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Universality of eigenchannel structures in dimensional crossover
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The propagation of waves through transmission eigenchannels in complex media is emerging as a new frontier
of condensed matter and wave physics. A crucial step towards constructing a complete theory of eigenchannels
is to demonstrate their spatial structure in any dimension and their wave-coherence nature. Here we show
a surprising result in this direction. Specifically, we find that as the width of diffusive samples increases
transforming from quasi-one-dimensional (1D) to two-dimensional (2D) geometry, notwithstanding the dramatic
changes in the transverse (with respect to the direction of propagation) intensity distribution of waves propagating
in such channels, the dependence of intensity on the longitudinal coordinate does not change and is given by
the same analytical expression as that for quasi-1D. Furthermore, with a minimal modification, the expression
describes also the spatial structures of localized resonances in strictly 1D random systems. It is thus suggested
that the key ingredients of eigenchannels are not only universal with respect to the disorder ensemble and the
dimension, but also of 1D nature and closely related to the resonances. Our findings open up a way to tailor the
spatial energy density distribution in opaque materials.

DOI: 10.1103/PhysRevB.99.094202

I. INTRODUCTION

An unprecedented degree of control reached in ex-
periments on classical waves is turning the dream of
understanding and controlling wave propagation in complex
media into reality [1]. Central to many ongoing research activ-
ities is the concept of transmission eigenchannel [2–16] (ab-
breviated as eigenchannel hereafter). Loosely speaking, the
eigenchannel refers to a specific wave field, which is excited
by the input waveform corresponding to the right-singular
vector [17–19] of the transmission matrix (TM) t . When a
wave is launched into a complex medium it is decomposed
into a number of “partial waves”, each of which propagates
along an eigenchannel and whose superposition gives the field
distribution excited by the incoming wave. Thus, in contrast
to the TM, which treats media as a black box and has been
well studied [20], eigenchannels are much less explored, in
spite of the fact that these provide rich information about the
properties of wave propagation in the interior of the media.
The understanding of the spatial structures of these channels
can provide a basis for wave physics in complex media.

So far, the emphasis has been placed on the struc-
tures of eigenchannels in quasi-1D disordered media [6–11].
Yet, measurements of the high-dimensional spatial resolu-
tion of eigenchannels have been within experimental reach
very recently [14,15]. An intriguing localization structure of
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eigenchannels in the transverse direction has been observed
in both real and numerical experiments for a very wide 2D
diffusive slab [15,16]. In addition, numerical results [16] have
suggested that in this kind of special high-dimensional media,
even in a single disorder configuration, the eigenchannel
structure can carry some universalities that embrace quasi-1D
eigenchannels as well. Here we study the evolution of the
eigenchannels in the crossover from low to higher dimension,
which so far has not been explored. This not only provides a
new angle for the fundamentals of wave propagation in disor-
dered media, but may guide experiments on the eigenchannel
structure in higher dimension.

Another motivation of the present work comes from a
recent surprising finding [21] regarding a seemingly unrelated
object, the resonance in layered disordered samples which,
from the mathematical point of view, are strictly 1D systems.
The resonance refers to a local maximum in the transmittance
spectrum [22], which has a natural connection to Anderson
localization in 1D [23,24] and resonators in various systems,
ranging from plasmonics to metamaterials [25]. Despite the
conceptual difference between the resonance and the eigen-
channel, it was found [21] that the distribution of resonant
transmissions in the (i) 1D Anderson localized regime and (ii)
the transmission eigenvalues in quasi-1D diffusive regime are
exactly the same, namely, the bimodal distribution [17,19].
However, the mechanism underlying this similarity remains
unclear. It is of fundamental interest to understand whether
this similarity is restricted only to transmissions, or can be
extended to spatial structures.
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In this work we show that in a diffusive medium, as the
width of a sample (and consequently the number of channels)
increases so that the sample crosses over from quasi-1D to
higher dimension, eigenchannels exhibit transverse structures
much richer than what were found previously [15,16]. In
particular, given a disorder configuration, not only can we see
the previously found [15,16] localization structure, but also
a necklacelike structure which is composed of several local-
ization peaks. Most surprisingly, notwithstanding the appear-
ance of such diverse transverse structures in the dimension
crossover, the longitudinal structure of eigenchannels, namely,
the depth profile of the energy density (integrated over the
cross section), remains unaffected, and is given by precisely
the same expression as that for quasi-1D found in Ref. [7].
We also study the spatial structures of resonance in strictly
1D. We find that they have a universal analytic expression,
which is similar to that for eigenchannel structures, and the
modification is minimal. Our findings may serve as a proof of
the conjecture [3] of the eigenchannel structure–Fabry-Perot
cavity analogy.

The remainder of this paper is organized as follows. In
Sec. II we introduce some basic concepts of eigenchannels
and resonances. In Sec. III we study in detail how the
eigenchannel structure in a diffusive medium evolves as the
medium crosses over from quasi-1D to a higher-dimensional
slab geometry. To be specific, throughout this work we focus
on 2D samples. In Sec. IV we study in detail the spatial
structure of 1D resonances. In Sec. V we discuss how to use
the universal properties of the transmission eigenchannels to
tailor the energy distribution inside high-dimensional opaque
materials. In Sec. VI we conclude and discuss the results.

II. EIGENCHANNEL AND RESONANCE:
BASIC CONCEPTS

To introduce the concept of eigenchannels [1,3,7], we con-
sider the transmission of a monochromatic wave (with circular
frequency �) through a rectangular (0 � x � L, 0 � y � W )
diffusive dielectric medium bounded in the transverse (y)
direction by reflecting walls at y = 0 and y = W . For W � L
(W � L) the medium geometry is 2D (quasi-1D). The wave
field E (x, y) satisfies the Helmholtz equation (the velocity of
waves in the background is set to unity)

{
∂2

x + ∂2
y + �2[1 + δε(x, y)]

}
E (x, y) = 0, (1)

where δε(x, y) is a random function, which presents the
fluctuations of the dielectric constant inside the sample, and
equals zero at x < 0 and x > L. To study the evolution of the
eigenchannel structure in the crossover from quasi-1D to 2D,
we increase W and keep L, �, and the strength of disorder
fixed.

The incoming and transmitted current amplitudes are re-
lated to each other by the transmission matrix t ≡ {tab}, where
a, b label the ideal [i.e., δε(x, y) = 0] waveguide modes ϕa(y).
The matrix elements are

tab = −i
√

ṽaṽb 〈x = L, a|G|x′ = 0, b〉, (2)

where G is the retarded Green’s function associated with
Eq. (1), and ṽa is the group velocity of mode a.

Since the matrix t is non-Hermitian, we perform its singu-
lar value decomposition, i.e., t = ∑N

n=1 un
√

τnv
†
n to find the

singular value
√

τn and the corresponding left (right)-singular
vector vn (un) normalized to unity. The input waveform vn

uniquely determines the nth eigenchannel, over which radi-
ation propagates in a random medium [1,3,7], and τn gives
the transmission coefficient of the nth eigenchannel and is
also called the transmission eigenvalue. The total transmit-
tance is given by

∑
n τn. Moreover, many statistical properties

of transport through random media such as the fluctuations
and correlations of conductance and transmission may be
described in terms of the statistics of τn [7].

To find the spatial structure of eigenchannels, we replace
x = L in Eq. (2) by arbitrary x ∈ [0, L), i.e.,

tab → tab(x) ≡ −i
√

ṽaṽb 〈x, a|G|x′ = 0, b〉. (3)

This gives the field distribution inside the medium,

Eτn (x) ≡ {Ena(x)} = t (x)vn, (4)

excited by the input field vn. Changing from the ideal waveg-
uide mode (ϕa) representation to the coordinate (x, y) rep-
resentation gives a specific 2D spatial structure, namely, the
energy density profile:

∣∣Eτn (x, y)
∣∣2 =

∣∣∣∣∣
N∑

a=1

Ena(x)ϕ∗
a (y)

∣∣∣∣∣
2

, (5)

which defines the 2D eigenchannel structure associated with
the transmission eigenvalue τn. Examples of this 2D structure
are given in Fig. 1. Integrating Eq. (5) over the transverse
coordinate y we obtain the depth profile of the energy density
of the nth eigenchannel,

wτn (x) ≡
∫

dy
∣∣Eτn (x, y)

∣∣2
, (6)

a key quantity to be addressed below. Note that, in the defini-
tions of (5) and (6), the frequency � is fixed.

To proceed, we present a brief review of resonances in
media with 1D disorder (cf. Fig. 2). For a detailed introduction
we refer to Ref. [25]. In the strictly 1D case, the wave field
E�(x) satisfies{

∂2
x + �2[1 + δε(x)]

}
E�(x) = 0, (7)

where δε(x) represents the fluctuation of the dielectric con-
stant, and like Eq. (1) the wave velocity at the background is
set to unity. For each solution of Eq. (7) with a given � there
is a specific transmittance T (�). We define the resonance as
a local maximum T (�n) ≡ Tn of the transmittance spectrum
{T (�)}, where �n is the resonant frequency. The energy
density of the field at the resonant frequency is defined as the
resonance structure:

ĨTn (x) ≡ ∣∣E�n (x)
∣∣2

, (8)

another key quantity to be addressed below. Importantly,
contrary to the eigenchannel structure, Eq. (5), where � is
fixed, to obtain the resonant structures we need to sample �

so that the resonances can appear.
Below we will show that although the eigenchannel in

2D media and the resonance in 1D media are quite different
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FIG. 1. Simulations show that as the width W increases, so that
a quasi-1D (N = 5) waveguide turns into a 2D slab (N = 800), the
eigenchannel structure |Eτ (x, y)|2 in a single disordered medium
undergoes dramatic changes in the transverse y direction. For N = 5,
the transverse structure is always declocalized (a). For N = 800,
the transverse structure exhibits very rich localization behaviors for
fixed disorder configuration: for example, the structure exhibits one,
two, and three localization peaks in (b), (c), and (d), respectively.
Moreover, the transverse structures of eigenchannels are qualitatively
the same as the structures of |vn(y)|2. For all panels, the eigenvalue
τ ≈ 0.6 and L = 50.

physical entities, their energy density spatial distributions
manifest rather surprising similarity.

III. EIGENCHANNEL STRUCTURE
IN DIMENSION CROSSOVER

In this section we study numerically the evolution of eigen-
channel structures in the crossover from a quasi-1D (L � W )
diffusive medium to a wide (W � L) 2D diffusive slab. We
will study the energy density profiles both in 2D [Eqs. (4) and
(5)] and in 1D [Eq. (8)].

A. Structure of right-singular vectors of the TM

To study the eigenchannel structure given by Eq. (4),
we first perform a numerical analysis of the transmission
eigenvalue spectrum {τn} and the right-singular vectors {vn} of
the TM. We use Eq. (1) to simulate the wave propagation. In
simulations, the disordered medium is discretized on a square
grid, with the grid spacing being the inverse wave number
in the background. The squared refractive index at each
site fluctuates independently around the background value of
unity, taking values randomly from the interval [0.03,1.97].
The standard recursive Green’s function method [26–28]
is adopted. Specifically, we computed the Green’s function
between grid points (x′ = 0, y′) and (x = L, y′). From this

FIG. 2. Example of a transmittance spectrum T (�) (top) and the
resonance structure ĨTn (x) corresponding to the resonant frequency
�n (bottom).

we obtained the TM t , and then numerically performed the
singular-value decomposition to obtain {τn, vn, un}.

First of all, we found that regardless of W [throughout this
work W, L � � (the mean free path)] the eigenvalue density
averaged over a large ensemble of disorder configurations
follows a bimodal distribution, which was found originally
for quasi-1D samples [17–19] and shown later to hold for
arbitrary diffusive samples [29].

However, as shown in Fig. 1, we found that at a given trans-
mission eigenvalue the spatial structure of the right-singular
vector changes drastically with W : for small W , namely
a quasi-1D sample, the structure is extended [Fig. 1(a)],
whereas for large W , namely a 2D slab, the structure is local-
ized in a small area of the cross section, and the localization
structures are very rich. Indeed, as shown in Figs. 1(b)–1(d),
given a disorder configuration, |vn(y)|2 can have one localiza-
tion peak or several localization peaks well separated in the y
direction, even though these distinct structures correspond to
the same eigenvalue: the former has been found before [15],
while for the latter we are not aware of any reports.

B. Transverse structures of eigenchannels

We computed the Green’s function between grid points
(x′ = 0, y′) and (x, y′), where 0 � x � L. By using Eq. (3) we
obtained the matrix t (x). Substituting the simulation results of
{vn} obtained before and t (x) into Eqs. (4) and (5) we found
the profile |Eτn (x, y)|2. We repeated the same procedures for
many disorder configurations, and also for different widths.

Figure 1 represents an even more surprising phenomenon
occurring for very large W (corresponding to N = 800
in simulations), regardless of the transmission eigenvalues.
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FIG. 3. Simulation results of the x-dependent participation ratio
ξn(x) for different values of N .

Basically, we see that the structure of vn(y) serves as a “skele-
ton” of the eigenchannel structure: each localization peak in
|vn(y)|2 triggers a localization peak in the profile |Eτn (x, y)|2
at arbitrary depth x. Thus at the cross section of arbitrary depth
x, the transverse structure of eigenchannels is qualitatively the
same as the localization structure of |vn(y)|2, i.e., if the latter
has a single localization peak or exhibits a necklace structure,
then so does the former, with the number of localization
peaks being the same. Note that Figs. 1(b)–1(d) correspond to
the same disorder configuration and approximately the same
transmission eigenvalue.

Furthermore, we introduce the x-dependent inverse partic-
ipation ratio:

1

ξn(x)
≡

〈 ∫
dy|Eτn (x, y)|4

[
∫

dy|Eτn (x, y)|2]2

〉
(9)

associated with the field distribution Eτn (x, y) of the nth
eigenchannel, where ξn(x) characterizes the extension of the
field distribution in the y direction at the penetration depth x,
and the average is over a number of Eτn (x, y) corresponding to
the same singular value τn. Figure 3 presents typical numerical
results of ξn(x) for different values of N . From this it is easy
to see that the field distribution has the same extension in
the y direction for every x, which is much smaller than W .
This result provides a further evidence that the localization
structure of |vn(y)|2 is maintained throughout the sample.

To understand the origin of the localization structures of
eigenchannels, we first consider the case with single localiza-
tion peak. We modify the input field vn ≡ {vn(y)} [Figs. 4(a)
and 4(b)] to be v′

n ≡ {v′
n(y)} [Fig. 4(c)] in the following way.

We twist by π the phase of vn(y) ≡ |vn(y)|eiϕ(y) in certain
region of y,

vn(y) → v′
n(y) ≡ |vn(y)| exp{iϕ′(y)}, (10)

ϕ′(y) = ϕ(y) + πχ (y), (11)

where χ (y) takes the value of unity in the region, and oth-
erwise of zero. Then we let this modified input field propa-
gate in the medium v′

n → t (x)v′
n, and compare the ensuing

2D energy density profile with the reference eigenchannel
structure [Fig. 4(d)]. We find that when the π -phase twist
region is away from the localization center of vn(y) [Fig. 4(c),

π

π

FIG. 4. A numerical example shows that vn(y) (high transmission) is localized approximately in the region of 9 � y/L � 12 (a) and (b).
This localization of vn(y) at the input edge leads to the localization of eigenchannel structure in the y direction in the interior of the medium
(d). When the phase of vn(y) in the region of 9.0 � y/L � 9.1 is twisted by π [(c), dotted-dashed line], the eigenchannel structure is unaffected
(e). Whereas if the π -phase twist is introduced in the region of 10.3 � y/L � 10.4 [(c), dashed line], the eigenchannel structure is significantly
changed (f). N = 200.
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FIG. 5. A numerical example shows that vn(y) (low transmission, τn = 0.009) exhibits two localization peaks, which are located
approximately in the region of 3 � y/L � 5 and 9 � y/L � 11, respectively (a). This necklace statelike structure of vn(y) at the input edge
leads to two localization peaks of eigenchannel structure in the y direction in the interior of the medium (b). When the phase of vn(y) in
the region of 9 � y/L � 10 is twisted by π , the localization peak of the eigenchannel structure corresponding to the localization region
9 � y/L � 11 of vn(y) is significantly changed, whereas the other peak corresponding to the localization region 3 � y/L � 5 of vn(y) is
unaffected (c). N = 200.

dotted-dashed line], the resulting 2D energy density profile
is indistinguishable from the reference eigenchannel structure
[Fig. 4(e)]. That is, the eigenchannel structure is insensitive to
modifications. Whereas for the changes made in the localiza-
tion center [Fig. 4(c), dashed line], the ensuing energy density
profile is totally different from the reference eigenchannel
structure [Fig. 4(f)]. This shows that the localization structures
of |Eτn (x, y)|2 are of wave-coherence nature.

Next, we consider the case with two localization peaks.
We modify the input field vn ≡ {vn(y)}, which has two lo-
calization peaks [Fig. 5(a)], in the same way as what was
described by Eqs. (10) and (11), and let the modified input
field propagate in the medium. We then compare the resulting
2D energy density profile with the reference eigenchannel
structure [Fig. 5(b)]. Interestingly, if we perform the π -phase
shift in one localization region of |vn(y)|2, then, for the
ensuing 2D energy density profile, only the peak adjacent
to this localization peak of |vn(y)|2 is modified significantly,
whereas the other is indistinguishable from the correspond-
ing reference eigenchannel structure. This implies that when
the transverse structure of eigenchannels if of the necklace-
like shape, different localization peaks forming this necklace
structure are incoherent. In addition, it provides a firm support
that each localization peak in |vn(y)|2 triggers, independently,
the formation of a single localization peak in the transverse
structure of eigenchannels.

C. Universality of eigenchannel structures in slabs

Having analyzed the transverse structure of eigenchannels,
we proceed to explore the longitudinal structure and to ana-
lyze its connection to the eigenchannel structure in a quasi-1D
diffusive waveguide.

For a quasi-1D diffusive waveguide the ensemble average
of wτ (x), denoted as Wτ (x), is given by [7]

Wτ (x) = Sτ (x)Wτ=1(x), (12)

where Wτ=1(x) is the profile corresponding to the transparent
(τ = 1) eigenchannel,

Wτ=1(x) = 1 + πLx′(1 − x′)
2�

, x′ = x/L, (13)

Sτ (x) = 2
cosh2[h(x′)(1 − x′)φ]

cosh2[h(x′)φ]
− τ, τ = 1

cosh2 φ
, (14)

with φ � 0. Note that h(x′) increases monotonically from
h(1) = 1 as x′ decreases from 1. Its explicit form, independent
of N, τ , is given in Fig. 6 (black solid curve).

Now we compare the eigenchannel structure in a slab with
that in a quasi-1D waveguide described by Eqs. (12)–(14). To
this end we average 2000 profiles of wτ (x) with the same
or close eigenvalues τ . (Some of these eigenchannels may
correspond to the same disorder configuration.) As a result,
we obtain Wτ (x) for different values of τ , shown in Fig. 7. We

FIG. 6. Simulations of the resonance structures in 1D show
that the h∗ function is universal with respect to both the resonant
transmission T and the disorder strength s. This property is similar
to the universality of the h function that determines the eigenchannel
structures in 2D and quasi-1D.
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FIG. 7. Simulations show that for 2D slabs with different values
of N , the ensemble averaged depth profile Wτ (x) (symbols) are well
described by the analytic expression given by Eqs. (12)–(14) for
quasi-1D waveguides (black solid lines). Note that at a given τ and x,
all symbols for distinct N overlap. L is fixed to be 50 and five ratios of
W/L are considered, which are 3, 3.6, 4.8, 7.2, and 12, corresponding
to N = 50, 60, 80, 120, and 200, respectively.

see, strikingly, that for slabs with different number of N (i.e.,
width W ) the structures of Wτ (x) are in excellent agreement
with Wτ (x) described by Eqs. (12)–(14).

IV. RESONANCE STRUCTURE

In the previous section we have seen that in both 2D slabs
and quasi-1D waveguides the ensemble averaged eigenchan-
nel structure Wτ (x) is described by the universal formula
Eqs. (12)–(14). It is natural to ask whether this universal-
ity can be extended to strictly 1D systems, in which the
transmission eigenchannel does not exist. Noting that the
resonant transmissions have the same bimodal statistics as the
transmission eigenvalues of eigenchannels [21], in this section
we study numerically the resonance structure ĨTn (x). It is well
known [30] that in strictly 1D, there is no diffusive regime,
because the localization length is ∼�. Instead, there are
only ballistic and localized regimes. We consider the former
below.

In simulations, the sample consists of 51 scatterers sepa-
rated by 50 layers, whose thicknesses (rescaled by the inverse
wave number in the background) are randomly distributed
in the interval d0 ± δ, with d0 = 10.0 and δ = 9.0. Thus
L = 50d0. The scatterers are characterized by the reflection
coefficients ri between the neighboring layers (i labels the
scatterers.), which are chosen randomly and independently
from the interval of (−s, s), with s ∈ (0, 1) governing the dis-
order strength. We change the frequency � in a narrow band
centered at �0 and of half-width 5% × �0, and calculate the
transmittance spectrum T (�) by using the standard transfer
matrix approach. We also change disorder configurations, so
that for each resonant transmission Tn, 5 × 105 profiles of

FIG. 8. The ensemble-averaged resonance structure IT (x) for
two different disorder strengths: s = 0.1 (top) and s = 0.3 (bottom),
whose corresponding localization-to-sample length ratios are 12 and
3, respectively.

ĨTn (x) are obtained. We then calculate the average of these
profiles, denoted by Iτn (x). Finally, we repeat the numerical
experiments for different values of s.

Figure 8 shows the simulation results of Iτ (x) for two
different values of s. These profiles look similar to those pre-
sented in Fig. 7. For quantitative comparison, we compute the
quantity S∗

τ (x) ≡ Iτ (x)/Iτ=1(x). Then we present the function
S∗

τ (x) in the form

S∗
τ (x) = 2

cosh2[h∗(x′)(1 − x′)φ]

cosh2[h∗(x′)φ]
− τ, (15)

and find h∗(x′) for different values of τ and s from S∗
τ (x)

calculated numerically (Fig. 6). The results are surprising: as
shown in Fig. 6, h∗(x′) is a universal function, independent
of τ and s, which is the key feature of h(x′) for eigenchannel
structures. However, Fig. 6 also shows that the two univer-
sal functions, i.e., h∗(x′) and h(x′), are different. Therefore,
allowing this minimal modification, the expression described
by Eqs. (12)–(14) is universal, in the sense that it applies to
both the resonance structure and the eigenchannel structure.
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FIG. 9. Simulations show that by shaping the input field ψin, one can realize different profiles of energy density inside the medium. (a) The
input field ψin = 1√

2
(vh + vl ), with vh(l ) corresponding to the right-singular vector of certain highly (low) transmitting eigenchannel. (b) The

phase of vl is twisted by π in the region 0.3 � y/L � 0.4. (c) The phase of vh is twisted by π in the region 10.3 � y/L � 10.4.

V. TAILORING ENERGY DISTRIBUTION IN
HIGH-DIMENSIONAL OPAQUE MATERIALS

The universal properties of the transmission eigenchannels
presented above open up outstanding possibilities to tailor the
energy distribution inside higher-dimensional opaque mate-
rials, in particular, to concentrate energy in different parts
of a diffusive sample. In the example shown in Fig. 9, two
eigenchannels with low (τl = 0.1) and high (τh = 1) transmis-
sions were excited, so that the input field had the form ψin =

1√
2
(vh + vl ). Here the right-singular vector vh(l ) ≡ {vh(l )(y)}

of the TM corresponds to a highly (low) transmitting eigen-
channel. It is easy to see that the energy density profile
generated by this input inside the medium is comprised of
two phase coherent, but spatially separated parts. This is
because the initial transverse localization of vh(l ) holds along
the sample, and the integrated energy density profiles given
by Eqs. (12)–(14) have maxima at different points x (i.e.,
the higher is the transmission eigenvalue, the larger is the
radiation penetration depth).

Simulations further show (Fig. 9) that it is possible, without
changing the topology of the profile, to vary the relative
intensity deposited in the two separated regions by simply
modulating the phase field of ψin. For example, if we twist
the phase ϕl (y) of vl (y) at points y near the localization center
[of vl (y)] by π ,

vl (y) → v′
l (y) = |vl (y)| exp{iϕ′

l (y)}, (16)

ϕ′
l (y) = ϕl (y) + πχ (y), (17)

where χ (y) takes the value of unity in a region near the
localization center and otherwise is zero. For the ensuing input
field ψin = 1√

2
(vh + v′

l ), where v′
l ≡ {v′

l (y)}, we find that the
energy density deposited in the region corresponding to the
low transmission eigenchannel is suppressed. Similarly, we
can modify the input field to suppress the energy density
deposited in the region corresponding to the high transmission
eigenchannel.

VI. CONCLUSIONS AND OUTLOOK

Summarizing, we have shown that in a diffusive medium,
as the medium geometry crosses over from quasi-1D to higher
dimension, despite the transverse structure of eigenchannels

(corresponding to the same transmission eigenvalues) undergo
dramatic changes, i.e., from the extended to the Anderson-
like localized or necklacelike distributions, their longitudinal
structure stays the same, i.e., the depth profile Wτ (x) of the
energy density of an eigenchannel with transmission τ is
always described by Eqs. (12)–(14), regardless of medium
geometry. The details of the system, such as the thickness
and the disorder ensemble, only enter into the ratio of L/�

in Eq. (12). This expression is universal, in the sense that
it encompasses not only the energy distributions in diffusive
eigenchannels in any dimension, but (with a minimal modifi-
cation) the shape of the transmission resonances in strictly 1D
random systems as well. These findings suggest that eigen-
channels, which are the underpinnings of diverse diffusive
wave phenomena in any dimension, might have a common
origin, namely, 1D resonances. Although the similarity be-
tween the eigenchannel structure and the Fabry-Perot cavity
has been noticed already in the pioneer study of eigenchannel
structures [3], a comprehensive study of this phenomenon has
not been carried out. The results presented above may already
be helpful in further advancing the methods of focusing
coherent light through scattering media by wavefront shaping.
Moreover, based on previous studies [21,31–33], we expect
that controlling the reflectivities of the edges of a sample one
can tune the intensity distributions in eigenchannels, not only
in quasi-1D media, but in samples of higher dimensions as
well. In the future, it is desirable to explore the universality
of eigenchannel structures in high-dimensional media, where
wave interference is strong, so that Anderson localization or
an Anderson localization transition occurs.
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