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Topological frequency conversion in a driven dissipative quantum cavity
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Recent work [Martin et al., Phys. Rev. X 7, 041008 (2017)] shows that a spin coupled to two externally
supplied circularly polarized electromagnetic modes can effectuate a topological, quantized transfer of photons
from one mode to the other. Here, we study the effect in the case when only one of the modes is externally
provided, while the other is a dynamical quantum mechanical cavity mode. Focusing on the signatures and
stability under experimentally accessible conditions, we show that the effect persists down to the few-photon
quantum limit and that it can be used to generate highly entangled “cat states” of cavity and spin. By tuning
the strength of the external drive to a “sweet spot,” the quantized pumping can arise starting from an empty
(zero-photon) cavity state. We also find that inclusion of external noise and dissipation does not suppress but
rather stabilizes the conversion effect, even after multiple cavity modes are taken into account.

DOLI: 10.1103/PhysRevB.99.094311

I. INTRODUCTION

In recent years, topology has played a major role in quan-
tum physics, especially after the theoretical prediction [1-6]
and subsequent discovery [7,8] of an extensive family of novel
topological materials. These phases of matter are character-
ized by highly nontrivial properties that lead to exotic but
extremely robust phenomena with many possible applications.
More recent work has shown that periodic driving can be
used to induce analogous [9-14], or entirely new [15-25],
topological phases of matter in otherwise ordinary systems.

Topological effects, however, are not limited to exotic
phases of matter: by replacing the spatial degrees of free-
dom of a topological insulator with other kinds of degrees
of freedom (such as optical degrees of freedom, or tunable
parameters) one can engineer systems that inherit topological
features of the original models, but expose them in distinct
and possibly useful ways. The best-known example is perhaps
Thouless’ adiabatic charge pump [26], which can be seen as
a two-dimensional Chern insulator, where one of the spatial
dimensions is replaced with a tunable parameter; more recent
examples of this idea include Refs. [4,27-30], where, for in-
stance, novel, energy pumping effects arise when the system is
subject to external driving while the parameter is being tuned.
Other examples of such analogies include optical [31-37] or
acoustic [38—41] waveguide arrays, where nontrivial topology
results in protected, unidirectional modes of propagation, and
systems where the electronic orbital degrees of freedom of a
topological insulator are replaced with the angular momentum
of light [42].

In this work, we focus on a particular example of such an
unconventional topological effect, which was first discussed
in Ref. [43]. We consider a magnetic particle with angular
momentum £71/2, coupled to two circularly polarized electro-
magnetic modes, where one mode (1) is a cavity mode and
the other (2) is externally driven [see Fig. 1(a)]. Interpreting
the photon number of the cavity mode as a lattice degree
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of freedom, and the spin as an orbital degree of freedom,
this setup is equivalent to a one-dimensional, tight-binding
model [see Fig. 1(b)]. In topologically nontrivial parameter
regimes, where the analogous lattice model acts as a Thouless
pump, the number of photons in the cavity mode increases
by the integer z for each cycle of the driving mode [43],
and the spin affects a transfer of energy from the driving
field to the cavity mode, at the topologically quantized rate
of iwS2€ /21, where w and 2 denote the angular frequencies
of the two modes. Thus, the cavity mode with frequency w
can be topologically pumped by driving the magnetic particle
at the other frequency 2. Importantly, 2 does not need to be
finely tuned, but can be set arbitrarily as long as adiabaticity
is respected. This topological effect opens up possibilities for
optical amplification, or lasing at the frequency w, which is
set by the properties of the cavity.

The goal of this work is to explore the validity and robust-
ness of the topological frequency pumping described above
when taken to the quantum regime of realistic optical cavities
and resonators. In particular, we consider an external periodic
drive coupled through the spin with an optical cavity, which
could be noisy and dissipative, as well as contain several
modes.

First, we find that, when treating the cavity modes as
quantized field, the topological pumping effect persists all
the way from the classical limit to the quantum mechanical
few-photon limit. Remarkably, the topological energy transfer
arises spontaneously, even when the cavity initially holds zero
photons.

The system produces other surprises as well. The direction
of transfer between the two modes is set by the alignment
of the spin with the field. When the system is isolated from
the external environment, nontrivial “cat” states can therefore
arise, in which the state of the spin is highly entangled with
the cavity mode. We demonstrate the existence of these states
numerically.

©2019 American Physical Society
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FIG. 1. (a) We study a model of a magnetic particle with angular
moment L (black dot, with arrow indicating magnetization) in a
cavity, coupled to a circularly polarized cavity mode (blue) and a
circularly polarized driving mode (red). Interpreting the particle’s
spin s and the cavity photon number n; as an orbital and lattice
degrees of freedom, respectively, the system is equivalent to a driven
tight-binding model (b). In suitable parameter regimes, the tight-
binding model acts as a Thouless pump, and the magnetic particle
effectuates a transfer of energy to the cavity at the universal rate
wQL /7.

To study extrinsic dissipation effects, we introduce a cou-
pling between the cavity mode and the external electromag-
netic environment (e.g., in the form of a semitransparent
mirror in the cavity), and include the effects of extrinsic spin
fluctuations in the model. The resulting dynamics is simulated
using a Lindblad-form master equation which is is derived
in a separate paper that will appear shortly [44]. The master
equation, referred to as the Markov-Lindblad equation here,
accurately describes open quantum systems where the corre-
lation time of the external baths can be neglected, and relies
exclusively on the Markov-Born approximation. Crucially, the
Markov-Lindblad equation is in the Lindblad form, and can
thus be integrated efficiently with stochastic methods [45].

Using this method, we find that the quantized topological
energy transfer persists even in the presence of cavity and
spin dissipation. In fact, we find the dissipation stabilizes the
topological energy transfer: dissipation in the spin’s motion
keeps the magnetic moment aligned with the field, while
cavity dissipation leads to a steady state of the system, where
the cavity emits a quantized number of photons per driving
period. These results demonstrate that the topological energy
transfer does not require coherence of the system’s wave
function.

The stability of the topological energy transfer in the
presence of dissipation hints that the effect has a classical
counterpart. We verify this intuition by demonstrating the
fully classical limit of the model supports a phase in which
energy is transferred to the cavity mode at the universal rate

. oL
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where L denotes the (macroscopic) angular moment of the
magnetic particle. It is remarkable that topological effects,
such as the effect discussed here, can arise in relatively simple
classical systems.

Finally, we investigate the energy pumping effect when
multiple cavity modes are included in the model, such as the
higher harmonics of the fundamental cavity mode, as well
as their time-reversed partners. Exploring the effects of these
additional modes on the classical system, we find that the
energy transfer effect is stable in certain parameter regimes

with a suitable, experimentally achievable engineering of the
cavity.

The rest of the paper is organized as follows: In Sec. II, we
introduce the driven-cavity quantum model and demonstrate
its topological energy transfer in the high-filling classical
regime of the cavity. In Sec. III, we consider the behavior of
the quantum model outside the ideal energy transfer region,
and demonstrate the creation of photonic cat states, as well
as energy transfer to an empty cavity. In Sec. IV, we intro-
duce dissipation to the system, and use the Markov-Lindblad
equation to study it. Sections V and VI demonstrate that the
effect persists in the classical version of the model, and in
the presence of multiple modes. We conclude by discussing
the results of this paper, as well as possible experimental
realizations [e.g., with Weyl semimetals, yttrium-iron garnet
(YIG) spheres, or mechanical gyroscopes] in Sec. VIIL.

II. DRIVEN CAVITY MODEL AND TOPOLOGICAL
ENERGY TRANSFER

We begin by introducing the model that will be studied
in this paper, and demonstrating how topological frequency
conversion emerges in the model. The system we consider
consists of a magnetic particle with angular momentum L,
located within a one-dimensional electromagnetic cavity with
axis along the x direction, as depicted in Fig. 1(a). In addition
to the magnetic field from the cavity modes B,, the particle is
subject to the field from a circularly polarized wave propagat-
ing along the y direction B;(¢) = (B, sin Q¢, 0, —B, cos Q2t),
as well as a static (Zeeman) magnetic field B,, = (0,0, B,,)
applied along the z direction.

In general, the cavity field B, is a superposition of multiple
distinct modes from the discrete frequency spectrum of the
cavity. Topological energy transfer arises when the cavity field
B, is dominated by a single circularly polarized mode: B, =
(0, B; sin ¢, —B, cos ¢), where B, and ¢ denote the amplitude
and phase of the dominant mode. Ignoring the effects of the
additional modes, B, and ¢ along with the angular moment
of the magnetic particle L constitute the dynamical variables
of the system. In Sec. VI we discuss the effects of taking the
additional modes into account.

Including the energy of the dominant cavity mode, the
Hamiltonian of the combined particle-cavity system reads as

H() = %BZ —gB.+B,+B/0]-L. (2

where V and p, respectively, denote the cavity’s volume and
magnetic permeability, while g is the (isotropic) gyromagnetic
ratio of the magnetic particle. The quantum Hamiltonian of
the system H (¢) is obtained through canonical quantization of
Eq. (2). In particular, the cavity mode is quantized by replac-
ing B.e~'* with Byd, where d denotes the photon annihilation
operator of the cavity mode, and By = Jwuoh/V, where w is
the cavity mode’s frequency. Physically, B, gives the magnetic
field amplitude corresponding to a single photon in the cavity.
This results in the quantum Hamiltonian

H(r) = hoit — gB@) - L. (3)

Here, 7= a4 is the photon-number operator, L. denotes
the quantum mechanical angular momentum operator of the
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magnetic particle, and

B.(t) = By sin(Q), 4)
. a—at
B,(t) = By — %)
. a+af
B.(t) = B,y — By cos(Qxt) — By 5 (6)

Here, we ignored the constant shift Ziw/2 to the Hamiltonian
H (¢) from the cavity’s vacuum energy.

The Hilbert space on which H(¢) acts is spanned by the
basis {|n, s)}, where n > 0 is the number of photons in the
cavity mode, and s is the angular momentum of the magnetic
particle along the z axis, in units of 7, satisfying —¢/2 <
s < £/2. The photon annihilation operator a and the angular
momentum operator L, respectively, act on the photon and
spin degrees of freedom of the states. In particular, dln, s) =
Jnln—1,s).

One may view the system above as a one-dimensional,
semi-infinite tight-binding model, which we refer to as the
photon lattice in the following. The photon number n can
be interpreted as a lattice index, and the spin index s as
an orbital index. In this picture, the state of the system is
represented by the wave function of a single particle in the
photon lattice, and the Hamiltonian H (¢) couples neighboring
sites through the photon creation and annihilation operators
a, a" [see Fig. 1(b)].

A. Topological frequency conversion

To demonstrate how the topological energy transfer effect
emerges, we consider a state |¥) whose support is confined
to photon numbers n in some relatively narrow region R
centered around n = n., and of width An < n.. Using that
Vvn = /n[l+ O(An/n.)] when n is in the interval R, we
find the following simple expression for the action of photon
annihilation operator a on the state of the system |W):

B. . AnB
&l\lJ}:B—0T|\D)+O< ; "). %)

Here, B, = By./n. is the amplitude of the cavity field con-
sistent with photon number 7., and T acts as the translation
operator in the photon lattice:

o0
T =ZZ|n— 1,0 (n, 1.
n=0 [

In the limit we study, An < (B, /Bo)z. Hence, the correction
in Eq. (7) is negligible, and can be ignored. Using Eq. (7) in
Egs. (3)—(6), we thus find that the state |V) evolves with the
Hamiltonian

Heie = Hr (1) + o, (3)
where the “Thouless Hamiltonian” Hy is given by

B,
Hr(t) = — gzl.

(T — TL, — gBysin(Qt)L,

Be o .
— g(Bm -5 T+ 7" — By cos(Qt))LZ.

Ignoring boundary effects, we note that the “Thouless Hamil-
tonian” Hy (¢) is invariant under translations in photon space.
Hence, the effective Hamiltonian H.g () describes a one-
dimensional translationally invariant lattice model with a con-
stant longitudinal electric field w.

The effective Hamiltonian H.(¢) describes an adiabatic
“charge pump” in the photon lattice, with quantized average
group velocity of wave packets. To establish this result, we
first consider the translationally invariant Hamiltonian Hr(¢)
which forms the first part of Heg(¢). The Bloch Hamiltonian
associated with Hy (¢) is given by

Hyp(k,t) = —gB(k,t) - L. C))

Here, k denotes the dimensionless crystal momentum in the
photon lattice, the operator L acts on the (¢ 4+ 1)-dimensional
orbital space of the tight-binding model, and

B sin(2t)

B, sin(k) . (10)
B,, — B.cos(k) — B, cos(£2t))

B(k, 1) =

To analyze the dynamics of the system, we decompose the
initial state of the system |W,) in a superposition of crystal
momentum eigenstates in the photon lattice:

2T
W) =/0 dk F OO o)) @ ), (11

where the normalized state | (k)) lives in the orbital space
of the system, while |k) denotes the state in the “lattice space”
with crystal momentum k, such that T |k) = ¢/*|k). Here, f (k)
is a positive weight factor satisfying foh dk|f*(k)| = 1. Using
that 71lk) = idi|k), one can verify that the time evolution of the
system is given by

2
[W()) =/0 dk f()ly(k, 1)) @ |k —wt).  (12)
Here, | (k, t)) solves the Schrodinger equation

Y (k, 1)) = —iHr (k — wt, )| (k, 1)) 13)

with the initial condition | (k, 0)) = [0 (k)).

The quantization of angular momentum implies that
Hry(k,t) has £ + 1 energy bands. The bands of Hr(k,t) are
evenly spaced, with the gap width (as a function of k and ¢)
given by AE (k,t) = g|B(k, t)|. As can be seen from Eq. (10),
the field B(k, ) can be obtained by replacing the operator Bya
with B.e** in Egs. (4)—(6). In this way, Hy(k, ) can be seen
as the Hamiltonian acting on the magnetic particle at time ¢,
when the cavity mode is classical and has amplitude B, and
phase —k. Each band of Hy (k, t) thus corresponds to a distinct
projection of the spin onto the resulting classical magnetic
field B(k, t) at time ¢.

The quantized energy transfer occurs in the near-adiabatic
limit, when the instantaneous energy gap (corresponding to
the spin’s precession frequency) AE (k, t) is large compared
to the frequencies 2 and w for all k, t. One can verify
that AE (k, t) takes minimal value AE.,;, = min g|B. — B4|,
where B. = |B,, &+ B,|. Thus, for topological energy transfer
to emerge, we require |B, — By| > Q/g.

To show how the energy pumping arises, consider the
system initialized in a wave packet constructed from the
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mth band of Hy (k,t): |Yo(k)) = |dm(k, 0)), where |¢,,(k, 1))
denotes the mth eigenstate of Hr(k,t). Since w and 2 are
much smaller than the level spacing of Hr(k,t) the state
| (k,t)) in Egs. (12) and (13) evolves according to the
adiabatic theorem: |y (k, 1)) = e ?®D|¢,,(k — wt, t)), where
Ok, t) = fé dt E,,(k — wt) denotes the dynamical phase.

Having established how |y (k, 1)) evolves, we now com-
pute the number of photons in the system-bath state. Using
that 7i|k) = ioi|k) in Eq. (12), and by integrating by parts, we
find, after using fozrr dk 3| f2(k)| = 0,

2
(n()) = i/O dk (r (k, |9 (k, 1)) | f2 (k)] (14)

Substituting in |/ (k, t)) = e~ *D|¢,, (k — wt, t)), and taking
the time derivative, we find

9 (n) = /dk |20 v (k — i, 1), 15)

where the “velocity” in the photon lattice v,,(k, t) is given by
OE,(k,t)
ok

Here, €2,(k,t) denotes the Berry curvature of band
m and is given by 2, (k,t) = i(Ox(p,(k,1)|0;|pn(k, 1)) —
0 (P (k, )]0kl pn(k, 1))).

As a next crucial step, we note that the velocity v,,(k, t)
is periodic in both of its arguments, and lives on the torus
T =[0,27]® [0, T], where T = 2Z denotes the period of the
driving mode. Hence, if the frequencies @ and 2 are incom-
mensurate, averaging v, (k + wt, Qt) over time amounts to

averaging the function vy, (k, t) over the entire torus T. Using
that the integral fozn dk%ikm vanishes, and letting F denote the

time- average of the function F(¢), we find

Uk, t) = Qu(k, t) + (16)

G,
0 (n) = T (17)
Here, C,, = % fdk dt Q,(k, t) is the Chern number of the

mth band of Hr (k, t), and takes integer values.

It is well established that the nth-lowest band of Hr(k,t)
has Chern number C,, = ¢ — 2(m — 1) [26] when B, is be-
tween B_ and B, . In this case, the Chern number of the lowest
band (corresponding to the spin being aligned with the net
instantaneous field) is given by £. The region of parameter
space where B, € [B_, B, ] is indicated in Fig. 2(a).

For the derivation of Eq. (17) to be valid, the frequen-
cies w and €2 must be small compared to the gap AEn, =
gmin |B, — B.|. Thus, for the topological energy transfer to
take place, the cavity amplitude B, must fall within [B_, B, ]
[the interior of the red region in Fig. 2(a)], and be more
than a distance ~€2/g away from the region’s boundaries B_
and B;.

When the conditions above are met, and the spin is aligned
with the instantaneous field, we conclude from the discussion
above that the number of cavity photons on average increases
at the quantized rate

9 (n) = —, (18)

T
where T' = %’ denotes the period of the driving mode. Using

that the cavity’s field energy is given by E. = fiw(n), and

(@ B. X
‘ N
2
i
i
Wiii‘t‘ddd;!&‘x\dﬂ\\tw |
| I’WMW

0 B, Ba Time =

FIG. 2. (a) Region of parameter space which supports topo-
logical frequency conversion (red). Here, B, and B., respectively,
denote the amplitudes of the driving and cavity modes, while B,,
indicates the strength of the Zeeman field. (b) Numerically obtained
wave function of the system (absolute squared) as a function of
photon number n and time, in the topological regime (see main
text for further details). The boundaries of the topological regime
[corresponding to the boundaries of the highlighted region in (a)]
are indicated by dashed lines, and the quantized pumping rate is
indicated by the slope of the blue line.

that £ = 2L/h, where L is the magnetic particle’s angular
moment, yields that the energy is transferred to the cavity at
the universal rate

. oL

E=—. 19)

b4

Interestingly, as we will demonstrate in Sec. V, the above
result is not only a quantum effect, but persists in the macro-
scopic classical limit.

B. Numerical simulations

We verified the conclusions of the previous subsection
numerically in a model with a spin—% magnetic particle
[Fig. 2(b)]. Using the quantities 2 and By to set the scales in
the simulation [see text above Eq. (3)], we chose the parame-
ters B,, = 15By, By = 8By, g = 22/By, and w = /¢, where
the irrational number ¢ is given by ¢ = (v/5 — 1)/2 (recall
that the quantized energy transfer requires the two modes’
frequencies to be incommensurate). From the discussion in
the end of the above subsection, the topological pumping
arises when /n = B, /By is in the interval between 7 and 23,
where n denotes the photon number in the cavity. Moreover,
/1 should not be closer than O(2/gBy) ~ O(1) from either
of the boundaries. The two boundaries correspond to n =
7% = 49 and n = 23 = 529 photons.

The system was initialized in a direct product of a coherent
cavity state and a spin state. The coherent cavity state was
centered around 200 photons and had phase zero, while the
spin was initialized in the state || ), corresponding to align-
ment with the net resulting field at time = 0. The system
was then evolved by direct time evolution, with the first 600
photon states included in the simulation. In Fig. 2(b), we plot
the resulting evolution of the system’s wave function (absolute
square) as function of photon number n and time. The dashed
horizontal lines indicate the phase boundaries n = 49 and 529,
while the solid blue line indicates the slope corresponding to
the photon number # increasing by 1 per driving period. As
can be seen in the figure, the photon number increases with
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FIG. 3. Unitary evolution of the system’s wave function (see
main text for further details). (a) Evolution of the system’s wave
function for the model depicted in Fig. 2(b), when the spin is initially
antialigned with the net magnetic field. (b) Evolution of the system’s
wave function for the same setup as in (a), when the spin is initially
perpendicular to the net field. (c) Evolution of the system in (a) over
5000 periods. (d) Evolution of the model at the “sweet spot” in the
phase diagram [see Fig. 2(a)] B; = B,, = 10By, when the cavity is
initially empty. Black dashed lines indicate phase boundaries, and

1

blue dashed lines indicate the theoretically expected rate of (i) = 5.

the quantized rate % (indicated by blue line), as expected from
Eq. (18).

III. UNITARY DYNAMICS

Let us next explore the pumping effect beyond the simplest
regime of the previous section. We first show that the system
can create photonic cat states when the magnetic particle is
initialized in a superposition of instantaneous eigenstates. We
then consider how the system behaves near the parameter-
space boundaries of validity [outlined in Fig. 2(a)]. Perhaps
the most intriguing result we encounter is that the pumping
effect can populate a cavity mode even in the extreme quan-
tum limit, when the cavity is initially empty, well beyond the
regime of applicability of the analysis of Sec. II.

A. Producing cavity cat states

The result in Eq. (18) intimately links the state of the spin
(i.e., the “orbital” of the wave packet in the photon lattice)
with the state of the cavity (the “lattice” part of the wave
function). In particular, Eq. (18) suggests that the photon
number’s rate of change is sensitive to the alignment of the
spin with the net resulting field. In particular, while alignment
of the spin with the field results in an increase of the photon
number [see Fig. 2(b)], the photon number should decrease if
the spin is antialigned with the net instantaneous field.

This conclusion is verified numerically in Fig. 3. Here,
we study the same setup as in the end of Sec. IT A, except
that the spin is initialized in the state |1), corresponding to

antialignment with the initial field. As can be seen in Fig. 3(a),
the photon number in this case decreases at the average rate
—1/T (solid blue line), as predicted by Eq. (18).

Note that any state of the system can be decomposed into
wave packets constructed from the distinct bands of Hr (k, t).
These different components of the state experience different
rates of photon pumping, according to Eq. (17). Thus, when
evolved from an arbitrary state with a relatively well-defined
photon number, the state of the system should split into a
“cat” state where the photon number in the evolved state is
highly entangled with the state of the spin. This effect is
demonstrated in Fig. 3(b). Here, we consider the exact same
setup as in Figs. 2(b) and 3(a), but initially polarizes the spin
along the x axis, such that the state of the spin is initially
given by %(M) +1J)). The wave packet of the system in

the photon lattice is thus in an equal superposition of the
two bands of Hr(¢). As a result, the two components of the
system’s state (the aligned and antialigned) evolve in different
directions in the photon lattice. For the resulting final state,
the photon number is highly entangled with the spin of the
magnetic particle.

B. Behavior near boundaries of the topological region

We now consider the behavior of the system near the two
phase boundaries at B, = B_ and B... Suppose the spin is ini-
tially antialigned with the field, as in Fig. 3(a). In this case, the
photon number will constantly decrease until the wave packet
of the system approaches one of the phase boundaries. The
photon number cannot decrease below the phase boundary
since the average group velocity of wave packets is zero in this
region. Instead, the wave packet will be reflected at the phase
boundary: as the wave function approaches the boundary, the
gap AEn, of Hr(k, t) will at some point become comparable
to the driving frequencies w or 2. In this case, the assump-
tion of adiabaticity made in Sec. I A breaks down. Due to
the small size of the gap near the boundary, the system’s
wave function will at this point undergo partial Landau-Zener
tunneling to other bands of Hr(k,t) (corresponding to the
spin changing its alignment with the instantaneous field).
Eventually, parts of the wave functions will tunnel to a band
where the photon number increases, transporting the wave
function away from the boundary. This mechanism allows
the system to escape from the boundary, by being pumped to
another band.

The process described above (referred to as a “Landau-
Zener reflection” in the following) can be observed in
Fig. 3(b). Here, after approximately 120 driving periods,
the system’s wave function deflects from a trajectory with
decreasing photon number to a trajectory with increasing
photon number. The deflection clearly occurs when the photon
number reaches the topological phase boundary at 49, which
were predicted in Sec. IT A.

We recall from Sec. III A that the spin’s alignment with
respect to the net magnetic field determines the direction of
pumping. Thus, under a Landau-Zener reflection, the spin’s
orientation must change from antialignment to alignment or
vice versa. As aresult, the spin’s energy changes by an amount
of order Lg|B| under a Landau-Zener reflection, where |B|
denotes the magnitude of the net magnetic field acting on
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the spin. This energy is partially released to (or absorbed
by) the cavity mode, and thereby causes a sudden change of
the photon number. Such a mechanism is clearly visible in
Fig. 3(b), where the cavity photon number abruptly increases
at the Landau-Zener reflection by approximately 50.

A Landau-Zener reflection may take several driving peri-
ods to complete since the system only has a finite probability
of Landau-Zener tunneling to another band each driving pe-
riod. As aresult, the system’s wave function gets “smeared out
in time” during each Landau-Zener reflection. If the system
evolves undisturbed over long time intervals, multiple Landau
Zener reflections may occur. At each reflection, the wave
function gets increasingly smeared out in time. In Fig. 3(c), we
evolve the wave function for the same system as in Fig. 3(a)
over 5000 driving periods, with 700 photon states included
in the simulation (such that the upper phase boundary at
529 photons is far below the photon-number cutoff). We
observe the state of the system undergoing approximately 9
“Landau-Zener reflections” with the wave function getting
increasingly smeared out at each reflection. Note that the wave
function clearly remains confined between the topological
boundaries at ~530 and ~50 photons at all times, despite
of being “smeared out.” The clearly visible boundaries at
photon number 530 and 49 are in excellent agreement with
the theoretical predictions of Sec. IT A.

C. Topological pumping of initially empty cavity

We finally demonstrate that the energy transfer may arise
even when the cavity is initially empty. Specifically, consider
the special point in the phase diagram B,, = B; where the
Zeeman field B,, is tuned to exactly match the amplitude B,
of the magnetic field from the driving mode. In this case, the
lower phase boundary for the cavity field is located at B_ = 0,
and one would naively expect the topological pumping effect
in Eq. (18) to arise even when the cavity holds zero photons
[B. = 0, see Fig. 2(a)]. Note that the analysis in Sec. IT A does
not apply in this limit since the assumptions of large photon
number and adiabaticity are not valid. In spite of this, the
naive expectation above holds up in numerical simulations: we
considered the system with the parameters By = B,, = 10B,,
and initialized the cavity in the vacuum state (O photons),
and aligned the spin along the x axis. Figure 3(d) shows the
resulting evolution of the state’s wave function. As can be
seen, the photon number of the cavity increases from zero at
the quantized rate of one photon per driving period.

The above results show that the topological energy transfer
can arise beyond regimes where the analysis in Sec. ITA
is valid. In particular, the pumping effect can arise sponta-
neously in an empty cavity, without requiring the cavity to be
populated initially. Thus, importantly, the effect described in
this paper (and Ref. [43]) can in principle be used to generate
photons with desired frequency w, using an external pump
with more readily available frequency.

IV. FLOQUET-LINDBLAD EQUATION
AND DISSIPATIVE DYNAMICS

We now discuss the behavior of the driven cavity-spin sys-
tem when dissipation is introduced. We consider two sources

of dissipation: dissipation from the cavity and spin relaxation.
The cavity dissipation can for instance arise from a partially
transparent mirror in the cavity that couples cavity photons
to the outside electromagnetic continuum. Spin relaxation
is introduced to model a more realistic setting, where the
magnetic energy of the spin can dissipate, for instance, due
to spin-lattice relaxation.

In the following, we find that the energy transfer effect per-
sists and in fact can be enhanced by dissipation, and that the
two dissipation mechanisms lead to new interesting effects.
In particular, the introduction of cavity dissipation allows
the system to reach a “lasing” steady state where the energy
pumped into the cavity mode via frequency conversion (at the
universal rate LQw/m) is exactly compensated by the cavity
leakage loss. On the other hand, spin dissipation leads to a
stabilization of the energy pumping beyond the near-adiabatic
regime. Indeed, the quantization of energy transfer depends
on the degree of alignment of the spin with the field, which in
the absence of dissipation is ensured by adiabaticity condition
g|B| > Q. Spin dissipation increases the tendency of the
spin to align with the field, and thus stabilizes the quantized
energy transfer beyond the frequency ranges allowed by the
adiabaticity condition.

A. Markov-Lindblad equation

Following the standard approach for dissipative quantum
systems [46], we include cavity dissipation in the model by
connecting the cavity field %(u + a’) to an external bosonic
bath, with coupling strength y,.. Here, y. is, for example, set by
the transmission coefficient of a partially transparent mirror in
the cavity. Likewise, spin dissipation is modeled by coupling
each of the spin’s components L,, Ly, L, to individual bosonic
baths with a coupling strength y; (assumed to be the same
for all components). For both the cavity and spin degrees of
freedom, we take the associated baths to be Ohmic, meaning
that the spectral function S(w) of each bath is linear in w [47]:
Ses(@) = S(w) = a%, where wp is some fixed energy scale.
Absorbing all variable parameters into the coupling strengths
Ves Vs, We set wg = 1/T.

With the four bosonic baths included in the model, the
dynamics of the system can in principle be obtained by com-
puting the time evolution generated by the full system-bath
Hamiltonian. From the resulting system-bath state |Wsg(¢)),
we can compute any system observable using the reduced
density matrix p(t) = Trg|Wss(?)) (Vs (?)|, where Try traces
out all bath degrees of freedom.

Often, the physical baths are found to be short-time corre-
lated compared to relevant timescales of the system, meaning
that the system’s density matrix o at time ¢ + dr is fully
determined by the density matrix at time . When this is the
case, the evolution of p(#) can be described by a linear first-
order differential equation, referred to as a master equation.

A commonly used approach [46] for obtaining such a mas-
ter equation is to employ the Markov-Born approximation,
which results in the Redfield equation. However, the Redfield
equation does not preserve the complete positivity of the
density matrix, and can be numerically expensive to solve for
large systems. In order to simulate the system efficiently, we
therefore use an alternative master equation, referred to as the
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Markov-Lindblad equation here. In contrast to the Redfield
equation, the Markov-Lindblad equation is by construction
in the Lindblad form. Hence, the Markov-Lindblad equation
preserves the unit trace and complete positivity of the density
matrix, and can be efficiently integrated with stochastic meth-
ods [45].

The Markov-Lindblad equation can be derived systemati-
cally from the microscopic model of the system-bath setup,
only assuming that the correlation time of the bath is small
compared to the characteristic relaxation time t in the system
(as defined by Fermi’s golden rule). Note that previously
obtained Lindbladian master equations for periodically driven
systems [48] assume the relaxation rate 1/t to be much
smaller than all energy scales in the system, and in partic-
ular smaller than the system’s quasienergy level spacing. In
contrast, the Markov-Lindblad equation is valid when the
relaxation rate is comparable, or larger than the quasienergy
level spacing.

A detailed derivation of the Markov-Lindblad equation is
beyond the scope of this work, and will therefore be presented
in separate work which is to appear shortly [44]. Here, we
simply use the result of this work, which states that the
reduced density matrix of the system evolves according to the
following master equation:

.1
0,0 = —ilH, p] + Z <Luva‘ - E{Lvav p})- (20)

Here, H(t) denotes the Hamiltonian of the system [Eq. (3)],
and the v sum runs over the four different channels of dissipa-
tion (we suppressed the time dependence above for brevity).
The so-called jump operators {C,(¢)} are time dependent with
the same periodicity as the Hamiltonian, and are defined from
the quasienergies {e,} and the time-periodic Floquet states
|¢a(2)) [49] of the time-periodic Hamiltonian H (¢) as follows:

L) =) 1$a)(@p(0)]e ¥ L[], 1)
a,b,z

Here, the coefficient L%[z] is given by L%[z]=
V2l (e — €4 + 22)O0%[2], where

1 N .
Olz] = T/dt(¢a(t)l(9ul¢b(t))e’9”, (22)

and where O, is the operator connected to bath v
lie., either 2(a+a’), or L., ] Finaly, J,(0)=
Sy (o[ (w) + n,(lw])], where S, (w) is the spectral function
of bath v, 6(w) denotes the Heaviside function, and n,(w) is
the thermal expectation value in bath v of the photon number
at frequency w. In our case, we set the bath temperatures to
zero, so J,,(w) = wb (w)/wy.

B. Dissipative dynamics

To learn about the behavior of the dissipative system, we
simulated the evolution of the system using the above master
equation. The master equation is integrated stochastically,
using the stochastic Schrodinger equation (SSE) method [45].
Doing this, we obtain trajectories of the system that can
be seen as representative of the actual time evolution in an
experiment.
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FIG. 4. Evolution of the system in the presence of noise and
dissipation. Each panel plots a randomly picked example of the
system’s wave function (absolute squared), as a function of pho-
ton number n and time, obtained by stochastic integration of the
Floquet-Lindblad master equation in Egs. (20)—(22). Parameters for
the respective panels are given in Sec. IV B. Black dashed lines
indicate the topological phase boundaries, and blue dashed lines
indicate the expected steady-state photon number consistent with a
quantized emission rate (see Sec. IV B). (a) Example of the wave
function when spin and cavity dissipation are present. (b) Example
of the wave function when spin and cavity dissipation are present
at the “sweet spot” in the phase diagram where B,, = B,, and the
system is initialized from an empty cavity. (c) Example of the wave
function when only spin dissipation is present. (d) Example of the
wave function when only cavity dissipation is present.

To link our results to the nondissipative case covered in
Secs. II B and III B [see Figs. 2(b) and 3(a)-3(c)], we use the
same model parameters as in these sections. Specifically, we
set g =2Q/By, L = g B,, = 15By, B; = 8By, where, as in
Sec. 111, we use the field By and the driving frequency €2 to set
the physical scales for the simulation (see Sec. II for a physical
definition of By). We include the first 600 photon states in the
simulation, and set y; = 0.001/7T, y. = 0.00053/T, where
T = 27 /<2 denotes the period of the driving field. The choice
of y,. above implies that the cavity’s photon emission rate
(given by 2wy, (n), where (n) is the cavity photon number)
is exactly compensated by the topological pumping from the
drive (given by L2/m ), when the cavity holds 300 photons.

We initialized the cavity in a coherent state with center
at n = 100 photons and phase zero, and initially aligned the
spin along the x axis, perpendicularly to the initial net field.
In Fig. 4(a), we show the evolution of a single, randomly
picked realization of the SSE, obtained by solving the master
equation in Eq. (20) for the model, for the first 2000 periods.
As can be seen, the system rapidly reaches a steady state
where number of photons in the cavity mode fluctuates around
300 (indicated by the dashed blue line), in agreement with
our expectations. The fluctuations of the system around this
steady state can be seen as arising from quantum noise. The
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data in Fig. 4(a) demonstrate that cavity and spin dissipation
can stabilize a steady state in the system where the cavity
emits photons at the topologically quantized rate 1/7. The
persistence of the topological pumping effect in the presence
of dissipation thus demonstrates that the effect does not rely
on wave-function coherence for its stability.

Note furthermore that the spin dissipation leads to an
alignment of the spin with the field; hence, there is no reversed
pumping in the system, unlike the nondissipative case [see,
e.g. Fig. 3(a)]. Even though the spin in Fig. 4(a) was initially
aligned perpendicularly to the initial net field, the photon
number exclusively increases, unlike the nondissipative case,
where the same situation led to the generation of a “cat”
state [see Fig. 3(b)]. Thus, spin and cavity dissipation causes
the highly entangled “cat” discussed in Sec. III to die. By
forcing the spin to align itself with the field, spin dissipation
hence stabilizes the energy transfer effect compared to the
nondissipative case [see also discussion of Fig. 4(c) below].

Having established that the topological energy transfer
is stabilized by dissipation, we simulated the model at the
special point in the phase diagram B,, = B, where the system
supported topological pumping from an empty cavity in the
nondissipative case (see Sec. III C). Specifically, we included
dissipation in the model studied in Sec. IIIC, i.e., with pa-
rameters B,, = By = 10By, g = 22/By, = Q2/¢. The dissi-
pation strengths were set to y, = 0.001/7, y. = 0.00064/T.
The choice of y. leads to a potential steady state with 5—— =
250 photons. We initialized the system in an empty cavity
state, and aligned the spin along the x axis. Figure 4(b)
shows the subsequent evolution for a single, randomly picked
realization of the SSE. As can be seen, the photon number
in the cavity increases to the steady-state value of 200 pho-
tons, around which it subsequently fluctuates, similar to the
behavior in Fig. 4(a). In contrast to Fig. 4(a), however, the
cavity was initialized in the vacuum. This demonstrates that
dissipation does not prevent the topological energy transfer to
arise in an empty cavity.

To explore the effects of cavity and spin dissipation sep-
arately, we finally studied the system in the case where only
spin dissipation is present, and in the case where only cavity
dissipation is present. As in the beginning of this section, we
again investigated the model studied in Secs. II B and III B,
but with different choices for the dissipation strengths, and
with 700 photon states included in the Hilbert space.

To explore the effect of pure spin dissipation, we set y, = 0
and y, = 0.001/T. Figure 4(c) shows the resulting evolution
of the wave function for a single realization of the SSE. As can
be seen, the photon number of the cavity increases at the linear
rate 1/7T, until the wave function reaches the upper phase
boundary at n = 529 photons. After this point, the system’s
wave function fluctuates around the upper phase boundary for
the remainder of the simulation. Note that the wave function
does not “smear out” over time, in contrast to the nondis-
sipative case [see Fig. 3(c)]; the decoherence due to spin
dissipation penalizes “cat” states that have a large spread in
photon number and spin. Moreover, the gradual Landau-Zener
tunneling which occurs in the unitary case [see Figs. 3(a)
and 3(c)] is replaced with discrete quantum “jumps” near
the upper phase boundary (horizontal dashed line), where the
spin effectively flips instantaneously due to quantum noise.

At each jump, the direction of the photon transfer switches
between 1/T and —1/T, and for most of the simulation, does
not take value in-between. Note that spin dissipation causes
the system to remain confined to the upper boundary: the
spin can only Landau-Zener tunnel to antialignment with the
field near the phase boundary, where the instantaneous energy
gap is comparable to the driving frequency (see discussion in
Sec. III). Away from this region, the spin will eventually align
itself with the field, due to dissipation. As a result, the photon
number will always increase below the phase boundary, and
the system will thus remain confined near the upper boundary,
as is the case in Fig. 4(c).

We finally probe the dynamics of the system in the
case where only cavity dissipation is present (y; =0, v, =
0.00053/T). The resulting data are shown in Fig. 4(d) for
a single realization of the SSE. In this case, the system
initially reaches the steady state of 300 photons, where it
remains confined for around 2000 periods. However, after
around 2100 periods, quantum fluctuations cause the system
to collapse at a stable state outside the topological regime,
where the cavity gradually depletes.

V. CLASSICAL NATURE OF THE EFFECT

The stability of the topological energy transfer in the
presence of noise and dissipation, which was established
above, hints that the topological pumping effect has a classical
counterpart. In this section we verify this intuition explicitly
by a numerical simulation of the classical Hamiltonian that
corresponds to the model [Eq. (2)].

With only a single mode present, the classical Hamilto-
nian in Eq. (2) depends on the variables B., ¢, and L =
(Ly, Ly, L;), where B. and ¢ denote the amplitude and phase
of the cavity mode. The classical amplitude and phase have
the Poission bracket [50] {¢, B.} = ZLB(%, while the angular
moment obeys the usual Poisson bracket relations {L;, L;} =
€ijxly. As explained in Sec. II, the cavity field variables
correspond to the photonic creation and annihilation oper-
ators through the relation Bya ~ B.e~'®, where the cavity-
dependent magnetic field scale By = /wuoh/V was intro-
duced below Eq. (2). In terms of the classical variables above,
the Hamiltonian reads as

14
H(B., ¢,L,t) = —B*+ gB(B., ¢,1) - L, (23)
n

where

B(Bc, ¢, 1) = B.sin(¢),
By(B., ¢,1) = B, sin(£2t),
B.(B;, ¢,t) = B,, — B;cos(2t) — B, cos(¢).

The energy of the cavity field is given by E, = %Bg and the
dimensionless quantity E./hw corresponds to the number of
photons in the cavity in the quantum mechanical case.

To explore the nature of the topological pumping effect,
we numerically solve the equations of motion for the classical
Hamiltonian, which, for any of the variables A above, can be
expressed as A = {A, H}. We use the parameters that corre-
spond to the quantum Hamiltonian studied in the previous
sections (see, e.g., Sec. II B). Specifically, we set g = 22/By,
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FIG. 5. (a) Evolution of the cavity field energy for the classical
model in Eq. (23), with parameters and initialization corresponding
to the quantum system in Fig. 2(b) (see Sec. V for details). Blue
line indicates slope consistent with the topological pumping rate
E. = Lw$2/m. Dashed lines indicate topological phase boundaries
identified for the quantum case in Sec. III. (b) Classical evolution
of the system in the presence of cavity and spin dissipation (see
main text for details). Blue line indicates steady state at £, = 300/iw
expected from emission of energy at the topological pumping rate.

B,, = 15By, B; = 8By, w = Q/¢, and chose the magnetic
particle to have angular moment |L| = /2. We initialize the
cavity in the state (B, ¢) = (14.1By, 0), equivalent to 200
photons in the quantum mechanical case, and initially aligned
the angular moment along the z axis (along the net initial
field), corresponding to the quantum initial state explored in
Sec. II B [see Fig. 2(b)]. In Fig. 5(a), we plot the resulting
evolution of the cavity field energy E, (in units of Zw) for the
first 300 driving periods. The evolution of the classical field
energy in Fig. 5(a) bears a clear resemblance to the evolution
of the field energy in the quantum case [Fig. 2(b)]. In particu-
lar, the energy in the cavity increases at the constant quantized
rate E, = wL/2m (indicated by dashed blue line). This be-
havior persists until the cavity energy reaches approximately
E. = 530hw, at which the topological phase boundaries were
identified in the quantum case (see discussion in Sec. II B).

The evolution in Fig. 5(a) shows that the topological energy
transfer is present in the fully classical model [Eq. (23)]. This
conclusion can indeed be rigorously verified with a detailed
analysis of the classical model [51] (such an analysis is
beyond the scope of this work, however).

We now verify the stability of the topological energy
transfer in the classical model persists when dissipation is
present. To demonstrate this, we introduced cavity and spin
dissipation in the equations of motion for B., ¢, and L.
Spin dissipation was modeled as a Gilbert damping term
L={L H}- %L x L, where y; is a dimensionless number
which sets the spin dissipation strength. Cavity dissipation
was included by modifying the equations of motion for B,
such that B, = {B.,,H} — %BC, where y,. denotes the cavity
dissipation strength. By explicit computation, one can verify
that a nonzero value of y, results in emission of energy from
the cavity at the rate Eemigsion = VeEe-

We solved the equations of motion with y, = 0.0033/T
and y, = 0.001, while parameters and the initial state were
chosen identical to the realization studied above. In Fig. 5(b),
we plot the resulting evolution of the cavity field energy. As
can be seen, the system quickly reaches a steady state with
cavity energy E. = 300/iw. Following the above paragraph,

this steady-state value results in emission of energy from the
cavity at the rate Eemission = hw/T. This value is identical
to the topological pumping rate QwL/m derived in the pre-
vious sections. Hence, the “lasing” steady state, which was
described in Sec. IV, is also a robust feature in the classical
limit of the model.

VI. MULTIPLE CAVITY MODES

Up to this point, we have for simplicity assumed that the
magnetic particle is only coupled to a single (circularly po-
larized) cavity mode. However, a realistic cavity will support
a large number of distinct modes, which, in general, will all
couple to the magnetic particle with nonzero strength. For
each additional mode, the corresponding photon number adds
an extra synthetic dimension to the cavity-spin system. This is
expected to change its topological classification and features
it can support. In this section we demonstrate that topologi-
cal frequency conversion nevertheless can persist even when
these additional cavity modes are taken into account.

We consider here the case where the cavity is effectively
one dimensional. In this case, for each integer n, the cavity
supports two distinct modes with frequency w, = n®, where
@ denotes the fundamental frequency of the cavity. The two
modes have clockwise and counterclockwise polarization,
respectively. We label the clockwise-polarized mode n, and
the counterclockwise-polarized mode —n.

The magnetic field from mode n is given by B, =
B, (0, sin ¢,,, — cos ¢,,), where ¢,, and B, respectively, denote
the phase and amplitude of mode x. In terms of the fields {B,},
the Hamiltonian of the system can be written

H(t) = Z (%Bi +gan : L) +gd(Bd(t) + Bm) -L,

(24)
where B;(¢) = (B, sin Qt, 0, —B, cos 2t) denotes the driving
field, and B,, = (0, 0, B,,) denotes the static Zeeman field.
The coupling g, may depend on the frequency of the mode.

We expect that significant excitation of multiple cavity
modes will lead to chaotic behavior of the spin and the system,
and to a breakdown of the topological energy pumping. We are
therefore interested in finding a regime where only a single
mode ny is significantly excited. In this case, the discussion
of the previous sections applies, and the system may undergo
topological frequency conversion.

To see how such a suppression of spurious modes can be
achieved, note that mode n is excited by the motion of the
moment L through the coupling g,B,, - L, while it decays due
to dissipation, which is controlled by the (mode-dependent)
dissipation strength y,. The competition of the excitation
and dissipation determines the mean amplitude of the mode.
The spurious modes can thus be prevented from obstructing
the pumping by maximizing their dissipation rates {y,} and
minimizing their couplings {g,}.

The dissipation rate y,, can be made strongly frequency
dependent by letting the cavity’s mirror reflection coefficient
depend on frequency. Such a frequency dependence can, for
instance, be realized with Fabry-Pérot devices, which may
effectively suppress all undesirable harmonics in the cavity
[52-54]. The coupling g, to high modes can be suppressed
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by distributing the magnetic particles over an extended spatial
region in the cavity. In this case, the effective coupling g,
to modes with higher frequency (corresponding to shorter
wavelength) decreases as |n|~!.

Finally, since the spurious modes are excited from the
motion of the angular moment L, the amplitudes of a spurious
mode are highly dependent on whether or not the oscillations
of L are resonant with the frequency of the modes. Since
the motion of L should mainly be driven by the oscillation
of the driving mode and the pumped mode ny, its frequency
spectrum in the pumping regime should feature sharp peaks at
integer-multiple combinations of w,, and €2. Thus, the ampli-
tudes of the spurious modes can be dramatically decreased if
their frequencies {w,} are even slightly detuned from those
peaks, e.g., if w, = n@ + Sw for some nonzero (but small)
dw. Such detuning can be realized by inserting phase-shifting
mirror in the cavity [55,56].

Numerical study

We now demonstrate, through numerical simulations, that
it is possible to realize the topological pumping effect in a
multimode cavity using the strategies discussed above. Specif-
ically, we show that a regime exists where mode 1 undergoes
topological energy pumping, while all other cavity modes
effectively remain unexcited.

Since Sec. V demonstrated that the energy pumping effect
is of classical nature, we may simulate the system accurately
using its classical equations of motion. We include the first 15
harmonics in the model, along with their polarization-reversed
partners.

To avoid resonances with the spurious modes, we detuned
the frequencies of the modes slightly from the integer multi-
ples of the fundamental frequency. Specifically, we set w, =
no + dw, with S = 0.05@, where the “bare” fundamental
frequency @ is given below. Additionally, we let the coupling
strengths {g,} depend on the mode index as |n|~'. Finally,
we let the dissipation rate for a mode depend linearly on the
mode’s frequency such that y, = |n|y;.

Using the driving frequency €2 and the field strength By to
set the scales for our simulation, we set L/Ly = 3k, & = Q/¢
where ¢ = (/5 — 1)/2. The dimensionless dissipation rate
for the spin is set to y; = 0.01, while y; was set to 1.59 x
1077 Q, which leads to an expected steady state at energy
Ey =122 = 6 x 10w, We set g = g = 0.0047Q/B,.
Finally, we set B, = 2000By, A; = 1400B,. From an analysis
similar to that made in Sec. II B, we expect that mode 1 is
in the topological pumping regime if its amplitude lies in
the interval between B_ and B, where B_ = |B,, — B;| =
600B,, and B, = |B,, + B;| = 3400B,.

To investigate whether the system supports topological
frequency conversion, we initialized mode 1 in the state B} =
10008y, ¢pp = 0, while the initial amplitudes of the remaining
29 modes are randomly distributed in the interval between 0
and 32B,. The phases of all modes are initially set to zero,
and the angular moment L was initially aligned along the z
axis. Starting from this initial state, we numerically solve the
classical equations of motion, and plot in Figs. 6(a) and 6(b)
the resulting evolution of the modes’ energies over the first 10°
driving periods. The red curve in Fig. 6(a) indicates the energy
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FIG. 6. Energy stored in the cavity modes as a function of time,
in a setting where the first harmonic is in the topological regime,
while the remaining modes are initially only weakly excited. See
main text for details. (a) Energies of modes £2...4 15 (green-
purple curves) and mode —1 (red curve). (b) Energy of mode 1 (green
curve).

of mode —1, while the dark green curve on Fig. 6(b) indicates
the energy of mode 1. The remaining curves in Fig. 6(a)
indicate the energies of the other modes, with green for lower
harmonics, and blue or purple for higher harmonics.

As can be seen in Fig. 6(a), the energies of all modes other
than mode 1 decay to near zero [57], over a few hundred
thousand driving periods, with the higher-frequency modes
decaying more rapidly. If additional modes were included
in the simulation, we expect their amplitudes to decay even
faster. The small amplitudes of the spurious modes allow
mode 1 to undergo topological pumping: as Fig. 6(b) shows,
the energy of mode 1 approaches the steady-state value of
Ey = 6 x 10%w, (dashed line) (the energy of mode 1 might
eventually settle at a value slightly below this value, due to
the energy loss to the other modes). As discussed above, this
value is consistent with the cavity being topologically pumped
at the universal rate wy2L /7.

VII. DISCUSSION

In this work, we demonstrated the robustness of the
topological energy transfer between two circularly polarized
modes that was proposed in Ref. [43]. We studied the setup
under the experimentally relevant settings where one of the
modes is externally driven, while the other is a dynamical
cavity mode. Using a master equation technique, we estab-
lished that the effect is stable in the presence of noise and
dissipation. In particular, cavity dissipation, in the form of
a semitransparent mirror, can stabilize a steady state where
cavity photons are emitted at the quantized rate of one per
driving period. The dissipation due to the magnetic particle’s
motion may even add to the robustness of the effect, by
keeping the magnetic moment aligned with the instantaneous
field. Finally, we find that the effect can be realized even if the
cavity is initially empty.

The robustness of topological energy transfer is further
reflected in the fact that the effect can be understood as a
classical phenomenon. Hence, it does not rely on coherence
of wave functions for its stability, and can be realized in noisy,
macroscopic systems. Remarkably, our results thus reveal
that simple classical systems can exhibit highly nontrivial
topological effects.

094311-10



TOPOLOGICAL FREQUENCY CONVERSION IN A DRIVEN ...

PHYSICAL REVIEW B 99, 094311 (2019)

The fact that the topological energy transfer is a clas-
sical phenomenon means that the effect can be effectively
simulated by classical equations of motion. This allows for
simulation of the effect under much more complex settings
than if it were a purely quantum mechanical effect. We used
this observation to show that the effect can persist even if
multiple modes are present in the cavity. This opens up the
possibility for realistic experimental realizations.

Experimental realization and future work. To implement
the topological energy transfer experimentally, one can exploit
the fact that the effect has a classical incarnation. Hence, it can
be realized in macroscopic, mechanical systems [for instance,
using a fast-spinning gyroscope (instead of spin)] coupled to
mechanical harmonic oscillators (rather than electromagnetic
modes), such as pendulums or springs.

Alternatively, the model can be realized with an actual
magnetic moment coupled to electromagnetic modes. Impor-
tantly, the magnetic particle’s isotropic gyromagnetic ratio g
in this case sets the range of frequencies where topological
frequency conversion can realistically arise: as the discussion
in Sec. IT A shows, topological frequency conversion requires
the magnetic particle’s precession frequency g|B| to be large
compared to the driving and cavity modes’ frequencies w and
2 (here |B| denotes the magnitude of the instantaneous mag-
netic field). Using that the mode’s field intensity is given by
I = B?c/ o (where c is the speed of light), we conclude that
topological frequency conversion requires the field intensity to
be of order I, = % or larger, where w( denotes the largest
of the frequencies w and 2.

The largest isotropic gyromagnetic ratios that are cur-
rently known are comparable to the gyromagnetic ratio of
the electron g, ~ 1.76 x 10'' HzT~! (i.e., corresponding to
g factors of 2). As discussed in Ref. [43], such values of g
can for example be achieved with a yttrium-iron garnet (YIG)
sphere [58]. Using g = g., the minimal intensity required for
topological frequency conversion (as a function of frequency)
can be expressed as I, [W/cm?] & (wo[MHz])?. In this way,
rather strong radiation intensities of order 100 W /cm? allows

for topological frequency conversion up to the 10 MHz range,
while topological conversion of THz frequencies requires
radiation intensities of 10'2 W /cm?.

The above estimates show that achieving frequency con-
version at high frequencies may be difficult using magnetic
couplings. An alternative is to couple to the electric field com-
ponent of electromagnetic waves, which due to a generically
stronger coupling may allow to go beyond beyond the GHz
range. A detailed discussion of such an implementation is left
for future studies. One possibility is to replace the magnetic
particle discussed above with the orbital (pseudospin) degree
of freedom in a Weyl semimetal [59-62], as was also men-
tioned in Ref. [43]. Note that the quadratic dependence of the
energy transfer rate on the frequencies (E = wjw-L/7) mean
that even a tiny net moment can result in macroscopic energy
transfer rates, for sufficiently large frequencies.

The discussion in Sec. VI shows that the effectiveness
of the topological frequency conversion is highly dependent
on the properties of the electromagnetic cavity. In particular,
the effect depends strongly on the spectrum of modes in the
cavity, and their dissipation rates. A detailed discussion of
how a cavity with suitable properties can be implemented is
beyond the scope of this work, and is left for the future.
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