
evolutions of this map can be compared in the Heisenberg
picture via the Fourier and operator coefficients.

In contrast to the perturbed cat map,the classical entropy in
the Chirikov standard map does not show a linear growth for
small κ . This is consistent with the fact that the standard map
is not chaotic at small κ and unlike the cat map [see Eq. (23)],
Fourier coefficients for small m, n do not evolve into ones with
exponentially large m, n. Indeed, in the Chirikov Standard
Map with κ = 0, using Eq. (B10) the coefficients {C(t )

m,n} after
a time t can be related to the initial set of coefficients {C(0)

m,n}
according to

C(0)
m,n = C(t )

m+nt,n. (54)

While the standard map does have an Ehrenfest time for
small κ , estimates such as the ones in Eq. (32) are no longer
accurate, presumably due to the presence of “hidden” (almost)
conserved quantities that need not have simple forms in
the Fourier basis. Such quantities cause recurrences in the
quantum entropies over small timescales, and their existence
is indicated by the fact that the Standard map does not
exhibit any level repulsion even when κ > 0. Furthermore,
the quantum entropy SQ(t ) [defined in Eq. (25)] never appears
to saturate to its maximum value of 2 ln N for any N . Such
nonchaotic maps have an operator scrambling time tscr →
∞, due to the existence of conserved or almost-conserved
quantities.

FIG. 6. (a) Positive real part of the classical Lyapunov exponents at various points in phase space for the classical Chirikov standard map
at κ = 3.0. The blue regions indicate the existence of regular islands. (b) Quantum operator entropy for N = 50, κ = 3.0 for the quantized
Chirikov standard map.
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FIG. 7. The quantum entropies of the evolution of a “coherent
operator” |q p〉〈q p| in a Chirikov Standard map for κ = 3.0 and N =
50. The entropy for a coherent operator in a regular region oscillates
around a lower entropy than the one in a chaotic region.

In certain classical maps on a torus, chaotic and regular
regions can coexist on the phase space [60,113], forming a
so-called mixed phase space. Such behavior is known to exist
for large values of κ for the perturbed Cat maps and the
Chirikov standard map. For example, for the Chirikov stan-
dard map at κ = 3.0, the Lyapunov exponent at various points
in phase space is shown in Fig. 6(a). A similar phenomenon
occurs for the perturbed cat map at κ = 6.5 [60]. In the
quantized maps, this feature manifests as atypical eigenstates
of the time evolution operator. Indeed, the atypical eigenstates
cause the level statistics of the unitary to deviate from both
the chaotic and the Poisson distributions [114]. These can be
detected by studying the phase space representations [e.g.,
Husimi functions Hn(q, p) ≡ |〈q p |ψ〉n|2] of the eigenstates
{|ψ〉n}, which look different for the atypical eigenstates [60].
The effect of these regular regions in the classical map also
show up as features of the density of states of the quan-
tized system, leading to so-called “quantum scars” [115–117].
Several works have studied the fate of these regular islands
in quantized versions of these torus maps. For example, it
is known that in the long-time limit any localized wave
packet that originates in the ergodic region of the phase space
eventually “floods” the regular regions [112,118,119].

Here we propose a Heisenberg picture interpretation of
regular (nonchaotic) islands that appear in the phase portraits
of classical maps on T2. Similar to the previous sections,
we study the evolution of operator coefficients of an initial
“coherent-state” operator |q p〉〈q p| where (q, p) is the loca-
tion of the regular islands in the classical phase space. Interest-
ingly, we find in Fig. 7, the entropy of the operator coefficients
for a coherent state does not saturate to the maximum value of
2 ln N at late times. This is indicative of the fact that even at
long times the operator in the regular region does not look
resemble a matrix that looks random in the Fourier basis. In
contrast, a coherent state in the chaotic region does saturate
to its maximum value in the long-time limit, showing that
operator entropy can be used as a diagnostic to detect scars
in the spectrum of quantized maps.

VIII. CONCLUSIONS

In this work, we have explored classical and quantum
chaos in quantum maps in the Heisenberg picture. We
observed that the evolution of operator coefficients in a fixed
basis of operators show signatures of quantum chaos in the
system. We compared the behavior of operator coefficients to
the behavior of classical Fourier coefficients of functions on
phase space, illustrating the differences between the classical
equations of motion and the Heisenberg equations of motions.
We obtained a sharp definition of classicality of a system and
provided examples in which classicality arises away from the
usual classical limit. We then identified three regimes in the
system that show the transition from the early time classical
chaos to late-time quantum chaos, and they are characterized
by the natures of evolution of the operator coefficient entropy
SQ(t ), defined in Eq. (25). We found that up to an Ehrenfest
time tE , the quantum system mimics the behavior of the
classical system and formed the early time or semiclassical
regime. Furthermore, after an operator scrambling time tscr,
the information of the initial operator is scrambled into all
the N2 Fourier coefficients, after which the evolution of the
coefficients looks random in the Fourier basis. This operator
scrambling time is the same as the scrambling time for a
coherent-state wave function to evolve into a wave function
that is uniformly spread across the system. Finally, we used
the operator coefficient diagnostics to obtain an operator
interpretation of regular islands in torus maps whose classical
limits have a mixed phase space.

Our approach characterizes chaos in quantum maps in
the Heisenberg picture, which complements previous ap-
proaches using wave functions (see Ref. [60] and the refer-
ences therein). While we have used the perturbed cat map
as an illustrative example, we believe that several aspects of
operator evolution in chaotic maps are universal, e.g., the
linear and logarithmic growths of the coefficient entropy.
Since the Heisenberg picture is the natural language to ex-
plore many-body quantum chaos and operator spreading in
many-body quantum systems [6,9–11,14,15,120] and quan-
tum field theories [5,12,13], our results extend the notions
therein to quantum maps on a torus. An important open
question is to explore if there is a version of “operator
hydrodynamics” for single-particle quantum chaotic systems
[11]. Furthermore, the analytic tractability of the Heisenberg
equations of motion for these maps could further explore
connections to information-theoretic concepts such as unitary
designs and the complexity growth of states [27,28]. On a
different note, the results in Sec. VII suggest that it would be
interesting to study operator evolution in quantum many-body
systems that are thought to exhibit many-body quantum scars
[121–125].
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APPENDIX A: HEISENBERG EQUATIONS OF MOTION

In this section, we derive the Heisenberg equations of motion for the perturbed Cat map and the Chirikov standar map. For
now, we assume a general map of the form of Eq. (3), and we will restrict ourselves to special values of a, b, c, and d when
required.

We first represent the X and Z operators [defined in Eq. (11)] as N × N matrices whose elements read (the indices are
represented using z ≡ ω j and z′ ≡ ω j′ )

Zz′,z = zδz′,z, Xz′,z = δz′,zω−1 . (A1)

In terms of z and z′, by using the substitutions j = N
2π i ln z, j′ = N

2π i ln z′, the unitary of Eq. (10) can be
written as

(UN )z′,z = 1√
Nb

exp

[−iN

4πb
(d (ln z)2 − 2 ln z ln z′ + a(ln z′)2) + κN

4π
(z − z−1)

]
. (A2)

UN can then be written as a product of two matrices,

(UN )z′,z =
∑

z′′
U (1)

z′,z′′U
(2)
z′′,z, (A3)

where U (1) and U (2) read

U (1)
z′,z′′ ≡ 1√

Nb
exp

[−iN

4πb
(d (ln z)2 − 2 ln z ln z′ + a(ln z′)2)

]
,

U (2)
z′′,z ≡ exp

(
κN

4π
(z − z−1)

)
δz′′,z. (A4)

In Eq. (A4), the U (1) corresponds to the unitary for the unperturbed cat map and U (2) corresponds to the perturbation.
We first expand U (1) in an orthonormal operator basis {X mZn} as

U (1) =
N−1∑

m,n=0

um,nX mZn. (A5)

Since the basis is orthonormal, um,n reads

um,n = 1

N
Tr [Z−nX −mU (1)]. (A6)

Thus we obtain

um,n = 1

N
√

Nb

∑
z′′,z′′′

{
δz,z′′δz′′,z′′′ωm (z′′)−n × exp

[
N

4π ib
(d (ln z′′′)2 − 2 ln z′′′ ln z + a(ln z)2)

]}

= 1

N
√

Nb

∑
z

{
z−n × exp

[
N

4π ib
(d (ln z − m ln ω)2 − 2(ln z − m ln ω) ln z + a(ln z)2)

]}

= 1

N
√

Nb

N−1∑
k=0

{
ω−kn exp

[
iπ

Nb
((a + d − 2)k2 − 2m(d − 1)k + m2d )

]}

= 1

N
√

Nb

N−1∑
k=0

ω

[
a+d−2

2b k2−
(

m(d−1)
b +n

)
k+ m2d

2b

]
. (A7)

1. Perturbed cat maps

We first consider a conventional choice of coefficients for the perturbed cat maps where (a, b, c, d ) = (2, 1, 3, 2). The
expression for um,n in Eq. (A7) reduces to

um,n = 1

N
√

N
ωm2

N−1∑
k=0

ωk2−(m+n)k . (A8)

One might recognize the sum in Eq. (A8) to be a generalized quadratic Gauss sum G(1,−(m + n), N ), where

G(a, b, c) ≡
c−1∑
k=0

e2π i an2+bn
c . (A9)
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Using standard methods for Gaussian sums [126], the exact expression for U (1) reads [70,92]

U (1) = 1 + i

2N

∑
m,n

[
ω

(3m+n)(m−n)
4 (1 + (−i)N+2(m+n) )X mZn

]
. (A10)

Using Eqs. (A4) and the matrix elements (A1), U (2) can directly be written as

U (2) = exp

(
κN

4π
(Z − Z−1)

)
. (A11)

We now proceed to the derivation of the Heisenberg equations of motion. By definition, the Heisenberg equations of motion
read

Z ′ = U (2)†
U (1)†

ZU (1)U (2), X ′ = U (2)†
U (1)†

XU (1)U (2). (A12)

We first focus on computing

Z (1) ≡ U (1)†
ZU (1). (A13)

Using the expression for U (1) in Eq. (A10), we obtain

Z (1) = 1

2N2

∑
m,m′,n,n′

[
ω− (3m+n)(m−n)

4 (1 + iN+2(m+n) )(1 + (−i)N+2(m′+n′ ) )ω
(3m′+n′ )(m′−n′ )

4 Z−nX −mZX m′
Zn′]

= 1

2N2

∑
m,k,n,l

[
ω

1
4 (3k2−(l−1)2−2k(l+1)ω

3k−l−1
2 mω

k−l+1
2 n(1 + iN (−1)m+n + (−i)N (−1)m+k+n+l−1 + (−1)k+l−1)X kZl

]
= 1

2N2

∑
k,l

[
ω

1
4 (3k2−(l−1)2−2k(l+1)(1 + iN + (−i)N (−1)k+l−1 + (−1)k+l−1)Nδ3k−l−1,0Nδk−l+1,0

]
X kZl = ω−1XZ2, (A14)

where in the second line, we have defined k ≡ m′ − m and l ≡ n′ − n + 1 and in the third line, we have evaluated the sums over
m and n. Similarly, the expression for X (1) can be written as

X (1) = 1

2N2

∑
m,m′,n,n′

[
ω− (3m+n)(m−n)

4 (1 + iN+2(m+n) )(1 + (−i)N+2(m′+n′ ) )ω
(3m′+n′ )(m′−n′ )

4 Z−nX −mXX m′
Zn′]

= 1

2N2

∑
m,k,n,l

[
ω

1
4 (k−l−1)(3k+l−3)ω

3k−l−3
2 mω

k−l+1
2 n(1 + iN (−1)m+n + (−i)N (−1)m+k+n+l−1 + (−1)k+l−1)X kZl

]
= 1

2N2

∑
k,l

[
ω

1
4 (k−l−1)(3k+l−3)(1 + iN + (−i)N (−1)k+l−1 + (−1)k+l−1)Nδ3k−l+3,0Nδk−l+1,0

]
X kZl = ω−3X 2Z3, (A15)

where in the second line, we have defined k ≡ m′ − m + 1 and l ≡ n′ − n. Using Eqs. (A14), (A12), and operator commutation
relations of Eq. (11), we obtain Z ′ to be (since Z is unitary)

Z ′ = e− κN
4π

(Z−Z−1 )ω−1XZ2e
κN
4π

(Z−Z−1 )

= ω−1XZ2 exp

{
κN

4π
[(1 − ω−1)Z − (1 − ω)Z−1]

}
= ω−1XZ2 exp

{
κN

4π

(
ω

1
2 − ω− 1

2
)(

ω− 1
2 Z + ω

1
2 Z
)}

. (A16)

Similarly, using Eqs. (A15) and (A12), we obtain X ′ to be

X ′ = e− κN
4π

(Z−Z−1 )ω−3X 2Z3e
κN
4π

(Z−Z−1 )

= ω−X 2Z3 exp

{
κN

4π
[(1 − ω−2)Z − (1 − ω2)Z−1]

}
= ω−3X 2Z3 exp

{
κN

4π
(ω − ω−1)(ω−1Z + ωZ−1)

}
. (A17)

Thus Eqs. (A16) and (A17) are the Heisenberg equations of motion for the quantization of the perturbed cat map Eq. (3) with
(a, b, c, d ) = (2, 1, 3, 2).
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2. Chirikov standard map

Similar to Eq. (A3), the unitary for the standard map can be decomposed into an unperturbed part U (1) and a perturbed part
U (2). Since the unperturbed part of the standard map has the same form as the unperturbed part of the cat map, the expression of
U (1) is given by Eqs. (A10) and (A7) with (a, b, c, d ) = (1, 1, 0, 1). Thus we obtain

U (1) = 1√
N

N−1∑
m=0

ωm2/2X m. (A18)

The perturbed part U (2) is diagonal in the position basis and is given by

U (2) = exp

(
iκN

4π
(Z + Z−1)

)
. (A19)

Consequently, the expression for Z ′ reads

Z ′ = ω− 1
2 XZ exp

(
iκN

4π

(
ω

1
2 − ω− 1

2
)(

ω− 1
2 Z − ω

1
2 Z−1

))
. (A20)

Similarly, the expression for X ′ reads

X ′ = X exp

(
iκN

4π

(
ω

1
2 − ω− 1

2
)(

ω− 1
2 Z − ω

1
2 Z−1

))
. (A21)

APPENDIX B: EVOLUTION OF OPERATOR COEFFICIENTS

In this section, we derive the evolution equations of the classical Fourier and quantum operator coefficients. In particular, we
derive an expression for the matrix elements 〈m′, n′|MC |m, n〉 and 〈m′, n′|MQ|m, n〉 where the classical and quantum coefficients
evolve according to

C′
m,n =

∞∑
m,n=−∞

〈m′, n′|MC |m, n〉Cm,n, Q′
m,n =

N−1∑
m,n=0

〈m′, n′|MQ|m, n〉Qm,n, (B1)

respectively.

1. Perturbed cat maps

We start with the evolution of classical Fourier coefficients. Using the classical evolution of Eq. (5), the evolution of Fourier
components is defined using Eq. (18). Substituting Eq. (5) into Eq. (18), we obtain

∞∑
m,n=−∞

Cm,nx′mz′n =
∑
m,n

Cm,nx2m+nz3m+2n exp

(
iκ

2
(z + z−1)(2m + n)

)

=
∞∑

m,n=−∞

∞∑
j=0

j∑
r=0

Cm,n
(iκ ) j

r!( j − r)!

(
m + n

2

) j
x2m+nz3m+2n+2r− j

≡
∞∑

m′,n′=−∞
C′

m′,n′xm′
zn′ =

∞∑
m′,n′,m,n=−∞

〈m′, n′|MC |m, n〉Cm,nxm′
zn′

(B2)

The matrix elements in Eq. (B2) read

〈m′, n′|MC |m, n〉 =
∞∑
j=0

j∑
r=0

[
(iκ ) j

r!( j − r)!

(
m + n

2

) j
δm′,2m+nδn′,3m+2n+2r− j

]

=
∞∑

s=−∞

∞∑
j=|s|

[
(iκ ) j( j+s

2

)
!
( j−s

2

)
!

(
m + n

2

) j
δm′,2m+nδn′,3m+2n+sδs+ j,even

]

=
∞∑

s=−∞

∞∑
l=0

[
(iκ )2l+|s|

(l + |s|)! l!

(
m + n

2

)2l+|s|
δm′,2m+nδn′,3m+2n+s

]

=
∞∑

s=−∞
[i|s|J|s|(κ (2m + n))δm′,2m+nδn′,3m+2n+s] =

∞∑
s=−∞

[isJs(κ (2m + n))δm′,2m+nδn′,3m+2n+s], (B3)

094312-14



OPERATOR SPREADING IN QUANTUM MAPS PHYSICAL REVIEW B 99, 094312 (2019)

where Jν (x) is the νth-order Bessel function of the first kind. In deriving Eq. (B3), we have used

Jν (x) =
∞∑

l=0

(−1)m

m!(m + ν)!

( x

2

)2m+ν

(B4)

and the property

J−ν (x) = (−1)νJν (x). (B5)

The derivation in the quantum case is similar, using the Heisenberg equations of motion instead of the classical evolution
equations. Using Heisenberg equations of Eqs. (12) and the properties of Eq. (11), we first obtain

X ′m = ω−3m2
X 2mZ3m exp

(
κN

4π
(ωm − ω−m)(ω−mZ + ωmZ−1)

)
,

Z ′n = ω−n2
X nZ2n exp

(
κN

4π

(
ω

n
2 − ω− n

2
)(

ω− n
2 Z + ω

n
2 Z−1

))
. (B6)

Consequently, using Eqs. (B6) and (14), we can write
N−1∑

m,n=0

Qm,nX ′mZ ′n =
N−1∑

m,n=0

Qm,nω
−3m2−n2−3mnX 2m+nZ3m+2n exp

[
κN

4π

(
ω(m+ n

2 ) − ω−(m+ n
2 ))(ω−(m+ n

2 )Z + ω(m+ n
2 )Z−1)]

=
N−1∑

m,n=0

Qm,nω
−3m2−n2−3mn

∞∑
j=0

j∑
r=0

ω(m+ n
2 )( j−2r) (iκN ) j

(2π ) jr!( j − r)!
sin j

(π

N
(2m + n)

)
X 2m+nZ3m+2n+2r− j,

≡
N−1∑

m′,n′=0

Q′
m′,n′X m′

Zn′ =
N−1∑

m′,n′,m,n=0

〈m′, n′|MQ|m, n〉Qm,nX m′
Zn′

, (B7)

where we have used the properties of Eq. (11). To write out the matrix elements in Eq. (B7) explicitly, it is useful to define

δ
(N )
a,b =

{
1 if a = b mod N

0 otherwise
. (B8)

The matrix elements then read

〈m′, n′|MQ|m, n〉

= ω−3m2−n2−3mn
∞∑
j=0

j∑
r=0

{
κ jω(m+ n

2 )( j−2r)

r!( j − r)!

[
iN

2π
sin
(π

N
(2m + n)

)] j

δ
(N )
m′,2m+nδ

(N )
n′,3m+2n+2r− j

}

= ω−3m2−n2−3mn
N−1∑
s=0

∞∑
j=0

j∑
r=0

{
(iκ ) jω(m+ n

2 )( j−2r)

r!( j − r)!

[
N

2π
sin
(π

N
(2m + n)

)] j

δ
(N )
m′,2m+nδ

(N )
n′,3m+2n+sδ

(N )
2r− j,s

}

= ω−3m2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

∞∑
j=0

j∑
r=0

{
(iκ ) j

r!( j − r)!

[
N

2π
sin
(π

N
(2m + n)

)] j

ω(m+ n
2 )( j−2r)δ

(N )
m′,2m+nδ

(N )
n′,3m+2n+sδ2r− j+pN,s

}

= ω−3m2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

∞∑
j=|p+pN |

{
(iκ ) jω(m+ n

2 )(pN−s)( j+s+pN
2

)
!
( j−s−pN

2

)
!

[
N

2π
sin
(π

N
(2m + n)

)] j

δ j+s+pN,evenδ
(N )
m′,2m+nδ

(N )
n′,3m+2n+s

}

= ω−3m2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

∞∑
l=0

{
(iκ )2l+|s+pN |ω(m+ n

2 )(pN−s)

(l + |s + pN |)! l!

[
N

2π
sin
(π

N
(2m + n)

)]2l+|s+pN |
δ

(N )
m′,2m+nδ

(N )
n′,3m+2n+s

}

= ω−3m2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

{
i|s+pN |J|s+pN |

[
κN

π
sin
(π

N
(2m + n)

)]
ω(m+ n

2 )(pN−s)δ
(N )
m′,2m+nδ

(N )
n′,3m+2n+s

}

= ω−3m2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

{
is+pNJs+pN

[
κN

π
sin
(π

N
(2m + n)

)]
ω(m+ n

2 )(pN−s)δ
(N )
m′,2m+nδ

(N )
n′,3m+2n+s

}
, (B9)

where we have used Eqs. (B4) and (B5). Note that in the limit N → ∞, Eq. (B9) reduces to Eq. (B3).
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2. Chirikov standard map

To obtain the operator coefficient evolution for the Standard map, we follow the same procedure as for the perturbed cat map.
The classical coefficient evolution matrix elements are obtained using Eqs. (18) and (53). The result reads

〈m′, n′|MC |m, n〉 =
∞∑
j=0

j∑
r=0

[
(−1)r κ j

r!( j − r)!

(
m + n

2

) j

δm′,m+nδn′,n+2r− j
]

=
∞∑

s=−∞
[(−1)sJ|s|(κ (m + n))δm′,m+nδn′,n+s]. (B10)

Similarly, to determine the quantum evolution equation, using the Heisenberg equations of motion in Eqs. (A20) and (A21), and
the properties of Eq. (11) we first obtain

X ′m = X m exp

[
iκN

4π

(
ω

m
2 − ω− m

2
)(

ω− (m−1)
2 Z + ω

(m−1)
2 Z−1)],

Z ′n = ω− n2

2 X nZn exp

(
iκN

4π

(
ω

n
2 − ω− n

2
)(

ω− n
2 Z + ω

n
2 Z−1

))
. (B11)

Consequently, the quantum evolution matrix elements for the Standard map read

〈m′, n′|MQ|m, n〉 = ω− n2

2

∞∑
j=0

j∑
r=0

{
(−1)r κ jω( m+n

2 )( j−2r)

r!( j − r)!

[
N

2π
sin
(π

N
(m + n)

)] j

δm′,m+nδn′,n+2 j−r

}

= ω− n2

2

N−1∑
s=0

∞∑
p=−∞

{
(−1)s+pNJ|s+pN |

[
κN

π
sin
(π

N
(m + n)

)]
ω( m+n

2 )(pN−s)δm′,m+nδn′,n+s

}
. (B12)

In the limit N → ∞, Eq. (B12) reduces to Eq. (B10).

APPENDIX C: BESSEL FUNCTION APPROXIMATIONS

In this section, we estimate a “decay length” ν0 such that the magnitude of the Bessel function |Jν (x)| can be considered to
vanish for |ν| > ν0. We consider the |x| � 1 and |x| � 1 cases separately.

(1) When |x| � 1, we use the usual expansion of the Bessel functions as

|Jν (x)| =
∞∑

s=0

(−1)s

(s + 1)(ν − s + 1)

( |x|
2

)n+2s

≈ 1

(ν + 1)

( |x|
2

)ν

+ O(|x|) ≈ 1

(ν + 1)
exp (ν ln(|x|/2)). (C1)

Consequently, |Jν (x)| can be considered to vanish for |ν| � ν0, where

ν0 = 1

ln(2/|x|) . (C2)

(2) When |x| � 1, we expect ν0 � 1, and hence we can use the two forms of Debye expansions for Bessel functions [127]:

|Jν (ν sech α)| ≈ exp (−ν(α − tanh α))√
2πν tanh α

(
1 + O

(
1

ν

))
, ν → ∞, α > 0 (C3)

|Jν (ν sec β )| ≈
√

2

πν tan β

[
cos(ν(tan β − β ) − π

4
) + O

(
1

ν

)]
, ν → ∞, β > 0 (C4)

Substituting x = ν sech α and x = ν sec β in Eqs. (C3) and (C4), respectively, and using tanh (arcsech y) =
√

1 − y2 and
tan (arcsec y) =

√
y2 − 1, we obtain

|Jν (x)| ≈

⎧⎪⎪⎨⎪⎪⎩
exp
(
−ν arcsech ( x

ν )+
√

ν2−x2
)

√
2π

√
ν2−x2

(
1 + O

(
1
ν

))
if |ν| > |x|√

2
π

√
x2−ν2

[
cos
(√

x2 − ν2 − ν arcsec
(

x
ν

)− π
4

)+ O
(

1
ν

)]
if |ν| < |x|

. (C5)

Thus, using Eq. (C5), we see that |Jν (x)| oscillates for |ν| < |x| and decays for |ν| > |x|. Thus the “decay length” for |x| � 1
can be defined as

ν0 = [|x|], (C6)

where [x] is the integer part of x.
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