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The Aubry-André one-dimensional lattice model describes a particle hopping in a pseudorandom poten-
tial. Depending on its strength λ, all eigenstates are either localized (λ > 1) or delocalized (λ < 1). Near
the transition, the localization length diverges like ξ ∼ (λ − 1)−ν with ν = 1. We show that when the particle
is initially prepared in a localized ground state and the potential strength is slowly ramped down across
the transition, then—in analogy with the Kibble-Zurek mechanism—it enters the delocalized phase having finite
localization length ξ̂ ∼ τ

ν/(1+zν )
Q . Here τQ is the ramp/quench time and z is a dynamical exponent. At λ = 1

we determine z � 2.37 from the power-law scaling of an energy gap with a lattice size L. Even though for
infinite L the model is gapless, we show that the gap that is relevant for excitation during the ramp remains finite.
Close to the critical point it scales like ξ−z with the value of z determined by the finite-size scaling. It is the gap
between the ground state and the lowest of those excited states that overlaps with the ground state enough to
be accessible for excitation. We propose an experiment with a noninteracting BEC to test our prediction. Our
hypothesis is further supported by considering a generalized version of the Aubry-André model possessing an
energy-dependent mobility edge.

DOI: 10.1103/PhysRevB.99.094203

I. INTRODUCTION

Disordered systems have generated decades of intense
research following a seminal work by Anderson in 1958 [1].
It showed that the presence of sufficiently strong disorder can
halt the mobility of electrons in a lattice. About two decades
later, the famous Gang of Four paper [2] presented the Scaling
Theory of Localization, predicting that all eigenstates for
noninteracting electrons in dimensions d � 2 are localized.
On the other hand, when d > 2 there is a disorder-induced
localization transition, indicating that below a certain disorder
strength the lattice can also support eigenstates extended
through it. How this simple picture is modified in the presence
of interactions was explored relatively recently by Basko,
Aleiner, and Altshuler [3]. They showed that an interacting
many-body system can undergo a so-called many-body local-
ization (MBL) transition in the presence of quenched disor-
der. This initiated a new effort to study quantum statistical
mechanics of localization models, specifically investigating
the fate of many-body quantum systems in a wide gamut
of circumstances—as to whether it will thermalize or stay
localized.

A class of one-dimensional (1D) models with a quasiperi-
odic potential can be shown to have a localization-
delocalization transition at a critical value of the potential
strength. We will focus on one such model: the Aubry-André
(AA) model [4,5]. It has inspired a large amount of both
theoretical [6,7] as well as experimental work [8–10], as it
exhibits the key features of the localization transition usually
manifested by higher-dimensional systems; see also Ref. [11]
for a recent proposal. Our main aim here is to investigate a
linear quench starting from the ground state of the system
in the localized phase, and subsequently tuning the potential

strength adiabatically across the phase transition; see Fig. 1.
Near the critical point, however, due to the vanishing relevant
energy gap, the dynamics cannot be adiabatic and the system
gets excited. This scenario is captured by the quantum ver-
sion of the Kibble-Zurek mechanism (KZM), which provides
a paradigm for describing excitations induced in a system
driven through a continuous phase transition at a finite rate.

Kibble’s scenario was a vision of symmetry-breaking ther-
mal transitions in the early Universe [12]. It was substantiated
by Zurek’s mechanism quantifying adiabaticity of such tran-
sitions [13]. The classical KZM was immediately recognized
as a universal theory of the dynamics of phase transitions,
and it was verified by numerical simulations [14] and labo-
ratory experiments in various condensed-matter experiments
[15]. More recently, KZM was generalized to quantum phase
transitions [16,17]. Theoretical works [18] and experimental
tests [19–21] followed. A recent experiment with ultracold
Rydberg atoms [21] is an accurate quantum simulation of
the exact solution for a linear quench in the quantum Ising
chain [17]. These days the importance of the quantum KZM
stems more from its relevance for adiabatic quantum state
preparation rather than cosmology. It quantifies the nonadia-
baticity of adiabatic evolution from an easy-to-prepare initial
ground state to an interesting final one. Its importance as a
roadblock for quantum simulation has begun to be recognized
by experimental groups [22].

Nevertheless, relatively little attention has been paid to
KZM in disordered/localized systems. The experimental
work on the Bose glass to superfluid transition [20] has
little overlap with the few theoretical papers on spin chains
[23,24]. The AA model has a unique potential to bridge
this gap. It allows for clear-cut predictions sharing generic
features with any localization-delocalization transition. They

2469-9950/2019/99(9)/094203(7) 094203-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.094203&domain=pdf&date_stamp=2019-03-18
https://doi.org/10.1103/PhysRevB.99.094203


SINHA, RAMS, AND DZIARMAGA PHYSICAL REVIEW B 99, 094203 (2019)

0 0.5 1 1.5 2

−5

0

5

(a)

quench direction

separation
line

potential strength λ

E
ig

en
-e

n
er

g
ie

s

0

15

30

45

L
o
ca

li
za

ti
o
n

le
n
g
th

(b)

10−4

10−3

10−2

10−1

100

1 50 100
10−4

10−3

10−2

10−1

100

p
ro

b
a
b
il
it
y

d
en

si
ty

1 50 100
lattice position

1 50 100

τQ = 16 τQ = 256 τQ = 2048

FIG. 1. In (a), eigenstates of the AA model are calculated for a
lattice of size L = 144. Color indicates a measure of the localization
length of the eigenstate: light green denotes the localization length
≈ L/

√
12 (delocalized) and dark green denotes the localization

length of O(1) (localized). The abrupt color change at critical λc = 1
separates the localized and delocalized phases. We initialize the
quench in the ground state deep in the localized phase and ramp the
potential strength λ at a finite rate across λc. In (b), the top panel
shows the initial ground state in the localized phase. The bottom
panels show snapshots of states during a slow ramp taken in the
critical region. They preserve a finite localization length that grows
with a power of the quench time τQ. This scenario could be realized
experimentally with a noninteracting Bose-Einstein condensate in a
pseudorandom optical lattice potential as in Ref. [8].

could be quantum simulated with existing technology. As it is
routine nowadays to ramp the strength of an optical lattice, a
noninteracting Bose-Einstein condensate in a pseudorandom
potential [8] could be easily ramped to the delocalized phase.

II. AUBRY-ANDRÉ MODEL

The model [5] is defined by a noninteracting Hamiltonian

H = −
L∑

j=1

c†
j+1c j + H.c. + 2λ cos[2π (γ j + φ)]c†

j c j . (1)

Here c†
j (c j) are creation (annihilation) operators and γ =

(
√

5 − 1)/2 is an irrational number. Random φ ∈ [0, 1) was
introduced as a mean to average over the pseudorandom
potential. For periodic boundary conditions, cL+ j = c j , the
potential must also be periodic, hence γ has to be approx-
imated by a rational number with L in the denominator. In
the following, dependence on L means a sequence L = Fm,
γ = Fm−1/Fm, where Fm are the Fibonacci numbers.
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FIG. 2. In (a), localization length ξ as a function of distance from
the critical point ε. Here ξ was calculated as the dispersion of the
localized ground state on a lattice of L = 987 sites. The linear fit
ξ ∼ ε−ν yields ν = 0.97 ± 0.01, in good agreement with exact ν =
1. In (b), a gap 
c between the ground state and the first excited
state at the critical λ = 1 as a function of the lattice size L. Fitting

c ∼ L−z yields a dynamical exponent z = 2.37 ± 0.03. All results
were averaged over 100 random φ.

When λ > 1, all eigenmodes are localized within a local-
ization length ξ = 1/ ln λ. Close to the critical point the length
diverges as [5]

ξ ≈ ε−ν, ε = λ − 1, (2)

where ε is the distance from the critical point and ν = 1 is a
correlation-length exponent; see Fig. 2(a). On the other hand,
when λ < 1 the eigenmodes are extended modulated plane
waves. The model is self-dual [5]. There is a linear map,

c j′ = 1√
L

∑

j

c je
i2π j′(γ j+φ), (3)

that interchanges λ and 1/λ in the Hamiltonian. It is a sym-
metry between the localized and delocalized phases.

The dynamical exponent z can be determined at the critical
point from a finite-size scaling of energy gap 
c between the
ground state and the first excited state:


c ∼ L−z. (4)

A linear fit to the log-log plot in Fig. 2(b) yields z = 2.37 ±
0.03. This value is consistent with the one obtained by studies
of finite-size scaling of a superfluid fraction, z = 2.374 [25],
and very recently by studies of fidelity susceptibility and
generalized adiabatic susceptibility, z = 2.375 [26].

The two exponents, z and ν, are usually enough to deter-
mine how the gap opens with the distance from the critical
point, namely 
 ∼ εzν . As the gap is zero for L → ∞, this
power law may seem not to apply here. However, when
replaced by a proper relevant gap, the above relation holds
and controls adiabaticity of the evolution.
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FIG. 3. Linear ramp across the critical point. Here time 0 cor-
responds to the critical Hamiltonian with λ = 1. The instantaneous
transition rate, |ε̇/ε| = 1/|t |, diverges at the critical point and, at the
same time, the relevant energy gap closes like ∼|ε|zν . Consequently,
in the neighborhood of the critical point, between −t̂ and t̂ , the
evolution is not adiabatic.

III. KIBBLE-ZUREK MECHANISM

By slowly varying ε across the critical point, we want to
drive the system (1) from an initial ground state deep in the
localized phase, across the phase transition, into the delocal-
ized phase. The question is with regard to the adiabaticity of
this evolution.

Near the critical point, generic ε(t ) can be linearized:

ε(t ) ≈ −t/τQ. (5)

Its slope is determined by a quench time τQ. When the gap
relevant for excitations opens with the distance to the critical
point like 
 ∼ |ε|zν , then the evolution must be adiabatic
sufficiently far from the critical point. It crosses over to dia-
batic evolution when the instantaneous transition rate, |ε̇/ε| =
1/|t |, equals the relevant energy gap 
(t ) ∼ |t/τQ|zν . The two
are equal at crossover times t = ±t̂ , where

t̂ ∼ τQ
zν/(1+zν); (6)

see Fig. 3. At −t̂ the state is still the adiabatic ground state at
−ε̂, where ε̂ = t̂/τQ ∼ τQ

−1/(1+zν), with a localization length

ξ̂ ∼ ε̂−ν ∼ τ
ν/(1+zν)
Q . (7)

This KZ length is a characteristic scale of length just as t̂ is a
characteristic scale of time.

In zero-order impulse approximation, this state freezes-out
at −t̂ and does not change until t̂ when the evolution becomes
adiabatic again. At t̂ the frozen state is no longer the ground
state but an excited state with a localization length ξ̂ . It is an
initial state for the adiabatic process that follows after t̂ . As
a result of nonadiabaticity, the wave packet does not follow
the adiabatic ground state—whose localization length would
diverge at the critical point—but enters the delocalized phase
with a finite localization length ξ̂ . When the quench time
τQ → ∞, then the localization length diverges to infinity and
the adiabatic limit is recovered.

IV. RELEVANT GAP

The localized phase is gapless, but eigenstates are local-
ized within the finite localization length ξ . In the adiabatic
perturbation theory, a necessary condition to transfer from the
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FIG. 4. In (a) we show localized eigenstates at −t̂ : the adiabatic
ground state (black), the relevant excited state with the most probable
transition (red), and the first excited state (blue). The relevant state
overlaps with the ground state. The first excited state, even though
it has the smallest gap, has no overlap with the ground state and
hence is irrelevant for excitation. Consequently, in (b) we plot the
relevant gap 
r as a function of the distance from the critical point
ε. The four plots correspond to different choices of preselecting the
relevant states with Oe greater than 10−5, 10−6, 10−7, 10−8. These
log-log plots have a common steplike structure with an overall linear
dependence on ε. The fit to the linear region yields 
r ∼ εzν with
zν = 2.4 ± 0.1 close to the expected zν � 2.37 obtained from the
finite-size scaling at criticality; see Fig. 2(b). We focus on the linear
region as finite-size effects, shown in Fig. 2(b), appear below 
 ∼
10−5. Here 
r was averaged over 100 random φ on a lattice of
L = 987 sites.

ground state |g〉 to an excited state |e〉 is that the two states
overlap. The gap relevant for adiabaticity is the gap between
the ground state and the first excited state whose support
overlaps with the ground state; see Fig. 4(a). In analogy to the
excited states confined within a finite lattice, see Eq. (4), the
excited states that are confined within the localization length ξ

of the ground state should be separated from the ground state
by a relevant gap


r ∼ ξ−z ∼ εzν = εz. (8)

This prediction is consistent with numerics in Fig. 4(b).
A more precise definition of the relevant gap and relevant

states follows from the adiabatic perturbation theory, where
the transition rate from |g〉 to |e〉, separated by a gap 
e,
depends on a matrix element [27],

Oe = |〈e|dH/dε|g〉|. (9)

The relevant states are those with nonzero Oe. In practice we
use a cutoff, say |Oe| > 10−8, but the general conclusion does
not depend on its exact value. Its gap is the relevant gap 
r

shown in Fig. 4(b). A state with the most probable transition
is the one with maximal Oe/


2
e .
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FIG. 5. In (a), the width of the wave packet at the critical point
as a function of the quench time τQ. The fit gives ξ̂ ∼ τ 0.299±0.001

Q ; cf.
Eq. (7). In (b), a similar plot for the energy dispersion at the critical
point. The linear fit yields 
̂ ∼ τ−0.688±0.004

Q ; see Eq. (10). Here
the lattice size L = 987, and averaging is done over 10 random values
of φ.

V. KZ POWER LAWS

We tested our predictions with numerical simulations. We
used a smooth tanh-profile ε(t ) = − tanh (t/τQ) starting from
ti = −5τQ in order to suppress excitation originating from the
initial discontinuity of the time derivative ε̇ at ti.

The evolution becomes diabatic at −t̂ when the localization
length is ξ̂ ; see Eq. (7). This ξ̂ is expected to characterize
the width of the wave packet in the diabatic regime between
−t̂ and t̂ . Indeed, in Fig. 5(a) we plot the width at the
critical point—estimated as the dispersion of the probability
distribution—as a function of τQ. The power-law fit and
Eq. (7) imply z = 2.34 ± 0.01 for the exact ν = 1 and z =
2.31 ± 0.02 for ν � 0.97 estimated in Fig. 2.

The relevant states that become excited during the evo-
lution are separated from the adiabatic ground state by the
relevant gap in Eq. (8). At −t̂ the relevant gap is


̂ ∼ ξ̂−z ∼ τ
−zν/(1+zν)
Q . (10)

This energy scale is expected to characterize the energy
dispersion of the excited state in the diabatic regime between
−t̂ and t̂ . We test this prediction in Fig. 5(b), where we plot
the energy dispersion at the critical point as a function of τQ.
The power-law fit and Eq. (10) imply z = 2.21 ± 0.04 for the
exact ν = 1 and z = 2.27 ± 0.05 for the fitted ν � 0.97.

The values of z = 2.31 and 2.27 obtained, respectively,
from ξ̂ and 
̂ setting ν = 0.97 differ by 1%. Their average is
3% below z � 2.37 yielded by the finite-size scaling in Fig. 2.
Given that similarly estimated ν � 0.97 is 3% below the exact
ν = 1, the discrepancies are comparable to this systematic
error. Therefore, within small error bars, our numerical results
are consistent with the predictions.
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FIG. 6. The top (bottom) row shows the width (dispersion) as
a function of scaled time. In the left panels, the two quantities
are not scaled. In the right panels, they are scaled and collapse to
their respective scaling functions. The collapse demonstrates the KZ
scaling hypothesis.

VI. KZ SCALING HYPOTHESIS

In the diabatic regime, between −t̂ and t̂ , ξ̂ and 
̂ are the
relevant scales of length and energy, respectively. They di-
verge in the adiabatic limit, τQ → ∞, where they become the
only relevant scales in the long-wavelength and low-frequency
regime. This logic justifies the KZ scaling hypothesis [28] for
a correlation length ξ̂ (t ) and energy dispersion 
̂(t ) in the
diabatic regime:

ξ̂ (t ) = ξ̂Fξ (t/t̂ ), 
̂(t ) = 
̂F
(t/t̂ ), (11)

where Fξ and F
 are two nonuniversal scaling functions. It
is confirmed by the collapse of scaled plots in Fig. 6. This
naturally includes scaling of the width of wave packets at
t = +t̂ shown in the lower panels of Fig. 1.

VII. DISCUSSION

The same scenario is expected to apply more generally
to a ramp across a mobility edge in higher-dimensional
disordered systems. To test this hypothesis, we choose the
generalized Aubry-André model [29] (GAA), which has an
energy-dependent mobility edge similar to the 3D disordered
systems. Appendix is devoted to the scenario when we quench
across the mobility edge in GAA. Results akin to the present
work were obtained. This is expected since the ordinary AA
model is just a special case of the generalized AA model in
which the mobility edge coincides with the critical point. Thus
our relevant gap hypothesis has been established on a more
general and stronger footing.

This work demonstrates that a linear ramp across the
localization-delocalization transition is not adiabatic and re-
sults in a final excited state with a finite localization length
and nonzero energy dispersion. These two quantities satisfy
power laws with respect to the ramp time τQ with the universal
Kibble-Zurek exponents.
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We expect that KZM also applies to many-body
localization-delocalization transitions like the Bose glass to
superfluid quantum phase transition in the random Bose-
Hubbard model [20] or many-body localization-delocalization
of all eigenstates [3]. In the latter, in the Heisenberg picture
we expect the localized integrals of motion to freeze-out at
the length ξ̂ when ramped across the critical point. The impli-
cation of the KZM in driven AA systems [30], where it has
been proved that the driving terms can alter the localization
properties in the insulating phase and induce delocalization,
can be studied with the help of numerical approaches similar
to those used in this paper.

Therefore, our example is a representative toy model of
the Kibble-Zurek mechanism in a localization-delocalization
transition.
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APPENDIX: GENERALIZED AUBRY-ANDRÉ MODEL

The so-called generalized Aubry-André (GAA) model is
obtained by replacing the potential term of the AA Hamilto-
nian Eq. (1) by 2λ

cos [2π (γ j+φ)]
1−α cos [2π (γ j+φ)] c

†
j c j . It possesses an energy-

dependent mobility edge separating the localized and delocal-
ized phases. Reference [29] provides an analytical expression
relating the mobility edge, E , with the potential strength λ:

αE = 2(1 − |λ|)sgn(λ). (A1)

This brings the model closer to the more generic 3D An-
derson model, which also has an energy-dependent mobility
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localization length of the eigenstate: light green denotes localization
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√
12 (completely delocalized) and dark green denotes

the localization length of O(1) (completely localized). The abrupt
color change separates the localized and delocalized phases defining
the mobility edge (red line), which is consistent with the analytic
prediction. We initialize the quench in the ground state deep in the
localized phase and ramp the potential strength λ at a finite rate
across the mobility edge.
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FIG. 8. Correlation and dynamical exponents for the generalized
Aubry-André model: In (a), the localization length ξ as a function of
the distance from the critical point ε. Here ξ was calculated as the
dispersion of a localized ground state on a lattice of L = 987 sites.
The fit ξ ∼ ε−ν yields ν = 0.982 similar to ν = 0.97 obtained for the
AA model; see Fig. 2. In (b), a gap 
c between the ground state and
the first excited state at the critical point λc ≈ 1.638 as a function
of the lattice size L. Fitting 
c ∼ L−z yields a dynamical exponent
z = 2.378 that is again similar to the AA model (see Fig. 2). Results
were averaged over 100 random φ. In (c), we plot the relevant gap 
r

as a function of the distance from the critical point ε similar to Fig. 4
for the AA model. Once again the fit to the linear region yields 
r ∼
εzν with zν = 2.46 close to the expected zν � 2.378 obtained from
the finite-size scaling at criticality; see Fig. 2(b). We focus on the
linear region as finite-size effects, shown in Fig. 2(b), appear below

 ∼ 10−5. Here 
r was averaged over 100 random φ on a lattice of
L = 987 sites.

edge. As a self-consistency check, notice that for α = 0 the
mobility edge reduces to λ = 1, which is precisely the energy-
independent critical point of the AA model. We proceed to
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FIG. 9. In (a), the width of the wave packet at the critical point λc

as a function of the quench time τQ. The fit gives ξ̂ ∼ τQ
0.3092, which

yields z = 2.27 for ν = 0.982. In (b), the scaled widths as a function
of the scaled times for different τQ’s collapse to a common scaling
function. The collapse demonstrates the KZ scaling hypothesis.
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investigate the adiabatic quench by slowly tuning the potential
strength λ > 0 across the mobility edge λc. For definiteness,
we choose a generic α = 0.5, which results in a mobility
edge E = 4(1 − λ). We verify this numerically by calculating
the localization length of the eigenstates of the GAA model
for varying values of the parameter λ; see Fig. 7. Here, the
correlation length is used as a parameter to determine whether
a specific eigenstate is localized or not.

Now we verify the static scaling results by following the
same methods as used in the AA model. We focus on the
ground state whose mobility edge is at

λc ≈ 1.638 (A2)

and we measure the distance from the critical point as ε = λ −
λc. Figure 8 shows that the obtained correlation and dynamical
exponents are close to the corresponding ones for the AA
model.

Finally, we test those static predictions against the results
obtained from numerical simulation of a quench, where akin
to the main text we use tanh profile to suppress excitations
appearing at the beginning of the evolution. The evolution is
initialized in the ground state at ε = 0. In Fig. 9(a) we show
the width of the evolving wave packet at the critical point—
estimated as the dispersion of the probability distribution—as
a function of τQ. The power-law fit implies z = 2.27 for ν =
0.982. We also verify the KZ scaling hypothesis in Fig. 9(b).
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