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Tunable phononic structures using Lamb waves in a piezoceramic plate
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Phononic crystals made of piezoceramic materials allow for frequency band structure tunability due to the ease
of electric command use. In this paper, we develop a full elastodynamic model, taking into account piezoelectric
coupling effects for the band-structure calculation of Lamb eigenmodes of a phononic crystal consisting of a
piezoceramic plate with a one-dimensional periodic array of electrodes set on both sides. The dispersion-relation
characteristics of these eigenmodes are nondestructively tuned via external circuit impedance loads coupled to
the phononic plate, e.g., through inductance loads inducing tunable resonant flat bands that hybridize with the
Lamb modes of the elastic plate, thus opening up hybridization gaps. It is shown that additional control of the
shape of these resonant bands can be achieved by incorporating an impedance interconnecting two adjacent
electrodes of the same side, the whole structure forming an electric quadripole. This behavior can be easily
predicted with the help of our formalism combined with a simplified electric line model of the phononic crystal
plate.
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I. INTRODUCTION

Phononic crystals and, more recently, elastic metamaterials
[1,2] have shown a substantial growth in number of works as
well as in modern topics, including heat control [3], topologi-
cal [4,5], and nonreciprocal [6–8] wave phenomena, inspired,
most of the time, from their photonic counterpart [9,10].
Apart from, nowadays, traditional investigations concerning
opening and formation of frequency band gaps [11–13], the
related research focused on tools to control the propagation
of waves in these structures through the engineering of their
dispersion properties, associated to interesting issues for ap-
plications, such as cloaking [14], filtering [15], sensing [16],
waveguiding [17–19], focusing [20], and negative refraction
[21] phenomena. Initially, this approach was primitive in the
sense that the structure should be redesigned each time a
new, different frequency response had to be obtained [22].
In the last decade, these efforts have been oriented to the
class of so-called active phononic crystals, allowing for a
manipulation of waves in a nondestructive manner, relying
often on coupling mechanisms such as magnetostrictive or
piezoelectric effects. In such a way, the structure behaves
at will by tuning its dispersion properties through external
parameters, e.g., applied forces [23], electric [24], or mag-
netic [25,26] fields, temperature-induced crystallization and
melting [27] or ferroelectric [28] phase transitions.

Among these excitations, piezoelectric-related effects
seem to be the most popular [8,29–42]. Apart from the
case of one-dimensional (1D) multilayered stacks includ-
ing piezoelectric layers [8,29,35–37,41], in most cases, the
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piezoelectric material is used in the form of an array of
patches deposited in an otherwise homogeneous nonpiezo-
electric semi-infinite substrate or plate [30,31,34,42]. These
studies have been inspired in a large degree from the pioneer
work on excitation and sensing of surface acoustic waves
[43,44] in the 1960s with applications in the later years to
interdigital transducers design [45], shedding light on them
by paving the way in several domains such as structural health
monitoring, medical imaging, etc.

Although the piezoelectric patches have been extensively
used to construct phononic crystals, the role of the patch
arrays being either to excite the structure, or to provide local
resonances tuned via external circuits, piezoelectric materials
have been rarely utilized in phononic crystal plates as a host-
ing material with embedded or structured inclusions. More
recently, some first studies used a piezoceramic material as
a host matrix for a 2D holey array [46,47]. Later, a number of
works followed, including homogeneous piezoelectric plates
with either corrugated surfaces [32,33], or a 1D array of
metallic electrode strips printed on these surfaces [38–40].
These studies present frequency band-structure calculations
performed through analytical ab initio models when dealing
with shear horizontal (SH) elastic modes [32,33,48], or they
use finite elements simulations (thus losing physical insight)
for the description of Lamb modes [38–40], in the absence
of a theoretical model adapted for these modes (except for
an approximative approach [40]). We know of only one work
dealing with a theoretical description of the dispersion of
Rayleigh waves in piezoelectric substrates with a periodic
array of metallic strips coupled to impedance loads at the
interface [49].

A lot of work has been done in uniform piezoelectric
plates (with metallized or not surfaces) studying theoretically
[50,51] and experimentally [52] Lamb and SH [53] eigen-
modes in these structures. The related research has focused
mainly on the study of frequency regions close to the cutoff
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points (i.e., for small values of the wave-vector components
parallel to the plate’s characteristic surfaces) [54] for use in
characterization of these materials and transducer applica-
tions [55–59] on the elaboration of models describing in an
effective manner the piezoelectric behavior of the material
through electric circuit equivalents [60,61], as well as their
transmission and reflection properties [62,63]. Surprisingly,
this rich experience has not been transferred to the field of
phononic crystals and related structures by incorporating the
study of Lamb modes in these structures and the simultaneous
development of full elastodynamic theoretical models for their
description.

In this paper, we present a theoretical model for the de-
scription of Lamb eigenmodes in piezoelectric homogeneous
plates, on both surfaces of which arrays of metallic strips are
deposited. The phononic crystal plate is embedded in vac-
uum and external circuits are also considered, coupled to the
electrodes. Our formalism employs Fourier series expansions
incorporated in the basic equations of linear piezoelectricity,
to derive, at a first stage, the frequency band structure of
the Lamb-like eigenmodes of such a structure, and shows
that nondestructive control and tunability in their frequency
response become feasible. In particular, we show that an
external electric quadripole interconnecting adjacent cells of
the crystals offers an additional degree of freedom compared
to single dipole loads to shape the resonance-induced hy-
bridization gaps opening up in their frequency band structure.

Our paper, apart from its utility in the development of
theoretical tools relying on a full elastodynamic description
that takes into account piezoelectric coupling effects, beyond
any effective descriptions based on 1D mass-spring analogs
or equivalent electric circuits for the modeling of Lamb wave
propagation in piezoelectric phononic plates, could also be
of interest for use in a characterization process using the
dispersion of eigenmodes along the direction of the surfaces
of the piezoelectric plate.

The paper is organized as follows. First, the theoretical
model used for the study of piezoelectric phononic crystal
plates is developed in Sec. II and, next, in Sec. III we present
some examples demonstrating the applicability of our formal-
ism and offering possibilities to drastically modify the band
structure of these plates. Finally, Sec. IV concludes the paper.

II. THEORETICAL MODEL

A. Phononic structure description

We shall develop a theoretical model for the calculation
of the frequency band structure of an infinite, 1D phononic
crystal made of a lead zirconate titanate (PZT) plate with
6mm crystal symmetry on both sides of which parallel metallic
strips (electrodes) of negligible thickness are deposited peri-
odically along x1 direction. We will focus on the dispersion re-
lation ω(k1) of Lamb-like eigenmodes of angular frequency ω

propagating along x1 with a Bloch wave vector k1 = k1x̂1; the
SH elastic modes, polarized along x2 axis, will not concern us
here. The plate of finite thickness h is considered to extend to
infinity in x1x2 plane and it is centered along x3 axis (extend-
ing from −h/2 to h/2), as shown in Fig. 1. The electrodes are
of width w, with s the separation distance between adjacent

x3

x1O

a0 w

metal strip 
(electrode)

piezoceramic
slab (PZ26)

vacuum
s

x3=+h/2

x3=−h/2

FIG. 1. Schematic representation of the one-dimensional piezo-
electric crystal, extending to infinity along x1 and x2 directions, which
coincide with the transversely isotropic plane of the piezoceramic
material, poled across its thickness along the x3 symmetry axis. The
metallic strips of width w and with separation gap s, aligned in
parallel to x2, form a geometric array along x1 with period a0 =
s + w.

electrodes. The lattice constant of the crystal is a0 = s + w

in this simplest case. It is, however, worth noting that each
electrode can be connected to an electric circuit, i.e., loaded
with an impedance, and this load may be identical or differ for
the up and down side, for adjacent electrodes, and/or connect
more than one consecutive electrodes. We will call these loads
electric boundary conditions (EBCs), whose variability and
flexibility in a nondestructive for the whole structure manner,
offers a degree of freedom to tune and control the periodicity
and response of the phononic crystal. Of course, in these more
complex cases, the unit cell of the crystal will include several
elementary blocks of length a0, thus the lattice constant a will
be a multiple of a0.

B. Fundamental equations

Within a bulk piezoelectric material whose elastic proper-
ties are described by its elastic parameters (mass density ρ

and elastic coefficients ci jkl ) and its electric properties by the
permittivity tensor elements εik , the two field subspaces, the
elastic strain field S, and the electric field E, are interacting;
their coupling is described by the piezoelectric constants
eikl . The constitutive equations in the framework of linear
piezoelectricity, combining Maxwell equations and Hooke’s
law in a generalized form, are

Ti j = cE
i jkl Skl − eki jEk, (1)

Di = eikl Skl + εS
ikEk, (2)

relating the stress tensor components Ti j and the electric
displacement vector components Di, to both the strain tensor
Skl and the electric field components Ek; cE

i jkl and εS
ik denote,

respectively, the elastic coefficients under constant electric
field, and the permittivity tensor elements under constant
strain. T and D satisfy the stress equation of motion (we
assume monochromatic waves of angular frequency ω with
a e+iωt time-dependence),

Ti j,i = ρü j = −ρω2u j, (3)

and the charge equation of electrostatics

Di,i = 0. (4)
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In the absence of coupling, the piezoelectric constants eikl

become zero and Eqs. (1) and (2) drop to two independent
subspaces (the elastic and electric fields become independent).
In the above equations and throughout the paper, we adopt
Einstein’s summation rule, and we use the notation (·), j ≡ ∂ (·)

∂x j

to denote partial derivatives with respect to cartesian coordi-
nates x j , j = 1, 2, 3, which coincide with the high-symmetry
directions of the PZT piezoceramic materials that will concern
us here. Instead of the primary, strain and electric, fields
appearing in Eqs. (1), (2) we find it convenient to use the
elastic displacement field u and the scalar electric potential
ϕ, given by

Ek = −ϕ,k, (5)

Si j = 1
2 (ui, j + u j,i ), (6)

and we construct a generalized elastic displacement vector by
expanding it to a 4D space, the fourth component being the
electric potential, i.e., u = [u1 u2 u3 u4 = ϕ]t . Since the SH
modes (u2) are decoupled from the Lamb-like and electric
potential components (ui, i = 1, 3, 4), we will omit, hereafter,
all relevant components along x2 axis (we put u2 = 0).

C. Elementary solutions

In this paper, we focus on a specific class of piezo-
electric materials, the PZT piezoceramics, known to exhibit
high piezoelectric constants and low loss. Explicit forms for
their elastic, piezoelectric, and dielectric tensors are given in
Appendix A. For the calculation of the eigenmodes of the
piezoelectric phononic crystal we need, first, to determine the
elementary solutions of the bulk material. Due to the planar
geometry of the structure, we will assume monochromatic
plane-wave solutions of angular frequency ω propagating
along x1 with a time dependence of the form e+iωt tacitly
assumed in all wave fields, but omitted to simplify nota-
tion. These solutions are characterized, for given ω, by a
given wave-vector component projection k1 = +ωs1x̂1 and by
the polarization index p = 1, 2, 3, accounting for three—one
longitudinal and two transverse—elastic waves whose wave-
vector projection along x3 axis is k±(p)

3 = ±ωs(p)
3 x̂3, where s1

and s(p)
3 are the slowness vector components along x1 and x3

axes, respectively. The generalized elastic field takes the form
ui = e−iωs1x1

∑
p (B+(p)

i e−iωs(p)
3 x3 + B−(p)

i e+iωs(p)
3 x3 ), where i =

1, 3, 4, and, B±(p)
i are appropriate coefficients for the elastic

waves propagating along ±x̂3 directions. Both s(p)
3 and B±(p)

i
are perfectly known, for the case of the bulk piezoelectric ma-
terial, and for a given s1 value are found by solving a nonlinear
eigenvalue problem, with eigenvalues s(p)

3 and corresponding
eigenvectors B±(p), the polarization index p numbering the
eigenvalues, as detailed in Appendix A.

The periodicity along x1 direction implies that the Lamb-
like eigenmodes of the phononic crystal plate will be ex-
panded in the basis of the elementary solutions of the cor-
responding bulk material, as described above, each of them
characterized by a wave-vector component k1n = +ωs1nx̂1 =
k1x̂1 + gn, where k1 is the reduced wave-vector compo-
nent within the first Brillouin zone (BZ) [−π

a , π
a ] and gn =

2π
a nx̂1 ≡ gnx̂1, with n = 0,±1,±2, . . ., are the reciprocal

lattice vectors, generating several diffracted beams of slow-
ness component s(p)

3n along x3 direction. We write the general-
ized elastic field within the plate (|x3| � h

2 ) as

ui =
+∞∑

n=−∞
e−iωs1nx1

∑
p

(
C+(p)

n B+(p)
in e−iωs(p)

3n x3

+C−(p)
n B−(p)

in e+iωs(p)
3n x3

)
, i = 1, 3, 4, (7)

which satisfies the Bloch-Floquet theorem; s(p)
3n and B+(p)

in
are determined for given s1n from the bulk properties (see
Appendix A). Without loss of generality, we choose B−(p)

1n =
B+(p)

1n , while the other components must obey B−(p)
in = −B+(p)

in

for i = 3, 4, as can be easily seen if we replace s(p)
3n → −s(p)

3n

in Eq. (A8). The unknown coefficients C±(p)
n are to be deter-

mined, with the help of the appropriate boundary conditions
applied to the interfaces of the plate, located at x3 = ± h

2 .
In a similar manner, we develop the field in the regions

outside the plate. We note that, first, in the outer region of the
plate (vacuum) only electromagnetic waves exist (the elastic
field components vanish) and the slowness vector component
along x3 axis takes the form s2

3n = 1
c2

0
− s2

1n ≈ −s2
1n, where

c0 = 3 · 108 m s−1 is the propagation velocity of electromag-
netic waves in vacuum, and s1n is a conserved quantity across
the phononic crystal structure with typical values much higher
than c−2

0 . Second, the electric potential component must de-
cay away from the plate (we consider a pseudoeigenvalue
problem, with leaky electric waves). We write the generalized
elastic field outside the plate,

uν
i =

{
ϕν = ∑+∞

n=−∞ Cν
n e−iω(s1nx1+s3n|x3|), i = 4

0, i = 1, 2, 3,
(8)

with ν = u, d denoting, respectively, the upper (x3 > h
2 ) and

lower (x3 < − h
2 ) outer region, and s3n ≈ −iξns1n, where ξn =

+1 if Re{s1n} � 0 and ξn = −1 elsewhere, to always ensure
evanescent behavior along x3 direction for both sides of the
plate. Since all wave fields must satisfy Bloch’s theorem, x1

will be restricted hereafter within the first unit cell (|x1| � a
2 )

without any loss of generality.
The next step is the matching of the wave fields of the

outer and inner regions at the two surfaces of the plate.
The presence of the electrodes will not modify the elastic
boundary conditions, because we assume the electrodes to be
of negligible thickness with respect to the plate’s thickness
and to the skin depth of the metal (to neglect losses in their
interior). The surfaces are considered to be traction free at any
point, i.e.,

T33(x3 = ±h/2) = 0, T31(x3 = ±h/2) = 0, (9)

where T33, T31 are the stress normal and tangential, respec-
tively, components at x3 = ±h/2. In addition, the electric field
tangential component is continuous across the interfaces

E1 = E ν
1 , for x3 = ±h/2, (10)

while the normal component of the electric displacement field
must satisfy the Maxwell-Gauss equation across the interfaces

Dν
3 − D3 = σ (x1), for x3 = ±h/2, (11)
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with σ (x1) being the surface charge density, depending on the
presence or not of an electrode at point x1 and supposed to be
uniform on it,

σ (x1) =
{

σ ν, |x1| � w
2

0, w
2 < |x1| � a

2 ,
(12)

where we have considered the electrodes to be centered at
the surfaces of each unit cell. A comment has to be made
here: The surface charge density is assumed uniform within
the whole electrode area [45], since the electromagnetic
wavelengths are much higher than the electrode width w in
the frequency range under consideration ( ω

2π
� 1 MHz) for

millimeter-scaled arrays that will concern us here.
The set of the above four boundary conditions [Eqs. (9)–

(11)] allow the determination of the unknown coefficients
C±(p)

n and Cν
n , by taking advantage of the orthogonality prop-

erties of the basis of elementary solutions un(x1) ≡ e−iωs1nx1 :

〈um, un〉 ≡
∫ +a/2

−a/2
u∗

mun dx1 = a δnm. (13)

In practice, the infinite sums in the generalized field expres-
sions Eqs. (7) and (8) are truncated to a maximum value,
nmax, for the summation index (corresponding to 2nmax + 1
reciprocal lattice vectors).

Combining Eqs. (5) and (10) and defining κν = +1(−1)
for ν = u(d), we obtain—after projection onto the un(x1)
basis—the 2 × (2nmax + 1) coefficients of the electric poten-
tial in the outer region, Cν

n ,

Cν
n =

3∑
p=1

B+(p)
4n

(
C+(p)

n e−iωκν s(p)
3n h/2

− C−(p)
n e+iωκνs(p)

3n h/2
)
eiωs3nh/2, (14)

as a function of C±(p)
n which can be found from the three

remaining boundary conditions [Eqs. (9), (11)] as follows.
Substituting Eqs. (6) and (7) into Eqs. (1) and (2), we obtain

T33 =
∞∑

n=−∞
e−iωs1nx1

3∑
p=1

U (p)
n

(
C+(p)

n e−iωs(p)
3n x3 + C−(p)

n e+iωs(p)
3n x3

)
,

(15)

T31 =
∞∑

n=−∞
e−iωs1nx1

3∑
p=1

V (p)
n

(
C+(p)

n e−iωs(p)
3n x3 − C−(p)

n e+iωs(p)
3n x3

)
,

(16)

D3 =
∞∑

n=−∞
e−iωs1nx1

3∑
p=1

X (p)
n

(
C+(p)

n e−iωs(p)
3n x3 + C−(p)

n e+iωs(p)
3n x3

)
,

(17)

where

U (p)
n = −iω

[
cE

13B+(p)
1n s1n + cE

33B+(p)
3n s(p)

3n + e33B+(p)
4n s(p)

3n

]
,

V (p)
n = −iω

[
cE

44B+(p)
1n s(p)

3n + cE
44B+(p)

3n s1n + e15B+(p)
4n s1n

]
, (18)

X (p)
n = −iω

[
e31B+(p)

1n s1n + e33B+(p)
3n s(p)

3n − εS
33B+(p)

4n s(p)
3n

]
.

An expression similar to Eq. (17) can be found for Dν
3 =

−ε0ϕ
ν
,3 with the help of Eqs. (8) and (14):

Dν
3 = ε0iωκν

∞∑
n=−∞

s3ne−iω[s1nx1+s3n (|x3|−h/2)]

×
3∑

p=1

B+(p)
4n

(
C+(p)

n e−iωκνs(p)
3n h/2 − C−(p)

n e+iωκνs(p)
3n h/2).

(19)

Use of these expressions into Eqs. (9) and (11) leads—after
projection onto the un(x1) basis—to the following linear
system of 6 × (2nmax + 1) equations with unknowns C±(p)

n ,
denoted in vector form by C:

M̃(ω, k1)C = 0. (20)

The nontrivial solutions of Eq. (20) are found from the
condition det M̃(ω, k1) = 0, providing us with the dispersion
relation ω(k1) of the Lamb-like modes of the phononic crystal
plate, lying on x1x3 plane and propagating along x1 axis.

It is worth noting that all the information concerning the
EBCs, including impedance loads applied to the electrodes,
is involved in the relation for the electric displacement field
across the interface [Eqs. (11) and (12)] through the specific
form of the surface charge density σ . We will analyze in more
detail the way to proceed in dealing with this part of the model
in what follows.

D. Electric boundary conditions

The EBC Eqs. (11) concerning the electric displacement
field is not, in its present form, of practical interest, if someone
needs to introduce impedance loads through external circuits.
Instead, the physical quantity, more convenient for this pur-
pose, is the electric potential, therefore Eqs. (11) must be
transformed into an equivalent potential form [49].

Let us suppose the general case depicted in Fig. 2(a) with
both upper- and lower-side electrodes loaded with external
circuits of impedance Zu and Zd, respectively. From Eq. (14)
it is obvious to see that the condition to be satisfied at the
surfaces of the plate is continuity of the electric potential as a
consequence of the electric field boundary condition Eq. (10).
For the part of the plate surfaces, covered by the electrodes,
we take into account the external circuit [see Fig. 2(b)] and
after integration over the surface of the electrodes A = wl , l
being the length of the electrodes along x2 axis [see Eqs. (11)
and (12)] we obtain

ϕ|x3=± h
2

= 
ν
e = −iωZνQν

= −iωZν

∫∫
dx1 dx2

(
Dν

3 − D3
)∣∣

x3=± h
2

= −iωZνA 1

w

∫ + w
2

− w
2

dx1
(
Dν

3 − D3
)∣∣

x3=± h
2
, (21)

where Qν and Zν are, respectively, the electric charge in
the electrode and the impedance load on it, and 
ν

e the
corresponding external electric potential. We choose to re-
place Dν

3|x3=± h
2

by +ε0(k1ϕ − ϕν
,3 − k1ϕ)|x3=± h

2
from which
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(a)

Zu

Zd

a0

a0

Zu
Za

(c)

(b)

Φ
Zu

a0

u
e

−iωQu

FIG. 2. (a) Schematic representation of a unit cell of the piezo-
electric phononic crystal plate, loaded on both sides by external
circuits with Zu (upper-side electrode) and Zd (lower-side electrode).
Each external circuit imposes an external electric potential 
ν

e and
the associated electric current, resulting from the impedance load of
the circuit, as detailed in (b) for the upper-side electrode. The case
of external loads combined with interconnected adjacent electrodes,
shown in (c), corresponds to quadripoles that can be effectively
described by an equivalent electric dipole of impedance Zu

eq (see text),
as the one depicted in (a) with Zd = 0.

we obtain

1

iωZνA
ν
e = −ε0k1


ν
e + ε0k1

1

w

∫ + w
2

− w
2

dx1

×
(

1

ε0k1
D3 + 1

k1
ϕν

,3 + ϕ

)∣∣∣∣
x3=± h

2

,

or, equivalently,

ϕ|x3=± h
2

= 
ν
e =

(
1 + 1

iωZνAε0k1

)−1 1

w

∫ + w
2

− w
2

dx1

×
(

1

ε0k1
D3 + 1

k1
ϕν

,3 + ϕ

)∣∣∣∣
x3=± h

2

. (22)

Thus, Eqs. (11) have been transformed into a potential rela-
tion, for |x1| � w

2 .
For the part of the plate surfaces free of electrodes ( w

2 <

|x1| � a
2 ), Eqs. (11) and (12) imply (Dν

3 − D3)|x3=± h
2

= 0.
Following again the same hint for Dν

3 as for the surface region
inside the electrodes, we can write

ϕ|x3=± h
2

=
(

1

ε0k1
D3 + 1

k1
ϕν

,3 + ϕ

)∣∣∣∣
x3=± h

2

. (23)

Equations (22) and (23), combined together, constitute a
unique boundary condition for the electric potential, ϕ|x3=± h

2
,

spanning over the entire surface region of the unit cell, and,
most importantly, its right-hand side depends, for both sub-
regions inside and outside the electrodes, on the common
quantity ( 1

ε0k1
D3 + 1

k1
ϕν

,3 + ϕ)|
x3=± h

2

. The latter, by making

use of Eqs. (17), (7), (8), and (14), can be expanded into
the un(x1) basis set with appropriate expansion coefficients as
follows:(

1

ε0k1
D3 + 1

k1
ϕν

,3 + ϕ

)∣∣∣∣
x3=± h

2

= 1

ε0k1

∞∑
n=−∞

e−iωs1nx1

3∑
p=1

(
C+(p)

n F+(p)ν
n e−iωκνs(p)

3n h/2

+C−(p)
n F−(p)ν

n e+iωκνs(p)
3n h/2

)
, (24)

with

F±(p)ν
n = X (p)

n ∓ B+(p)
4n ε0[(κνξn − 1)k1 + κνξngn]. (25)

The final form for ϕ|x3=± h
2
, after projection onto the un(x1)

basis set leads to 2 × (2nmax + 1) equations,∑
n

3∑
p=1

{
C+(p)

n

[
γ ν

nmF+(p)ν
n − aδnmB+(p)

4n

]
e−iωκνs(p)

3n h/2

+C−(p)
n

[
γ ν

nmF−(p)ν
n + aδnmB+(p)

4n

]
e+iωκν s(p)

3n h/2
} = 0, (26)

where the coefficients γ ν
nm result from the integration per-

formed over x1 and include the information about impedance
loads (see Appendix B); δnm is the Kronecker delta. Equation
(26) constitutes a nondiagonal, in the {n}-space, subset of
Eq. (20), corresponding to the electric part of the applied
boundary conditions (EBCs). The remaining 4 × (2nmax + 1)
equations, derived from Eqs. (15) and (16) and already in-
cluded in Eq. (20), are diagonal in {n}-space and correspond to
the purely mechanical, uniform along x1, boundary conditions
[Eqs. (9)].

We close this part by including the specific case of an
external circuit interconnecting adjacent electrodes through an
additional impedance load Za [see Fig. 2(c)]. For simplicity,
we assume this load to be applied only at one side of the
plate (let’s say the upper part) while the other-side electrode
is grounded, but this scheme can be easily extended to in-
clude various circuit combinations to the upper and lower
electrodes. From elementary electric circuit considerations, it
is obvious to see that the quadripole of Fig. 2(c) is equivalent
to a single impedance load Zu

eq given by

Zu
eq = Zu

1 + Zu

Za

(
2 sin k1a

2

)2 . (27)

Equation (27) offers a versatile tool for the enhancement of
intercellular interactions, as we demonstrate in Sec. III C for
the case of capacitance loads (Za = 1/iCaω).

Though the electric circuit configurations that we have
treated have the same periodicity as the metallic strip array
(a = a0), our formalism can be easily generalized to include
EBCs spanning over more than one elementary block (a =
κa0, κ = 2, 3, . . .) by appropriately performing the integra-
tion along x1. Of course, by the same token, electrodes of
a unit cell that differ in size and position for the upper and
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TABLE I. Material parameters for PZ26, used in the calculations.

Material property Symbol Value

Elastic coefficients cE
pq [GPa] cE

11 175.0

cE
12 110.3

cE
13 95.0

cE
33 124.0

cE
44 26.3

cE
66 = 1

2

(
cE

11 − cE
12

)
32.3

Piezoelectric coefficients eS
ip [C m−2] eS

15 10.00

eS
31 −2.62

eS
33 16.48

Relative permeability coefficients εS
pq εS

11 800.0

εS
33 767.6

Mass density [kg m−3] ρ 7700

lower side of the plate can be also considered in the formalism
presented here.

III. SOME EXAMPLES

To demonstrate the applicability of our method, we con-
sider some examples containing, first, symmetric with respect
to x1x2-plane EBCs, and, second, asymmetric with respect to
x1x2-plane EBCs for the specific case of an inductance load,
combined or not, with a capacitance. The infinite 1D phononic
crystal plate consists, as already described, of an array of
identical metallic strips deposited symmetrically on both sides
of the plate of thickness h = 2.2 mm. The electrodes, of width
w = 1.7 mm and separation distance s = 0.3 mm, form in the
simplest case a lattice along x1 axis, with spatial period a0 =
s + w = 2 mm. The plate itself is made of PZ26, a piezo-
ceramic material with high coupling piezoelectric constants.
Its parameters, used in the calculations, are summarized in
Table I. We note that all bands shown in our calculations are
real in the sense that the imaginary part of the wave number is
lower than 0.005 of the corresponding real part. Absorption
is not taken into account in elastic nor electric coefficients
of the plate material; however, losses are indirectly included
through external leakage of EM waves even if negligible.
Additionally, if the presence of an outer medium (fluid) is
considered, Im{k1} may be higher. In a real experiment, of
course, losses are present and the above formalism can be
directly used, by just including appropriate imaginary parts
in all elastic, electric, and piezoelectric coefficients. For PZT
materials as those considered in our study for the band-
structure calculations, these imaginary parts are of the order
of 10−2 with respect to the corresponding real parts [64].

A. Nonresonant symmetric EBCs

To begin, we apply symmetric EBCs to both up and down
electrodes of each elementary cell of length a0, for two
extreme for the impedance cases, i.e., floating-potential condi-
tions (Zu = Zd → ∞), and, grounded electrodes (Zu = Zd =

Zu=0

Zd=0

a=a0

Zu→ ∞

Zd→ ∞

a=a0

∞

∞

a=2a0

FIG. 3. Calculated frequency band structure (solid lines) of an
infinite one-dimensional phononic crystal plate consisting of an array
of metallic strips of width w = 1.7 mm along x1 axis, aligned along
x2 axis, and deposited on both sides, with separation distance s =
0.3 mm and spatial period a0 = s + w = 2 mm, for several config-
urations of symmetric EBCs applied to the electrodes, as depicted
schematically at the top of the plots: (a) floating potential conditions
(Zu = Zd → ∞) in all elementary cells, (b) grounded electrodes
(Zu = Zd = 0) in all elementary cells, and (c) EBCs spanning over
two adjacent elementary cells, alternating grounded and floating-
potential conditions. Finite element calculations are also shown
(open symbols) for comparison.

0). In both configurations, the period of the EBCs coincides
with the spatial period of the metallic strip array (a = a0).

The calculated frequency band structure along x1 direction
is shown (solid lines) in Figs. 3(a) and 3(b), respectively, for
these two simple systems, following the procedure described
in Sec. II, for the resolution of the nonlinear eigenvalue
problem Eq. (20). Only the positive k1 axis is shown, since
the band structure diagrams are invariant under the substi-
tution k1 → −k1, for all the cases considered in this paper.
For the first, floating-potential crystal [Fig. 3(a)], the lowest-
frequency, A0-like, branch is folded due to the periodicity at
about 0.45 MHz and the folded negative-slope branch inter-
acts slightly with the A1-like branch with cutoff frequency
at about 0.48 MHz, thus opening up a narrow hybridization
gap centered at 0.7 MHz. Next, the S0-like branch, linear at
the long-wavelength limit, is folded at the first BZ edge, at
about 0.68 MHz, opening up a small Bragg-type gap. Finally,
the S1-like mode is generated with cutoff frequency at about
0.82 MHz. A similar picture is observed for the second,
grounded crystal [Fig. 3(b)]. The most striking differences as

094302-6



TUNABLE PHONONIC STRUCTURES USING LAMB WAVES … PHYSICAL REVIEW B 99, 094302 (2019)

Zu=iLω

Zd=0

a0

FIG. 4. Calculated frequency band structure (solid lines) of an infinite one-dimensional phononic crystal plate, as described in Fig. 3, but
with asymmetric EBCs applied shown in the right margin, consisting of grounded electrodes at the lower plate surface (Zd = 0) and inductance
loaded electrodes at the upper plate surface (Zu = iLω), for different values of the inductance load: (a) L = 235 μH, (b) L = 470 μH, and (c)
L = 940 μH. The dotted lines represent electric resonance bands before hybridization (see text) leading to hybridization band gaps (HBG) for
the S0-like modes (shaded areas) after hybridization.

compared to the previous case are the red-shifted cutoff fre-
quency for the A1-like mode, whose value coincides with the
isolated point solution of Fig. 3(a), indicated by an arrow, and,
the weaker interactions leading to even narrower frequency
band gaps.

As a last case, we build a crystal with a more complex unit
cell, combining the two above-mentioned cases. The EBCs
span over two elementary adjacent cells, i.e., a = 2a0, the
first having floating potential (Zu

1 = Zd
1 → ∞), the second

being grounded (Zu
2 = Zd

2 = 0). Such complex unit cells con-
taining several elementary blocks can be easily implemented
in the formalism presented here by simply incorporating the
complex EBCs varying along x1 and spanning over several
a0’s in Eqs. (21) and (23). The calculated band structure for
this crystal is shown in Fig. 3(c). One expects an additional
folding of the frequency bands due to the longer (double)
lattice constant, and this is indeed the picture observed. We
note in passing that in this hybrid crystal combining grounded
and floating-potential EBCs, the A1-like branch practically co-
incides with the corresponding branch of the grounded crystal
[Fig. 3(b)]. The cutoff frequency of this Lamb-like guided
mode originates from the resonance condition of the trans-

verse modes along the plate thickness, fA1 = υ3T
2h = 1

2h

√
cE

44
ρ

=
0.42 MHz. Our results shown in Fig. 3 are in excellent agree-
ment with finite element calculations [65] (open symbols);
in the most demanding case, nmax = 30 terms in the Fourier
series are needed to obtain convergence better than 10−4.

B. Resonant inductance loading

In all cases examined up to now, the hybridization gaps
originate from the avoided crossing between bands of the
same symmetry corresponding to the Lamb-like modes of the
phononic crystal plate, but no resonance modes are induced

by the impedance loads. This can be achieved if, for instance,
an inductance load L is introduced on the one-side electrodes
(let us assume Zu = iLω and Zd = 0). Since, naturally, the
piezoelectric plate can be effectively described by a planar
capacitor C whose surfaces are parallel to x1x2 plane, this
configuration results in an equivalent—in the simplest case—
LC circuit possessing an electric resonance frequency f0 =

1
2π

√
LC

. C is an intrinsic to the piezoelectric plate parameter,
which can be determined as described in Ref. [39]. Bringing
together the isolated LC circuits to form a crystal, we obtain
due to interactions of the resonances of the elementary LC
circuits, described equivalently by a transmission line model
[39], a dispersive coslike resonant band

sin
k1a

2
=
√√√√ C

4C′

[(
ω0

ω

)2

− 1

]
, (28)

which extends from f0 = ω0
2π

to fπ = f0(4C′
C + 1)

−1/2
< f0 at

the center (k1 = 0) and at the edge (k1 = π
a ), respectively,

of the first BZ. Here, C′ corresponds to a planar capacitor
whose surfaces are parallel to x1x3 plane, accounting for all
piezoelectric effects appearing when adjacent electrodes have
different electric charge distributions due to nonzero values of
the Bloch wave vector k1.

The calculated band structure for such an infinite phononic
crystal (a = a0, with inductance loads on the upper side
electrodes) is shown in Fig. 4 for three different values of
L = 235 μH, 470 μH, and, 940 μH. The dispersion relation
follows the picture of the corresponding grounded phononic
crystal [Fig. 3(b)] on which the dispersive, unhybridized,
resonant band Eq. (28), shown by dotted lines in Fig. 4,
is superimposed. It crosses, for the cases shown here, the
S0- and A0-like branches, thus leading to avoided-crossing
(hybridization) band gaps, easy to tune electrically through
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FIG. 5. Variation of the width of the hybridization gap (shaded
area), originating from the interaction of the electromagnetic reso-
nant and S0-like modes, with the inductance load L, for the phononic
crystal described in Fig. 4. The dotted lines represent the frequency
limits of the resonant band, f0 and fπ , at the center and at the edge
of the first BZ, respectively.

the value of L. We note in passing that in the case of
the inductance-loaded plate, avoided-crossing effects (though
weak) are also observed every time two Lamb-like bands
cross each other. The most important in width is, however,
the band gap originating from the hybridization of the electric
resonance mode with the S0-like branch. Its width increases
with decreasing L as depicted in Fig. 5. For low L values,
this gap closes down, and another one originating from the
interaction of the electric mode with the A1 branch opens up
at frequencies higher than 0.42 MHz.

The case of resonant-inducing dipole loads offers a nice
example for the study of the role of the diffracted beams
(n-components in the expansion sums of the wave fields) in
the formation of the band structure diagram of these crys-
tals. In Fig. 6(a), we present the band-structure calculation
for the inductance-loaded crystal (L = 470 μH) described in
Fig. 4(b), performed by keeping only the central beam (nmax =
0) in the corresponding sums of the expressions of the wave
fields. The picture obtained coincides with the dispersion
plot of the corresponding homogeneous PZT plate (i.e., if all
metallic strips and loadings are removed), for which the EBC
is D3 = Dν

3 at every point on the surface, instead of Eqs. (11)
and (12). The S0-like band exhibits a linear dispersion at ω →
0 (long-wavelength limit) with an effective medium slope
ceff = 4110 m s−1, and the A1-like cutoff frequency occurs at
0.49 MHz. As expected, no folding of the frequency bands
at the edges of the BZ is observed, because of the absence
of the diffracted beams. For the same reason, all the effects
originating from the electric resonance are erased. Introducing
in the calculation the first “shell” of reciprocal-lattice vec-
tors (g1 = ± 2π

a x̂1) that corresponds to the truncation order
nmax = 1 already provides a picture of the band diagram [see
Fig. 6(b)] very close to the final converged calculation, given
in Fig. 4(b). The effective-medium slope at ω → 0 is calcu-
lated to be ceff = 3710 m s−1 and the A1-like cutoff frequency

FIG. 6. Calculated frequency band structure of the infinite
one-dimensional inductance-loaded phononic crystal plate (L =
470 μH), as described in Fig. 4(b), for three different values of the
truncation order: (a) nmax = 0, (b) nmax = 1, and, (c) nmax = 5. In (c)
the full calculation of Fig. 4(b) (nmax = 30) is also reproduced for
comparison (red dotted lines).

occurs at 0.42 MHz. The electric-resonance band extending
from f0 = 0.296 MHz (k1 = 0) to fπ = 0.200 MHz (k1 = π

a )
is well formed and all expected band-foldings appear in the
band diagram. In Fig. 6(c), the corresponding calculation in-
cluding 11 reciprocal lattice vectors (nmax = 5) reveals slight
corrections in the general picture, the most important being
the dispersion of the electric resonant band that now extends
from f0 = 0.288 MHz (k1 = 0) to fπ = 0.152 MHz (k1 = π

a ).
The edge fπ of this band is strongly affected by the contribu-
tion of the reciprocal-lattice vectors gn in the wave-field sums,
and this image implies, in accordance to the transmission-
line simplified model, that intercellular interactions described
effectively by the capacitance C′ cannot be correctly ac-
counted for if a sufficient number of diffracted beams is not
taken into account. The effective medium slope of the S0-like
mode becomes ceff = 3670 m s−1 in agreement with the value
obtained from the full calculation (nmax = 30) of Fig. 4(b),
represented here by red dotted lines for comparison.

C. Cell-interconnecting EBCs

We close this discussion with a simple example of inter-
connected adjacent electrodes through an impedance load,
as depicted in Fig. 2(c). Precisely, we add to the case of
inductance loaded electrodes, Zu = iLω, discussed previously
(Sec. III B), a capacitance Za = 1/iCaω. It is worth remember-
ing that, following the transmission line model of Ref. [39], Zu

is connected in parallel to the effective piezoelectric capacitor
C, while Za is connected in parallel to the effective piezo-
electric capacitor C′. Then it is straightforward to show that
the dispersion relation describing the relatively flat resonant
band of Eq. (28) is still valid if C′ is replaced by C′ + Ca.
Considering negative values for the capacitance Ca, we can
tune the lower frequency of the resonant band, fπ , located at
the edge of the BZ, shifting its position at higher frequencies.
Obviously, the limit of the resonant band at the center of the
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a=a0

Zu=iLω

Za=1/iCaω

Zd=0

FIG. 7. Calculated frequency band structure of an infinite one-dimensional phononic crystal plate, as described in Fig. 3, but with
asymmetric EBCs applied shown in the right margin, consisting of grounded electrodes at the lower plate surface (Zd = 0) and, at the upper
plate surface, inductance loaded electrodes (Zu = iLω) interconnected through a capacitance (Za = 1/iCaω), following the combination of
Fig. 2(c). A significant modification of the initial electric-resonance band [in the absence of Ca, Fig. 4(b)] is shown for three different values
of negative capacitance: (a) Ca = −0.55 nF, (b) Ca = −0.675 nF, and (c) Ca = −0.825 nF, altering its frequency limit fπ , at the edge of the
BZ, while the frequency limit f0 at the center of the BZ is univocally determined by the inductance L = 470 μH. The dotted lines represent
the electric resonance bands before hybridization (see text) and the shaded areas denote absolute gap regions.

BZ, f0, is exclusively determined by the choice of the induc-
tance load. Let us consider the case of Fig. 4(b) as a reference
system, for which L = 470 μH with f0 = 0.288 MHz and
fπ = 0.137 MHz as deduced from the full calculation, thus
leading to C = 0.649 nF and C′ = 0.551 nF for the intrinsic
piezoelectric capacitances along the directions x3 and x1,
respectively.

In Fig. 7, we plot the frequency band structure of the
phononic crystal plate whose unit cell is shown in Fig. 2(c),
for three different negative values of the capacitance Ca,
namely −0.55 nF, which is close to the value of −C′ of
the reference system [see Fig. 7(a)], and, −0.675 nF and
−0.825 nF, which are lower than the value of −C′ of the refer-
ence system [see Fig. 7(b),7(c)]. In the first case, as expected,
we observe fπ = 0.273 MHz to be very close to f0, implying
a flat electric resonant band before hybridization [shown by
dotted lines in Fig. 7(a)], since C′ + Ca ≈ 0. We note here that
C′ is in reality slightly changed with respect to the reference

value, as we can confirm from fπ = f0(4C′+Ca
C + 1)

−1/2
, find-

ing C′ = 0.568 nF. As a result of the interaction of the flat
resonant electric band with the S0-like and A0-like bands, two
oblique avoided-crossing (hybridization) gaps are observed,
centered at about 0.28 MHz and 0.27 MHz, respectively.

Decreasing further the interconnecting capacitance Ca, as
shown in Figs. 7(b) and 7(c), results in a significant modifica-
tion of its slope ( fπ > f0). From the full elastodynamic band-
structure calculation, we estimate, after careful analysis of the
bands shape as compared to the reference system [Fig. 4(b)],
fπ = 0.353 MHz [for Ca = −0.675 nF, Fig. 7(b)] and fπ =
0.579 MHz [for Ca = −0.825 nF, Fig. 7(c)], and, following
the simplified electric-line model, we deduce from C′ =
[( f0

fπ
)
2 − 1]C

4 − Ca the intrinsic values to be C′ = 0.621 nF

and C′ = 0.703 nF, respectively. We observe that C′ varies
significantly, as the slope of the unhybridized electric reso-
nant band (dotted lines in Fig. 7), estimated from Eq. (28),
increases. This can be explained by a qualitative picture: the
more dispersive the resonant band is, the stronger the inter-
actions are between adjacent cells, thus leading to higher C′
values, accounting for stronger piezoelectric coupling effects
along x1 direction. Finally, a common feature for all cases ex-
amined here, assuming negative values for Ca, in accordance
with the previous comment, is the stronger avoided-crossing
interaction as compared to the reference system that leads
to much wider band gaps in general, and to the appearance
of absolute frequency band gaps, highlighted by the shaded
regions in Fig. 7.

IV. CONCLUSIONS

In conclusion, we presented a full elastodynamic theo-
retical model involving piezoelectric effects in piezoceramic
plates structured periodically with metallic strip arrays at their
surface, coupled with external circuit loads. These systems
constitute a powerful, yet unexplored, alternative to their
complementary companion: the piezoelectric patch arrays,
offering ease of fabrication combined to ease in the electric
command to produce tunable elastodynamic response. We
have shown that an additional degree of freedom relying on
interconnected electrodes can modulate the shape of the res-
onant band that hybridize with the plate’s Lamb eigenmodes,
resulting in a dramatically modified picture for the dispersion
relation of these systems. A plethora of possible external
electric-circuit configurations can be imagined and modeled
with the formalism proposed in this paper, thus offering a
handy tool to tailor the dispersion properties of this kind of
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periodically structured wave guides. In the near future, an
extension of our method to include the transmission and
reflection properties of elastic waves through such piezoelec-
tric plates should be realized, accompanied to appropriate
modifications for transforming the nonlinear system providing
the Lamb-like dispersion relation to a typical linear eigen-
value problem. Piezoelectric phononic crystal plates of higher
dimensions, i.e., with 2D metallic arrays on their surface,
can be easily modeled by a more or less straightforward
generalization of our theoretical approach.
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APPENDIX A: ELEMENTARY SOLUTIONS OF A BULK
PIEZOCERAMIC MATERIAL

We will adapt and apply the basic formalism of piezoelec-
tricity to the case of PZT piezoceramics, whose specific 6mm
symmetry leads to the following explicit forms for the elastic,
piezoelectric, and dielectric tensors:

c↔E = {
cE

pq

} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 cE
66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A1)

e↔ = {eip} =
⎡⎣ 0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤⎦, (A2)

ε
↔S = {

εS
i j

} =

⎡⎢⎣εS
11 0 0

0 εS
11 0

0 0 εS
33

⎤⎥⎦, (A3)

with cE
66 = cE

11−cE
12

2 . We have adopted compact subscript
notation, i.e., p, q = 1, 2, 3, 4, 5, 6 stand for i j, kl =
11, 22, 33, 23 (or 32), 31 (or 13), 12 (or 21), respectively.

Combining the constitutive equations of piezoelectricity
Eqs. (1) and (2) to the stress equation of motion (we assume
monochromatic waves of angular frequency ω with a e+iωt

time dependence),

Ti j,i = ρü j = −ρω2u j, (A4)

and the charge equation of electrostatics

Di,i = 0, (A5)

we obtain with the help of Eqs. (5), (6), and (A1)–(A3) a
set of four equations containing the generalized elastic field
components and their second partial derivatives. Assuming
plane-wave solutions of the form ui = Bie−iω(s1x1+s2x2+s3x3 ),
with i = 1, 2, 3, 4 (we recall that u4 ≡ ϕ), where si, i =
1, 2, 3, are the slowness vector components defined by k =
ωs, k being the wave vector and Bi appropriate coefficients
to be determined. If we restrict the propagation in x1x3 plane

(i.e., we put s2 = 0), the system of four equations takes the
following symmetric and block-diagonal matrix form:⎡⎢⎣m11 m12 m13 0

m12 m22 m23 0
m13 m23 m33 0
0 0 0 m0

⎤⎥⎦
⎡⎢⎣B1

B3

B4

B2

⎤⎥⎦ =

⎡⎢⎣0
0
0
0

⎤⎥⎦, (A6)

where

m11 = cE
11s2

1 + cE
44s2

3 − ρ, m12 = (
cE

13 + cE
44

)
s1s3,

m13 = (e31 + e15)s1s3, m22 = cE
44s2

1 + cE
33s2

3 − ρ,

m23 = e15s2
1 + e33s2

3, m33 = −(εS
11s2

1 + εS
33s2

3

)
,

m0 = cE
66s2

1 + cE
44s2

3 − ρ. (A7)

The special form of Eq. (A6) implies two independent sub-
spaces corresponding to uncoupled eigenmodes: the out-of-
plane (SH) modes with respect to the x1x3 plane of propaga-
tion vibrating along x2 axis, described by the scalar equation
m0B2 = 0, and the in-plane vibrations lying on x1x3 plane,
described by the 3 × 3 subsystem,

M
(
s(p)

3

)
B(p) = 0, (A8)

where M = {mi j} is the symmetric matrix with elements given

in Eq. (A7) and B(p) = [B(p)
1 , B(p)

3 , B(p)
4 ]

t
. Only the in-plane

vibrations will concern us here. The system Eq. (A8) does not
depend on ω and constitutes a nonlinear eigenvalue problem
with eigenvalues s(p)

3 and corresponding eigenvectors B(p), the
index p = 1, 2, 3 denoting the pth eigenvalue. Both s(p)

3 and
B(p) can be determined analytically for a given value of s1.
The condition det M = 0 leads to a third-degree polynomial
of variable s2

3,

αs6
3 + βs4

3 + γ s2
3 + δ = 0, (A9)

with solutions the following three eigenvalues s(p)
3 , p = 1, 2, 3

(as well as their opposites and/or conjugates):

s(1)
3 =

√(
� − 3αγ − β2

�
− β

)
1

3α
,

s(2)
3 =

√(
−e−i π

3 � + e+i π
3

3αγ − β2

�
− β

)
1

3α
,

s(3)
3 =

√(
−e+i π

3 � + e−i π
3

3αγ − β2

�
− β

)
1

3α
, (A10)

where

� =
⎧⎨⎩
[(

−27

2
α2δ + 9

2
αβγ − β3

)2

+ (3αγ − β2)3

]1/2

− 27

2
α2δ + 9

2
αβγ − β3

}1/3

. (A11)
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The explicit expressions of the coefficients in Eq. (A9) are given below:

α = ρ−2cE
44

(
cE

33 + e2
33

εS
33

)
,

β = ρ−2

[
−cE

13

(
cE

13 + 2cE
44 + 2

e33(e31 + e15)

εS
33

)
+ cE

33
(e31 + e15)2

εS
33

+ cE
44

(
εS

11

εS
33

cE
33 − 2e31e33

εS
33

)
+ cE

11

(
cE

33 + e2
33

εS
33

)]
s2

1 − ρ−1

(
cE

44 + cE
33 + e2

33

εS
33

)
,

γ = ρ−2

[
cE

11
2e15e33

εS
33

+ εS
11

εS
33

(
cE

11cE
33 − cE

13
2 − 2cE

13cE
44

)
− cE

13
2e15(e31 + e15)

εS
33

+ cE
44

(
cE

11 + e2
31
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]
. (A12)

APPENDIX B: UNIT-CELL INTEGRALS

The coefficients γ ν
nm appearing in the EBCs [Eq. (26)] include all external circuit information through the impedances Zν and

result from the integration over the unit-cell region along x1 through the quantities αnm and βnm. Their explicit expressions are

γ ν
nm = 1

ε0k1

[(
1 + 1

iωZνAε0k1

)−1

αnm + βnm

]
, (B1)

where

αnm = wPn(k1)Pm(k1), (B2)

βnm ≡
(∫ − w

2

− a
2

+
∫ a

2

w
2

)
dx1e−iω(s1n−s1m )x1 = aδnm − wPn−m(k1 = 0), (B3)

and

Pn(k1) ≡ 1

w

∫ + w
2

− w
2

dx1e−iωs1nx1 = sin
(
ωs1n

w
2

)
ωs1n

w
2

, (B4)

with ωs1n = k1 + gn = k1 + 2π
a n.
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