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A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based
density functional perturbation theory has been proposed by Hamann et al. [D. R. Hamann, X. Wu, K. M. Rabe,
and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005)], using an elegant formalism based on the expression of
density functional theory (DFT) total energy in reduced coordinates, the key quantity being the metric tensor.
We extend this formulation to the projector augmented-wave approach. In this context, we express the full elastic
tensor including the clamped-atom tensor, the atomic-relaxation contributions, and the response to electric
field change (piezoelectric tensor and effective charges). With this, we are able to compute the elastic tensor
for all materials within a fully analytical formulation. The comparison with finite difference calculations on
simple systems shows excellent agreement. This formalism has been implemented in the plane-wave-based DFT
ABINIT software package. We apply it to the computation of elastic properties of low-symmetry systems of
geophysical interest.
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I. INTRODUCTION

Traditionally, computation of elastic properties of mate-
rials, namely the elastic constant tensor (ECT), in ab initio
simulations based on density-functional theory (DFT), made
use of linear stress-strain relations. The residual stresses are
calculated under finite strain; after enough independent de-
formations are applied, the ECT is obtained solving a linear
system of stress-strain equations. In case of highly symmetric
crystals, e.g., cubic or hexagonal, these are straightforward
and fast simulations. However, for lower symmetry systems,
the number of necessary calculations increases rapidly. In
the extreme case, for triclinic crystals, the ECT contains 21
independent values, whose determination requires at least 43
independent calculations. As the computation of stresses is
done once the atomic positions are relaxed, i.e., the determi-
nation of such a triclinic ECT presents a heavy computational
cost. Such low-symmetry systems are oftentimes found when
computing the elasticity along solid solution joins or studying
the effect of atomic impurities and lattice defects, where
random configurations break the symmetry of the parent
structures.

An elegant and fast alternative to the linear stress-strain
relations is the determination of the ECT from a Taylor
expansion of the energy with respect to infinitesimal per-
turbation of the strain. In this context, the ECT represents
the second-order derivatives of the energy with respect to
lattice deformations. A first development was proposed in the
early days of density-functional perturbation theory (DFPT)
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by Baroni et al. [1], who derived a set of equations using a
Green’s function approach [2]. Later, an explicit formalism
was developed by Hamann et al. [3] within the DFPT, where
the perturbations were strain perturbations of the lattice. The
development in Taylor series was realized in the reduced crys-
tallographic space, which allowed for universal expressions
independent of the symmetry. This approach and subsequent
implementation in the standard formalism of norm-conserving
pseudopotentials has been successfully applied to a variety of
materials.

Here we extend this perturbative approach to obtain the
ECT from direct DFPT calculations realized in the projector
augmented-wave (PAW) approach [4,5]. While based on a
more complex formalism than the norm-conserving pseu-
dopotentials, the PAW approach presents net advantages in
terms of accuracy, matching that of all-electron calculations,
and rapidity, matching or even surpassing that of norm-
conserving calculations. The DFPT within the PAW formal-
ism was recently developed and implemented in several DFT
packages [6–8], including perturbations only due to atomic
displacements and partly due to homogeneous electric field.
Regarding the response to an homogeneous electric field, it
should be noted that it is also possible now to compute the
clamped dielectric tensor in the PAW approach [9] using the
formalism of the modern theory of magnetization [10].

Our theoretical development and practical implementation
in the plane-wave-based DFT ABINIT software package fol-
low closely the work of Refs. [3,11]. Throughout our paper,
we use notations consistent to Ref. [5]. Our paper is an ex-
tension and application to the PAW formalism; it specifically
contains two parts: the generalization of the derivatives with
respect to the electric field and the development of the deriva-
tives with respect to strains. The paper is organized as follows.
In Sec. II, we present the different theoretical formalisms
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involved in this development, including PAW-based DFPT
and derivatives with respect to the strain and the electric field.
In Sec. III, we detail the strain perturbation in the PAW ap-
proach. Section IV summarizes the practical implementation
and its validation. We also show a few applications of the
calculations on real low-symmetry systems of geophysical
interest.

II. FORMALISM

In this first section, we briefly present the theoretical
background and define the conventions and notations. For our
theoretical development, we need to mix several formalisms:
DFPT, PAW, metric tensor formulation, and electric field
formulation of the DFT.

A. Density-functional perturbation theory

DFPT is based on the principle that, following small per-
turbations λ1, λ2,... applied to the system made of nuclei and
electrons, it is possible to develop each physical quantity as a
Taylor-series expansion:

X [λ1, λ2, ...] = X (0) + λ1X (λ1 ) + λ2X (λ2 ) + λ1λ2X (λ1λ2 ) + ....

(1)
In this generic expression, X can be any scalar or vec-

tor quantity: energy, wave function, potential, etc., and
X (λi,λ j ,...) is proportional to the derivative of X with respect
to λi, λ j, .... In the remainder of this paper, we focus on
the first- and second-order derivatives with respect to atomic

displacements, strains, and electric fields. A derivative with
respect to the displacement of atom κ in the direction k will
be noted X (τκk ), a derivative with respect to the strain ε in
the directions α and β will be noted X (αβ ), a derivative with
respect to an electric field E along the direction j will be noted
X (E j ). ψ (λ)

n is the derivative of the wave function with respect
to the perturbation λ.

In the previous literature, the notations used to express the
total and partial derivatives vary from one paper to another.
Hereafter, we use the d

dλ
symbol for a total derivative self-

consistently determined, a partial derivative symbol ∂
∂λ

|ψ (0)

for a derivative that does not depend on the change of wave
functions, and the δ symbol is the functional derivative. These
derivatives are connected as follows:

dH
dλ

= ∂H
d∂

∣∣∣∣
ψ (0)

+
∫
R3

δ2EHxc[ρ]

δρ(r)δρ(r′)
ρ (λ)(r′)dr′. (2)

In the DFPT as formulated by Gonze and Vigneron [12],
the higher order derivatives of the energy are obtained from
applying the perturbations on the variational problem. The
extension of this problem is described with the 2N + 1 the-
orem [13]. It is possible, with this theorem, to obtain the 2N th
and the (2N + 1)th order derivatives of the energy only from
the derivatives of the wave functions up to the N th order
[13] using, respectively, a variational and a nonvariational
expression.

The extension to the second order of the variational prob-
lem for a specific perturbation λ1 is given by [13]

E (λ1λ1 ){ψ (0); ψ (λ1 )} = min
ψ (λ1 )

{∑
n

fn
[〈
ψ (0)

n

∣∣(T + Vext )
(λ1λ1 )

∣∣ψ (0)
n

〉+ 〈
ψ (λ1 )

n

∣∣T + Vext − εn

∣∣ψ (λ1 )
n

〉
+ 〈ψ (λ1 )

n

∣∣(T + Vext )
(λ1 )
∣∣ψ (0)

n

〉+ 〈
ψ (0)

n

∣∣(T + Vext )
(λ1 )
∣∣ψ (λ1 )

n

〉]+ 1

2

∂2EHxc[ρ]

∂λ2
1

∣∣∣∣
ψ (0)

+
∫
R3

∂

∂λ1

δEHxc[ρ]

δρ(r)

∣∣∣∣
ψ (0)

ρ (λ1 )(r)dr +
∫
R3

∫
R3

1

2

δ2EHxc[ρ]

δρ(r)δρ(r′)
ρ (λ1 )(r)ρ (λ1 )r′drdr′

−
∑
n,n′

�n,n′
(〈
ψ (λ1 )

n

∣∣ψ (0)
n′
〉+ 〈

ψ (0)
n

∣∣ψ (λ1 )
n′
〉)}

, (3)

where fn is the electronic occupancy of the band with eigen-
value εn, T is the kinetic operator, Vext is the potential external
to the electronic system that includes the one created by
nuclei, EHxc is the Hartree and exchange-correlation energy
functional of the electronic density ρ, and �n,n′ are the
Lagrange multipliers corresponding to the orthogonality con-
straints. Solving this equation yields the first-order derivative
of the wave function ψ (λ1 )

n , via the Sternheimer equation [14]:

Pc
(
H(0) − ε (0)

n

)
Pc

∣∣ψ (λ1 )
n

〉 = −PcH(λ1 )
∣∣ψ (0)

n

〉
, (4)

where H is the Hamiltonian, and Pc are projectors onto
occupied states that ensure orthogonality between |ψ (0)

n 〉 and
|ψ (λ1 )

n 〉. Thanks to the projectors, we can obtain the varia-
tional expression of the second-order derivative of the energy,
E (λ1λ1 )

var {ψ (0); ψ (λ1 )} (Eq. (91) in Ref. [14]).
From the first-order derivative of the wave function ψ (λ1 )

n ,
it is possible to compute second-order mixed derivatives of the

energy using the nonvariational expression [15]:

E (λ1λ2 )
nonvar {ψ (0); ψ (λ1 )}
=
∑

n

fn
[〈
ψ (0)

n

∣∣(T + Vext )
(λ1λ2 )

∣∣ψ (0)
n

〉
+ 〈ψ (0)

n

∣∣(T + Vext )
(λ2 )
∣∣ψ (λ1 )

n

〉]+ 1

2

∂2EHxc[ρ]

∂λ1∂λ2

∣∣∣∣
ψ (0)

+ 1

2

∫
R3

∂

∂λ2

δEHxc[ρ]

δρ(r)

∣∣∣∣
ψ (0)

ρ (λ1 )(r)dr. (5)

B. The projector augmented-wave method

The widely used PAW method [4] is an extension of the
pseudopotential approach combined with augmented wave
techniques. The interactions between the valence electrons
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and the ions in the frozen-core approximation are represented
by a pseudopotential. The variations and the nodes of the wave
functions close to the cores are correctly represented using a
local basis. We use the notations and conventions of Ref. [5];
in the following, we only recall the necessary quantities.

1. The PAW transformation

The exact wave functions are connected to the pseudo-
wave-function via a linear transformation, expressed as a sum
of atom-dependent contributions:

|ψn〉 =
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|ψ̃n〉, (6)

where i runs over the atom positions and angular momenta.
The partial waves φi form a basis of atomic orbitals, and the
φ̃i are “pseudized” partial waves obtained from φi’s, without
any condition for norm conservation. The p̃i are projectors,
which are dual functions of the φ̃i.

Equation (6) allows us to write the total charge density as

ρ(r) = ρ̃(r) + ρ1(r) − ρ̃1(r) + ρc(r), (7)

where ρc(r) is the frozen-core density, ρ̃(r) is the pseudo-
valence-density in the plane-wave representation, and ρ1 and
ρ̃1 are on-site densities:

ρ̃(r) =
∑

n

fn|ψ̃n(r)|2, (8)

ρ1(r) =
∑

i j

ρi jφi(r)φ j (r), (9)

and

ρ̃1(r) =
∑

i j

ρi j φ̃i(r)φ̃ j (r). (10)

In the above expressions, the ρi j scalars are the occupan-
cies of each i, j channel, defined as

ρi j =
∑

n

fn〈ψ̃n| p̃i〉〈p̃ j |ψ̃n〉. (11)

As PAW uses an ultrasoft formalism, the asymptotic be-
havior of the Hartree potential is not preserved at long range.
We introduce a compensation charge density to restore it:

ρ̂(r) =
∑
i jlm

ρi jQ
lm
i j (r), (12)

where

Qlm
i j (r) = ql

i jgl (|r − τκ |)Ylm(r̂ − τκ ). (13)

ql
i j are the moments of the difference between the norms of

the partial and the pseudopartial waves, gl is a shape function
localized in the augmentation region, τκ is the position of
atom κ associated to channels i and j. Ylm are (real) spherical
harmonics.

2. The PAW Hamiltonian

From the decomposition of the density [Eq. (7)], we can
obtain an expression for the total energy (see Ref. [4] for the

detailed description of the different terms):

E = Ẽ + E1 − Ẽ1. (14)

By differentiation of this energy with respect to
the pseudo-density-operator, the pseudo-PAW-Hamiltonian
becomes (with the simplified notations of Audouze et al. [11])

H̃ = T + VHxc[ρ̃ + ρ̂; ρ̃c] + VH [ρ̃Zc] +
∑

i j

(| p̃i〉Di j〈p̃ j |),

(15)
where VHxc[ρ̃ + ρ̂; ρ̃c] is the sum of the Hartree potential
VH [ρ̃ + ρ̂] and of the exchange-correlation potential Vxc[ρ̃ +
ρ̃c]; VH [ρ̃Zc] is the local pseudopotential and ρ̃Zc is the
pseudo-core-density.

The Di j scalars involved in the nonlocal operator are self-
consistently determined from the wave functions as

Di j = D̂i j + D1
i j − D̃1

i j . (16)

They are made of (i) a contribution from the compensation
charge density,

D̂i j = ∂Ẽ

∂ρi j
=
∑

L

∫
R3

Ṽeff(r)QL
i j (r)dr, (17)

with

Ṽeff = VH [ρ̃ + ρ̂] + VH [ρ̃Zc] + Vxc[ρ̃ + ρ̂; ρ̃c]; (18)

(ii) an all-electron on-site contribution:

D1
i j = ∂E1

∂ρi j
= 〈φi|T + V 1

eff|φ j〉, (19)

with

V 1
eff = VH [ρ1] + VH [ρZc] + Vxc[ρ1; ρc]; (20)

and (iii) a pseudo-on-site-contribution:

D̃1
i j = ∂Ẽ1

∂ρi j
= 〈φ̃i|T + Ṽ 1

eff|φ̃ j〉 +
∑

L

∫
�κ

Ṽ 1
eff(r)QL

i j (r)dr,

(21)
with

Ṽ 1
eff = VH [ρ̃1 + ρ̂] + VH [ρ̃Zc] + Vxc[ρ̃1 + ρ̂; ρ̃c], (22)

and �κ is the augmentation region around atom κ .
The ψ̃n are not orthogonal and solve a generalized wave

equation:

H̃ψ̃n = εnSψ̃n, (23)

where S = 1 +∑
i j | p̃i〉si j〈p̃ j | is the overlap operator and εn

the eigenvalue.

C. Density-functional perturbation theory within the projector
augmented-wave approach

Audouze et al. [11,16] have already developed a generic
PAW formulation of DFPT whose notations we use here-
inafter in a more synthetic way. However, this formulation
does not contain any information about strains as perturba-
tions. Because of the ultrasoft character of the PAW formal-
ism, the pseudo-wave-functions ψ̃n lose their orthogonality;
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thus the Sternheimer equation [Eq. (4)] becomes

P†
c

(
H̃(0) − ε (0)

n S (0)
)
Pc

∣∣ψ̃ (λ1 )
n

〉
= −P†

C

(
H̃(λ1 ) − ε (0)

n S (λ1 )
)∣∣ψ̃ (0)

n

〉
, (24)

and the associated orthogonality condition in the parallel
gauge, ensured by the Pc projectors (Eqs. (71)–(72) in Ref.
[11]), is 〈

ψ̃ (λ1 )
n

∣∣S (0)
∣∣ψ̃ (0)

n

〉 = − 1
2

〈
ψ̃ (0)

n

∣∣S (λ1 )
∣∣ψ̃ (0)

n

〉
. (25)

1. Variational expression of the second-order energy changes

The previous generalized Sternheimer equation [Eq. (24)]
allows for solving a variational problem to minimize the
second-order derivative of the energy, expressed as the sum
of three contributions,

E (λ1λ1 )
var = E (λ1λ1 )

ψ̃ (0) + E (λ1λ1 )
var,δψ̃

+ E (λ1λ1 )
var,Hxc : (26)

(i) a contribution independent of the wave-function
changes:

E (λ1λ1 )
ψ̃ (0) =

∑
n

〈
ψ̃ (0)

n

∣∣∂2H̃
∂λ2

1

∣∣∣∣
ψ̃ (0)

− εnS (λ1λ1 )|ψ̃ (0)〉; (27)

(ii) a contribution explicitly dependent of the wave-
function changes,

E (λ1λ1 )
var,δψ̃

=
∑

n

〈
ψ̃ (λ1 )

n

∣∣H̃(0) − εnS (0)
∣∣ψ̃ (λ1 )

n

〉
+
[〈

ψ̃ (λ1 )
n

∣∣ ∂H̃
∂λ1

∣∣∣∣
ψ̃ (0)

− εnS (λ1 )
∣∣ψ̃ (0)

n

〉+ c.c.

]
; (28)

and (iii) a contribution dependent of the changes in the Hartree
and exchange-correlation potential, in which PAW on-site
terms appear:

E (λ1λ1 )
var,Hxc =

∫
R3

∫
R3

1

2

δ2EHxc[ρ̃; ρ̂]

δρ(r)δρ(r′)

× (ρ̃ (λ1 )(r) + ρ̂ (λ1 )(r))(ρ̃ (λ1 )(r′) + ρ̂ (λ1 )(r′))drdr′

+
∑

κ

[∫
�κ

∫
�κ

1

2

δ2EHxc[ρ1]

δρ(r)δρ(r′)
ρ

(λ1 )
1 (r)ρ (λ1 )

1 (r′)drdr′

−
∫

�κ

∫
�κ

1

2

δ2EHxc[ρ̃1; ρ̂1]

δρ(r)δρ(r′)
(
ρ̃

(λ1 )
1 (r) + ρ̂

(λ1 )
1 (r)

)
× (ρ̃ (λ1 )

1 (r′) + ρ̂
(λ1 )
1 (r′)

)
drdr′

]
. (29)

2. Nonvariational expression of the second-order energy changes

We use a nonvariational form to compute the mixed
second-order derivatives of the energy. This is obtained from
a variational expression by canceling the changes of the wave
function with respect to the second perturbation:

E (λ1λ2 )
nonvar = E (λ1λ2 )

ψ̃ (0) + E (λ1λ2 )
nonvar,δψ̃

+ E (λ1λ2 )
nonvar,Hxc. (30)

Once again, we express this formula as a sum of three
contributions: (i) a contribution independent of the wave-
function changes, identical to that in the variational formula-
tion [Eq. (27)]; (ii) a contribution explicitly dependent of the

wave-function changes:

E (λ1λ2 )
nonvar,δψ̃

= 1

2

∑
n

[〈
ψ̃ (λ1 )

n

∣∣H̃(0) − εnS (0)

∣∣∣∣− 1

2
δψ̃ (λ2 )

n

〉

+ 〈ψ̃ (0)
n

∣∣ ∂H̃
∂λ1

∣∣∣∣
ψ̃ (0)

− εnS (λ1 )

∣∣∣∣− 1

2
δψ̃ (λ2 )

n

〉

+ 〈ψ̃ (λ1 )
n

∣∣ ∂H̃
∂λ2

∣∣∣∣
ψ̃ (0)

− εnS (λ2 )
∣∣ψ̃ (0)

n

〉+ c.c.

]
; (31)

and (iii) a contribution dependent of the changes in the Hartree
and exchange-correlation potential:

E (λ1λ2 )
nonvar,Hxc

=
∫
R3

∫
R3

1

2

δ2EHxc[ρ̃; ρ̂]

δρ(r)δρ(r′)

× (ρ̃ (λ1 )(r) + ρ̂ (λ1 )(r))(δρ̃ (λ2 )(r′) + δρ̂ (λ2 )(r′))drdr′

+
∑

κ

[ ∫
�κ

∫
�κ

1

2

δ2EHxc[ρ1]

δρ(r)δρ(r′)
ρ

(λ1 )
1 (r)δρ (λ2 )

1 (r′)drdr′

−
∫

�κ

∫
�κ

1

2

δ2EHxc[ρ̃1; ρ̂1]

δρ(r)δρ(r′)

× (ρ̃ (λ1 )
1 (r) + ρ̂

(λ1 )
1 (r)

)(
δρ̃

(λ2 )
1 (r′) + δρ̂

(λ2 )
1 (r′)

)
drdr′

]
.

(32)

In the above expressions, we have introduced the changes
of the wave function and of the density due to the overlap
operator as

δψ̃ (λ2 )
n =

∑
n′

〈
ψ̃

(0)
n′
∣∣S (λ2 )

∣∣ψ̃ (0)
n

〉
ψ̃

(0)
n′ (33)

and

δρ̃ (λ2 )(r) =
∑

n

(〈ψn|r〉
〈
r
∣∣δψ̃ (λ2 )

n

〉+ c.c.
)
. (34)

D. The strain perturbation and the metric tensor formulation

To treat the strain perturbation, we use the elegant metric
tensor formulation proposed by Hamann et al. [3]. In both
real and reciprocal spaces, all quantities are expressed using
reduced coordinates and the metrics of the space. Conse-
quently, the strain perturbation affects only the metric tensor,
�i j = ∑

α RP
αiR

P
α j , where RP

αi is a primitive lattice vector. The
metric tensor of the reciprocal space is ϒ = �−1.

Then the norm of a vector �X in the real space is

|�X | = (�X .�X )1/2 =
⎛⎝∑

i j

�i j X̃iX̃ j

⎞⎠1/2

(35)

and its derivative with respect to strain is

∂|�X |
∂εαβ

= 1

2|�X |
∑

i j

∂�i j

∂εαβ

X̃iX̃ j,

with
∂�i j

∂εαβ

= RP
αiR

P
β j + RP

βiR
P
α j .

(36)
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Special attention has to be paid for derivatives and integrals
involving volume. Indeed, the deformation of the metrics may
induce a change in volume:

∂�

∂εαβ

= δαβ�. (37)

As such, an integral over the volume � becomes

∂

∂εαβ

[∫
�

f (r)dr
]

= δαβ�

∫
�

f (r)dr +
∫

�

∂ f (r)

∂εαβ

dr. (38)

E. The electric-field perturbation

For insulators, a collective movement of atoms induces a
change in the electric field. If this movement is due to an
atomic vibration, the response is defined as the Born effective
charge tensor [17]. If the movement is due to a strain, the
response is the piezoelectric tensor [17].

To calculate these quantities within DFT, it is necessary to
explicitly consider a homogeneous, static electric field in the
Hamiltonian:

H(E ) = T + VHxc(r) + Vext(r)︸ ︷︷ ︸
H(0)

+ E · r̂︸︷︷︸
VE

, (39)

where r̂ is the position operator.
Because of the electric field, the Hamiltonian loses its

periodicity. The standard approach to deal with this issue is
to use the long wavelength limit [18–20]. The application of
the first-order Hamiltonian—at frozen wave functions—to a
wave function yields the derivative of the wave function with
respect to the vector k [15]:

∂Hk,k

∂E

∣∣∣∣
ψ (0)

|un,k〉 = i
d|un,k〉

dk
, (40)

where Hk,k and un,k are, respectively, the Hamiltonian and
the wave functions described in Bloch state space.

Thus we can reformulate the variational expression of the
mixed second-order energy derivatives involving the electric
field as [15]

E
(λ1E j )
var =

[
�

(2π )3

∫
dk
∑

n

(〈
ψ

(0)
n,k

∣∣ ∂2H
∂λ1∂E j

∣∣∣∣
ψ (0)

∣∣ψ (0)
n,k

〉
+ 〈ψ (λ1 )

n,k

∣∣i d

dk j

∣∣ψ (0)
n,k

〉+ 〈
ψ

(0)
n,k

∣∣ ∂H
∂λ1

∣∣∣∣
ψ (0)

∣∣ψ (E j )
n,k

〉
+ 〈ψ (λ1 )

n,k

∣∣H(0) − ε (0)
n

∣∣ψ (E j )
n,k

〉)
+ 1

2

∫
�

δVxc

δρ

∣∣∣∣
ρ (0)

ρ (λ1 )(r)ρ (E j )(r)dr

+ 2π�
∑
G �=0

ρ (λ1 )(G)ρ (E j )(G)

G2

]
. (41)

Note that we consider here the wave functions expanded
in a plane-wave basis. As the derivative of the wave function
with respect to k appears, we also need to explicitly use the
Brillouin zone sampling.

From the previous equation, we can derive the two follow-
ing nonvariational expressions:

E
(λ1E j )
nonvar = �

(2π )3

∫
dk
∑

n

(〈
ψ

(0)
n,k

∣∣ ∂2H
∂λ1∂E j

∣∣∣∣
ψ (0)

∣∣ψ (0)
n,k

〉
+ 〈ψ (λ1 )

n,k

∣∣i d

dk j

∣∣ψ (0)
n,k

〉)
(42)

and

E
(E jλ1 )
nonvar = �

(2π )3

∫
dk
∑

n

(〈
ψ

(0)
n,k

∣∣ ∂2H
∂λ1∂E j

∣∣∣∣
ψ (0)

∣∣ψ (0)
n,k

〉
+ 〈ψ (0)

n,k

∣∣ ∂H
∂λ1

∣∣∣∣
ψ (0)

∣∣ψ (E j )
n,k

〉)
. (43)

F. Relaxed-ion tensors

The perturbations with respect to field and strain are cou-
pled to the internal degrees of freedom. As such, we can
define two sets of tensors, clamped, i.e., independent on the
ionic relaxations, and relaxed, i.e., dependent on the atomic
relaxations. Wu et al. [17] clearly explain this coupling. For
example, the action of an electric field or of strain induces
a change in the atomic positions, under constraints of the
symmetry. Considering the energy Evol per unit cell volume,
the elementary tensors are defined as:

the clamped-ion elastic tensor:

C̄αβγ δ = ∂2Evol

∂εαβ∂εγ δ

∣∣∣∣
τ,E

, (44)

the clamped-ion dielectric susceptibility tensor:

χ̄ j j′ = − ∂2Evol

∂E j∂E j′

∣∣∣∣
τ,ε

, (45)

the clamped-ion piezoelectric tensor:

ē jαβ = − ∂2Evol

∂E j∂εαβ

∣∣∣∣
τ

, (46)

the Born effective charge tensor:

Zκk j = −�
∂2Evol

∂τκk∂E j

∣∣∣∣
ε

, (47)

the clamped-ion force-strain coupling tensor:

�κkαβ = −�
∂2Evol

∂τκk∂εαβ

∣∣∣∣
E
, (48)

and the force constant tensor:

Kκkκ ′k′ = �
∂2Evol

∂τκk∂τκ ′k′

∣∣∣∣
E,ε

. (49)

Taking into account the coupling between the different
perturbations and the ion relaxations, we obtain the relaxed-
ion elastic, piezoelectric, and dielectric tensors as

Cαβδγ = C̄αβδγ − �−1�κkαβ (K−1)κkκ ′k′�κ ′k′γ δ,

e jαβ = ē jαβ + �−1Zκk j (K
−1)κkκ ′k′�κ ′k′αβ,

χ j j′ = χ̄ j j′ + �−1Zκk j (K
−1)κkκ ′k′Zκ ′k′ j′ . (50)
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III. RESPONSE TO STRAIN AND ELECTRIC FIELD
WITHIN THE PROJECTOR AUGMENTED-WAVE

APPROACH

In the following, we adapt the generic equations of DFPT
in PAW presented in the previous section to strain and electric
field perturbations. This is done in two parts. First, we calcu-
late the second-order derivatives of the energy with respect to
two strains, obtained from two contributions: one that depends
on both wave functions and wave-function changes, and one
that depends only on the wave functions. Second, we compute
the mixed derivatives of the energy between one strain and
one other perturbation.

We consider the wave functions expanded in a plane-wave
basis, G. We denote the sum of a Bloch vector k in the Bril-
louin zone and a plane-wave vector as K = k + G. K̃i and G̃i

are their corresponding components in reduced coordinates.
As a starting point, we use the formalism developed by

Hamann et al. [3]. In the case of the PAW approach, it is nec-
essary to generalize most of the formulas by Hamannet al. by
introducing the following modifications: (i) the nonorthogo-
nality of the pseudo-wave-functions, (ii) the use of a compen-
sation charge density, (iii) the self-consistency of the nonlocal
operator, and (iv) the additional on-site terms coming from
contributions of the partial waves basis

Concerning the last point, contrary to the real-space grid
which is used for the Fourier transform, the PAW partial
wave basis is not affected by deformation. Moreover, all the
on-site integrals are expressed with respect to the center of
the augmentation regions, i.e., the atomic positions; as such
they are not affected by displacements of the atoms resulting
from deformation. Consequently, the formulas for on-site
contributions to the first-order objects are not specific to the
strain and are the same as for the other perturbations, like
atomic displacements. All these formulas are detailed in Ref.
[11]. All the derivatives of the integrals on the real-space grid
contain terms coming from the metric tensor, as detailed in
Sec. II D.

The second-order energy derivatives contain two parts,
one involving the wave-function changes and a second one
involving only ground-state wave functions. The first part
is obtained from the Sternheimer equation, which needs the
first-order Hamiltonian detailed in Sec. III A. The second part,
at frozen wave functions, is detailed in Sec. III B.

A. First-order derivatives of the Hamiltonian

1. Variational formulation of the second-order energy

First we need the first-order derivatives of the pseudo-
wave-functions ψ̃ (αβ )

n with respect to the deformation εαβ .
For this, we minimize the variational expression [Eqs. (26)–
(29)] of the second-order derivative of the energy using the
Sternheimer equation [Eq. (24)] with λ1 = αβ.

The specificity of the strain perturbation lies in the deriva-
tives of the operators, which depend now on the change of the
metric tensor. For example, the kinetic operator has a nonnull
derivative in the presence of strain perturbation, which is not
included in Ref. [11]. The full first-order derivative of the

Hamiltonian with respect to strain becomes

H̃(αβ ) = T (αβ ) + V (αβ )
Hxc [ρ̃; ρ̂; ρ̃c] + V (αβ )

H [ρ̃Zc]

+
∑

i j

(| p̃i〉D̂i j + D1
i j − D̃1

i j〈p̃ j |
)(αβ )

. (51)

In this framework, we explicit the various terms of the
derived Hamiltonian. Some are computed in the reciprocal
space and some in the real space.

2. Contribution of the kinetic operator

In PAW, this term is identical to the norm-conserving pseu-
dopotential formulation, as developed by Hamann et al. [3].
The derivative of the kinetic operator in a plane-wave basis
only involves the derivative of the reciprocal space metric
tensor ϒ :

〈K̃′|T (αβ )|K̃〉 = δK̃′K̃
1

2
[1 + f ′

SM(eK̃ )]
∑

i j

ϒ
(αβ )
i j K̃iK̃ j . (52)

f ′
SM is the derivative of the kinetic energy smearing function

fSM. eK̃ is the kinetic energy of the plane wave.

3. Contribution of the local potentials

The local potential is the sum of three contributions: the
local ionic pseudopotential, the Hartree potential, and the
exchange and correlation potential. The three contributions
corresponding to the derivative of the Hamiltonian are de-
rived analytically in the reciprocal space. Hamann et al. [3]
proposed expressions for the first-order potentials in case of
strain perturbations. These expressions are directly usable
in PAW by replacing the density ρ with the compensated
pseudodensity ρ̃ + ρ̂.

The local ionic pseudopotential VH [ρ̃Zc](r) is the sum of
the radial contributions vκ

H [ρ̃Zc](|r − τκ |) of the atoms located
in τκ . Its corresponding derivative in the reciprocal space with
respect to strain is [3]

VH [ρ̃Zc](αβ )(G) =
∑

κ

e−2iπG·τκ

⎡⎣−δαβvκ
H [ρ̃Zc](G)

+ vκ
H [ρ̃Zc]′(G)

2G

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

⎤⎦. (53)

vκ
H [ρ̃Zc](G) is the radial Fourier transform of the atomic

potential and vκ
H [ρ̃Zc]′(G) is its derivative.

The Hartree potential, explicitly involving the compensa-
tion charge density specific to PAW, is derived with respect to
a deformation as [3]

VH [ρ̃ + ρ̂](αβ )(G)

= 4π

G2

⎡⎣(ρ̃ (αβ )(G) + ρ̂ (αβ )(G))

− (
ρ̃(G) + ρ̂(G)

)⎛⎝δαβ + 1

G2

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

⎞⎠⎤⎦. (54)
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The derivatives of the densities are detailed below
(Sec. III A 5).

The exchange and correlation potential contains a nonlin-
ear core correction which involves the pseudo-core-density
ρ̃c(r) [21]. Its derivative with respect to strain contains a vol-
ume contribution, as well as contributions from core, valence,
and compensation charge densities. In the LDA framework,
it is

V (αβ )
xc (r) = Kxc(r)

[
− δαβ (ρ̃(r) + ρ̂(r))

+ ∂ρ̃c(r)

∂εαβ

+ (ρ̃ (αβ )(r) + ρ̂ (αβ )(r))

]
, (55)

with

Kxc(r) = δVxc[ρ]

δρ(r)

∣∣∣∣
ρ (0)

. (56)

The pseudo-core-density ρ̃c(r) is the sum of the radial
atomic contributions ρ̃κ

c (|r − τκ |), expressed in the reciprocal
space (unlike Ref. [3]), as

ρ̃c(G) =
∑

κ

ρ̃κ
c (G)e−2iπG·τκ . (57)

Its corresponding derivative in the reciprocal space with
respect to strain is obtained as in the case of the local ionic
pseudopotential as

∂ρ̃c(G)

∂εαβ

= 1

�

∑
κ

e−2iπG·τκ

[
− δαβρ̃κ

c (G)

+ ρ̃κ
c ’(G)

2G

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

]
. (58)

ρ̃κ
c (G) is the radial Fourier transform of the pseudo-core-

density and ρ̃κ
c ’(G) is its derivative. The limit of ρ̃κ

c ’(G)
G in

G = 0 is detailed in the Appendix.

4. Contribution of the nonlocal potential

In the PAW formalism, the nonlocal potential, VNL is
self-consistently determined from the pseudo-wave-functions.
Thus, its derivative with respect to strain contains two parts,
one from the projectors and one from the intensities Di j :

V (αβ )
NL 7 =

∑
i j

[(| p̃i〉〈p̃ j |)(αβ )Di j + | p̃i〉(Di j )
(αβ )〈p̃ j |]. (59)

The derivatives with respect to strain of the projectors
(| p̃i〉〈p̃ j |)(αβ ) are detailed in the Appendix. These deriva-
tives are in principle analogous to those obtained in norm-
conserving pseudopotentials by Hamman et al. [3]. But the
formalism based on the Legendre polynomials cannot be
generalized in PAW because of the off-diagonal terms of Di j .
This is why we need to express this potential in terms of
spherical harmonics.

The Di j derivatives are made of three contributions:
(i) A contribution from the compensation charge density:

(D̂i j )
(αβ ) =

∑
L

∫
R3

[
Ṽ (αβ )

eff (r)QL
i j (r)

+ Ṽeff(r)
((

QL
i j

)(αβ )
(r) + δαβQL

i j (r)
)]

dr. (60)

The last term arises from the metric change [Eq. (38)].
The different parts of Ṽ (αβ )

eff (local, Hartree, and exchange-
correlation) have been detailed in the previous section. The
integral over R3 implies derivatives of the metric tensor.

(ii) An all-electron on-site contribution:(
D1

i j

)(αβ ) = 〈φi|
(
V 1

eff

)(αβ )|φ j〉. (61)

(iii) A pseudo-on-site-contribution:(
D̃1

i j

)(αβ ) = 〈φ̃i|
(
Ṽ 1

eff

)(αβ )|φ̃ j〉 +
∑

L

∫
�κ

[(
Ṽ 1

eff

)(αβ )
(r)QL

i j (r)

+ Ṽ 1
eff(r)

(
QL

i j

)(αβ )
(r)
]
dr. (62)

As we stated at the beginning of this section, these expres-
sions do not require any special treatment for strain perturba-
tion. As such, they are detailed in Eqs. (78)–(79) of Ref. [11].

Note that the treatment of the overlap operator S is very
similar to the nonlocal potential one and contains only the
derivatives of the projectors:

S(αβ ) =
∑

i j

si j (| p̃i〉〈p̃ j |)(αβ ). (63)

5. Derivatives of the densities

The derivatives of the different PAW density components
with respect to strain are straightforwardly expressed as

ρ̃ (αβ )(r) =
∑

n

fn
(
ψ̃∗(αβ )

n (r)ψ̃ (0)
n (r) + ψ̃∗(0)

n (r)ψ̃ (αβ )
n (r)

)
,

ρ
(αβ )
1 (r) =

∑
i j

ρ
(αβ )
i j φi(r)φ j (r),

ρ̃
(αβ )
1 (r) =

∑
i j

ρ
(αβ )
i j φ̃i(r)φ̃ j (r),

ρ̂ (αβ )(r) =
∑
i jL

[
ρ

(αβ )
i j QL

i j (r) + ρi j
(
QL

i j

)(αβ )
(r)
]
, (64)

with the derivative of the occupation matrix given by

ρ
(αβ )
i j =

∑
n

fn
〈
ψ̃ (αβ )

n

∣∣p̃i
〉〈

p̃ j

∣∣ψ̃ (0)
n

〉+ 〈
ψ̃ (0)

n

∣∣ p̃i
〉〈

p̃ j

∣∣ψ̃ (αβ )
n

〉
+ 〈ψ̃ (0)

n

∣∣(| p̃i〉〈p̃ j |)(αβ )
∣∣ψ̃ (0)

n

〉
. (65)

All these formulas do not reveal specificities related to
the response to strain, except for the moments QL

i j (r) of the
density of charge compensation:(

Qlm
i j

)(αβ )
(r) = ql

i j

d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )
· d (r − τκ )

dεαβ

.

(66)
Combining the strain tensor symmetry and the metric

tensor formulation this derivative can be rewritten as(
Qlm

i j

)(αβ )
(r) = 1

2
ql

i j

[
(r − τκ )β

d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )α

+ (r − τκ )α
d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )β

]
.

(67)
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B. Second-order derivatives of the energy not involving the wave-function changes

We discuss next the different terms of the second-order energy derivatives at frozen wave functions ψ̃ (0)
n , which are found in

both the variational and the nonvariational expressions:

E (αβγ δ)

ψ̃
(0)
n

= 1

2

∂2E

∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

= 1

2

∑
n

〈
ψ̃ (0)

n

∣∣ ∂2H̃
∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

− εnS (αβγ δ)
∣∣ψ̃ (0)

n

〉
. (68)

1. Contribution of the kinetic operator

Similar to Sec. III A 2, this PAW term is identical to the norm-conserving pseudopotential formulation, as developed by
Hamann et al. [3]. The second-order derivative of the kinetic energy only involves the derivatives of the reciprocal space metric
tensor ϒ :

∂2ET

∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

=
∑

n

〈
ψ̃ (0)

n

∣∣T (αβγ δ)
∣∣ψ̃ (0)

n

〉
, (69)

with the derivative of the kinetic operator expressed in the reciprocal space as

〈K̃′|T (αβγ δ)|K̃〉 = δK̃′K̃

⎛⎝ f ′′
SM(eK̃ )

⎡⎣1

2

∑
i j

ϒ
(αβ )
i j K̃iK̃ j

⎤⎦2

+ 1

2
[1 + f ′

SM(eK̃ )]2
∑

i j

ϒ
(αβγ δ)
i j K̃iK̃ j

⎞⎠. (70)

f ′′
SM is the second derivative of the kinetic energy smearing function fSM.

2. Contribution of the local potentials

Once more, the expressions for the strain derivatives of the local Eloc, Hartree EH , and exchange-correlation Exc energies were
developed by Hamann et al. [3]. For PAW, we replace the density ρ with the compensated pseudodensity ρ̃ + ρ̂:

∂2Eloc

∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

=
∑
G �=0

(ρ̃(G) + ρ̂(G))
∑

κ

e−2iπG·τκ

[
δαβδγ δv

κ
H [ρ̃Zc](G) +

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

∑
kl

ϒ
(γ δ)
kl G̃kG̃l

(
vκ

H [ρ̃Zc]′′(G)

4G2
− vκ

H [ρ̃Zc]′(G)

4G3

)
− vκ

H [ρ̃Zc]′(G)

2G

∑
i j

(
δαβϒ

(γ δ)
i j + δγ δϒ

(αβ )
i j − ϒ

(αβγ δ)
i j

)
G̃iG̃ j

]
,

(71)

∂2EH

∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

= 2π�
∑
G �=0

|(ρ̃(G) + ρ̂(G))|2
[

G−2δαβδγ δ + G−4
∑

i j

(
δαβϒ

(γ δ)
i j + δγ δϒ

(αβ )
i j − ϒ

(αβγ δ)
i j G̃iG̃ j

)
+ 2G−6

∑
i j

ϒ
(γ δ)
i j G̃iG̃ j

∑
kl

ϒ
(γ δ)
kl G̃kG̃l

]
,

(72)

∂2Exc

∂εαβ∂εγ δ

∣∣∣∣
ψ̃ (0)

= δαβδγ δExc + �

∫ [
Vxc(r)

∂2ρ̃c(r)

∂εαβ∂εγ δ

+ (Kxc(r)(ρ̃(r) + ρ̂(r)) − Vxc(r))

×
(

δαβδγ δ (ρ̃(r) + ρ̂(r)) − δαβ

∂ρ̃c(r)

∂εγ δ

− δγ δ

∂ρ̃c(r)

∂εαβ

)
+ Kxc(r)

∂ρ̃c(r)

∂εγ δ

∂ρ̃c(r)

∂εαβ

]
dr.

(73)

The second-order derivative of the pseudo-core-density ρ̃c is straightforwardly obtained from the first-order one [Eq. (58)].
As in the case of the first-order derivative, these equations are developed in the reciprocal space, unlike Ref. [3]:

∂2ρ̃c(G)

∂εαβ∂εγ δ

= 1

�

∑
a

e−2iπG·τκ

[
δαβδγ δρ̃c(G) − δαβ

ρ̃κ
c

′(G)

2G

∑
i j

ϒ
(γ δ)
i j G̃iG̃ j − δγ δ

ρ̃κ
c ’(G)

2G

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

+
(

ρ̃κ
c

′′(G)

4G2
− ρ̃κ

c
′(G)

4G3

)∑
i j

ϒ
(αβ )
i j G̃iG̃ j

∑
kl

ϒ
(γ δ)
kl G̃kG̃l + ρ̃κ

c
′(G)

2G

∑
i j

ϒ
(αβγ δ)
i j G̃iG̃ j,

] (74)

where ρ̃κ
c ”(G) is the second-order derivative of the pseudo-core-density in reciprocal space. The limits of ρ̃κ

c ’(G)
G and ( ρ̃κ

c
′′(G)
G2 −

ρ̃κ
c

′(G)
G3 ) at G = 0 are given in the Appendix.
The extension of this formalism to the generalized gradient approximation requires the transformation of the equations related

to the pseudo-core-density presented in Ref. [17] to the reciprocal space.
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3. Contribution of the nonocal potential

The second-order derivative of the nonlocal operator contains the most novelties because of the self-consistency of the Di j

scalars. It is solved similarly to the first-order one. At frozen wave function, it contains only derivatives of the projectors and of
the Di j scalars. Only the integral over the real-space grid, i.e., the D̂i j term, contributes to the derivatives of the scalars. At each
additional order of the derivation, new terms appear from the metrics changes. Only the derivatives of the local pseudopotential
VH [ρ̃Zc] [Eq. (53)] intervene in the derivation of the effective potential Ṽeff.

The first-order derivative of the nonlocal energy becomes

∂Enl

∂εαβ

∣∣∣∣
ψ̃ (0)

=
∫
R3

(VH [ρ̃Zc])(αβ )(r)ρ̂(r)dr +
∑

i j

∑
n

fn〈ψ̃n|∂| p̃i〉〈p̃ j |
∂εαβ

|ψ̃n〉(Di j − εnsi j )

+
∑
i jlm

ρi j

∫
R3

[
Ṽeff(r)

(
Qlm

i j

)(αβ )
(r) + δαβṼeff(r)Qlm

i j (r)
]
dr.

(75)

The next derivative is

∂2Enl

∂εγ δ∂εαβ

∣∣∣∣
ψ̃ (0)

=
∫
R3

(VH [ρ̃Zc])(αβγ δ)(r)ρ̂(r)dr +
∑

i j

∑
n

fn〈ψ̃n|∂
2| p̃i〉〈p̃ j |

∂εαβ∂εγ δ

|ψ̃n〉(Di j − εnsi j )

+
∑
i jlm

ρi j

∫
R3

[
Ṽeff(r)

(
Qlm

i j

)(αβγ δ)
(r) + (VH [ρ̃Zc])(αβ )(r)

(
Qlm

i j

)(γ δ)
(r)
]
dr

+
∑
i jlm

ρi j

∫
R3

[
(VH [ρ̃Zc])(γ δ)(r)

(
Qlm

i j

)(αβ )
(r) + δαβ (VH [ρ̃Zc])(γ δ)(r)Qlm

i j (r)
]
dr

+
∑
i jlm

ρi j

∫
R3

[
δγ δ (VH [ρ̃Zc])(αβ )(r)Qlm

i j (r) + δαβṼeff(r)
(
Qlm

i j

)(αβ )
(r)
]
dr

+
∑
i jlm

ρi j

∫
R3

[
δγ δṼeff(r)

(
Qlm

i j

)(αβ )
(r) + δγ δδαβṼeff(r)Qlm

i j (r)
]
dr

+
∑
i jlm

∂ρi j

∂εγ δ

∣∣∣∣
ψ̃ (0)

∫
R3

[
Ṽeff(r)

(
Qlm

i j

)(αβ )
(r) + (VH [ρ̃Zc])(αβ )(r)Qlm

i j (r) + δαβṼeff(r)Qlm
i j (r)

]
dr

+
∑
i jlm

∂ρi j

∂εαβ

∣∣∣∣
ψ̃ (0)

∫
R3

[
Ṽeff(r)

(
Qlm

i j

)(αβ )
(r) + (VH [ρ̃Zc])(γ δ)(r)Qlm

i j (r) + δγ δṼeff(r)Qlm
i j (r)

]
dr,

(76)

with ∂ρi j

∂εαβ
|
ψ̃ (0)

= ∑
n fn〈ψ̃n| ∂| p̃i〉〈p̃ j |

∂εαβ
|ψ̃n〉, The second-order derivatives of the projectors are given in the Appendix. The second-

order derivatives of the moments Qlm
i j (r) are obtained straightforwardly as in Sec. III A 5:

(
Qlm

i j

)(αβγ δ)
(r) =1

4
ql

i j

[
δγβ (r − τκ )δ

d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )α
+ (r − τκ )β (r − τκ )γ

d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )δd (r − τκ )α

+ δγα (r − τκ )δ
d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )β
+ (r − τκ )α (r − τκ )γ

d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )δd (r − τκ )β

+ δδβ (r − τκ )γ
d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )α
+ (r − τκ )β (r − τκ )δ

d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )γ d (r − τκ )α

+ δδα (r − τκ )γ
d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )β
+ (r − τκ )α (r − τκ )δ

d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )γ d (r − τκ )β

]
.

(77)

C. Nonvariational form of the second-order derivative
of the energy

Once the derivative of the wave function with respect to
strain is computed, we can use the nonvariational expression
of the second-order energy [Eq. (5)] to obtain the different
mixed derivatives. In our case, this allows us to obtain the
clamped-ion elastic tensor C̄αβγ δ , the clamped-ion force-strain

coupling tensor �κkαβ , and the clamped-ion piezoelectric
tensor ē jαβ .

1. The clamped-ion elastic tensor

The clamped-ion elastic tensor corresponds to the second
derivative of the energy with respect to only two strains.
To obtain it, we need to consider C̄αβγ δ = 2

�
E (αβγ δ)

nonvar and
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use Eqs. (30)–(32). Here, everything was already detailed in
the previous sections, except the first-order derivative of the
Hamiltonian with respect to strain at frozen wave functions.
This latter part is

∂H̃
∂εαβ

∣∣∣∣
ψ̃ (0)

= T (αβ ) + (VH [ρ̃Zc])(αβ ) +
∑

i j

(| p̃i〉〈p̃ j |)(αβ )Di j

+
∑

i j

(| p̃i〉〈p̃ j |)
∑
lm

∫
R3

[
(VH [ρ̃Zc])(αβ )(r)Qlm

i j (r)

+ Ṽeff(r)(Qlm
i j (r))(αβ )]dr.

(78)

2. The clamped-ion force-strain coupling tensor

The clamped-ion force-strain coupling tensor corresponds
to the second derivative of the energy with respect to one
strain and one atomic displacement. To obtain it, we need to
consider �κkαβ = −2E (αβτκk )

nonvar and use again Eqs. (30)–(32).
Here the sign comes from Eq. (48) and the factor 2 from
the Taylor expansion. At this point, the only unknown terms
are the first-order derivatives of the Hamiltonian with respect
to one atomic displacement and the second-order derivative

of the energy with respect to one strain and one atomic
displacement, both at frozen wave functions.

The first-order Hamiltonian at frozen wave functions is

∂H̃
∂τκk

∣∣∣∣
ψ̃ (0)

= (VH [ρ̃Zc])(τκk ) +
∑

i j

(| p̃i〉〈p̃ j |)(τκk )Di j

+
∑

i j

(| p̃i〉〈p̃ j |)
∑
lm

∫
R3

[
(VH [ρ̃Zc])(τκk )(r)Qlm

i j (r)

+ Ṽeff(r)
(
Qlm

i j (r)
)(τκk )

]
dr. (79)

In this expression, the terms derived with respect to atomic
displacements have the same form as in the DFPT formalism
without strain and have already been detailed in the literature
[11,18,22,23].

The second-order energy at frozen wave functions E (αβτκk )

ψ̃
(0)
n

contains the local pseudopotential, exchange-correlation, and
nonlocal potential contributions. The former two are similar
to those proposed by Ref. [3] by replacing the density ρ with
the compensated pseudodensity ρ̃ + ρ̂:

∂2Eloc

∂εαβ∂τκk

∣∣∣∣
ψ̃ (0)

= −2π i
∑
G �=0

(ρ̃(G) + ρ̂(G))Ge−2iπG·τκ

[
− δαβvκ

H [ρZc](G) + vκ
H [ρZc]′(G)

2G

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

]
(80)

∂2Exc

∂εαβ∂τκk

∣∣∣∣
ψ̃ (0)

= �

∫ [
Vxc(r)

∂2ρ̃c(r)

∂εαβτκk
+ Kxc(r)

∂ρ̃c(r)

∂εαβ

∂ρ̃c(r)

∂τκk
+ δαβ (Vxc(r) − Kxc(r)(ρ̃(r) + ρ̂(r))

∂ρ̃c(r)

∂τκk

]
dr, (81)

where the derivatives of the pseudo-core-density are expressed in the reciprocal space as

∂ρ̃c(G)

∂τκk
= −2iπGρκ

c ’(G)e−2iπG·τκ �−1 (82)

and

∂2ρ̃κ
c (G)

εαβτκk
= −2iGπ

⎡⎣−δαβρ̃κ
c (G) + ρ̃κ

c ’(G)

2G

∑
i j

ϒ
(αβ )
i j G̃iG̃ j

⎤⎦e−2iπG·τκ �−1. (83)

Similar to the second-order derivative with respect to two strains, the contribution due to the nonlocal potential can be written
as

∂2Enl

∂εαβ∂τκk

∣∣∣∣
ψ̃ (0)

=
∫
R3

(VH [ρ̃Zc])(αβτκk )(r)ρ̂(r)dr +
∑

i j

∑
n

fn〈ψ̃n|∂
2| p̃i〉〈p̃ j |

∂εαβ∂τκk
|ψ̃n〉(Di j − εnsi j )

+
∑
i jlm

ρi j

∫
R3

[
(VH [ρ̃Zc])(τκk )(r)

(
Qlm

i j

)(αβ )
(r) + Ṽeff(r)

(
Qlm

i j

)(αβτκk )
(r) + ∂Ṽeff(r)

∂εαβ

∣∣∣∣
ψ̃ (0)

(
Qlm

i j

)(τκk )
(r)

]
dr

+
∑
i jlm

ρi j

∫
R3

[
δαβ (VH [ρ̃Zc])(τκk )(r)Qlm

i j (r) + δαβṼeff(r)
(
Qlm

i j

)(τκk )
(r)
]
dr

+
∑
i jlm

∂ρi j

∂τκk

∣∣∣∣
ψ̃ (0)

∫
R3

[
Ṽeff
(
Qlm

i j

)(αβ )
(r) + δαβṼeff(r)Qlm

i j (r) + ∂Ṽeff(r)

∂εαβ

∣∣∣∣
ψ̃ (0)

Qlm
i j (r)

]
dr

+
∑
i jlm

∂ρi j

∂εαβ

∣∣∣∣
ψ̃ (0)

∫
R3

[
(VH [ρ̃Zc])(τκk )(r)Qlm

i j (r) + Ṽeff(r)
(
Qlm

i j

)(τκk )
(r)
]
dr, (84)

with ∂ρi j

∂τκk
|
ψ̃ (0)

= ∑
n fn〈ψ̃n| ∂| p̃i〉〈p̃ j |

∂τκk
|ψ̃n〉.

The second-order derivatives of the projectors are given in the Appendix.
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The second-order derivatives of the moments Qlm
i j (r) are

(
Qlm

i j

)(αβτκk )
(r) =1

2
ql

i j

[
− δkβ

d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )α
− δkα

d (gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )β

+ (r − τκ )β
d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )kd (r − τκ )α
+ (r − τκ )α

d2(gl (|r − τκ |)Ylm(r̂ − τκ ))

d (r − τκ )kd (r − τκ )β

]
.

(85)

3. The clamped-ion tensors involving the electric field

The perturbation with respect to electric field is different
than the other perturbations. Starting from Eqs. (30)–(32),
we can obtain two different nonvariational expressions for
the mixed derivatives between one homogeneous electric field
and one other perturbation, and compute the dielectric tensor,
the Born effective charges, and the piezoelectric tensor.

In case of derivatives with respect to electric field, there are
no derivatives of the overlap operator; consequently, there is
no corresponding δψ̃

(E j )
n and δρ̃ (E j ) contributions.

First, we start with λ1 = E j and λ2 = τκk , αβ or E j′ . This
yields a nonvariational expression similar to Eqs. (30)–(32),
which requires the derivative of the pseudo-wave-functions
with respect to the electric field ψ̃

(E j )
n .

Then we consider λ1 = τκk , αβ or E j′ and λ2 = E j . This
yields a different expression, which is simpler and requires
the derivative of the pseudo-wave-functions with respect to
λ1, ψ̃ (λ1 )

n :

E
(λ1E j )
nonvar =

∑
n

[〈
ψ̃ (0)

n

∣∣ ∂2H̃
∂λ1∂E j

∣∣∣∣
ψ̃ (0)

∣∣ψ̃ (0)
n

〉
+ 〈ψ̃ (λ1 )

n

∣∣ ∂H̃
∂E j

∣∣∣∣
ψ̃ (0)

∣∣ψ̃ (0)
n

〉+ c.c.

]
. (86)

At this point, the only unknown terms are the first-order
derivatives of the Hamiltonian with respect to the electric field
and the second-order derivative of the energy with respect to
one electric field and one other perturbation, both at frozen
wave functions.

To compute the first-order Hamiltonian, we combine the
method of the long wavelength limit and the application of the
PAW transformation. This yields a formula for the first-order
Hamiltonian in the Bloch state space that is identical to the
formulation in ultrasoft pseudopotentials [19,20], because the
k-point grid does not cover the PAW on-site terms. Using PAW
notations, this formula is rewritten as

∂H̃k,k

∂E

∣∣∣∣
ψ̃ (0)

|un,k〉 =
[
1 +

∑
i,i′

| p̃i,k〉sii′ 〈p̃i′,k|
]

︸ ︷︷ ︸
Sk,k

i d
dk |un,k〉

+ ∑
i,i′ | p̃i,k〉χii′ 〈p̃i′,k|un,k〉

+ ∑
i,i′ | p̃i,k〉sii′ 〈i d p̃i′ ,k

dk |un,k〉, (87)

with

χii′ = −(〈φi|r − τκ |φi′ 〉 − 〈φ̃i|r − τκ |φ̃i′ 〉),

sii′ = 〈φi|φi′ 〉 − 〈φ̃i|φ̃i′ 〉.
(88)

The expressions of the operators and vectors in the Bloch
states space are

H̃k,k′ = e−ik·rH̃eik′ ·r′
,

Sk,k′ = e−ik·rSeik′ ·r′
,

|φi,k〉 = e−ik·(r−τκ )|φi〉,
|φ̃i,k〉 = e−ik·(r−τκ )|φ̃i〉
| p̃i,k〉 = e−ik·(r−τκ )| p̃i〉.

(89)

To compute the second-order derivative of the
energy at frozen wave functions, we simply derivate∑

n〈ψ̃ (0)
n | ∂H̃

∂E |
ψ̃ (0)

|ψ̃ (0)
n 〉 with respect to another perturbation

λ1:∑
n

〈
ψ̃ (0)

n

∣∣ ∂2H̃
∂E j∂λ1

∣∣∣∣
ψ̃ (0)

∣∣ψ̃ (0)
n

〉
= 2

�

(2π )3

∫
BZ

∑
n

[
〈ψ̃ (0)

n |
∑

ii′
sii′

∂

∂λ1

(
| p̃i〉i∂〈p̃i′ |

∂k j

)
|ψ̃ (0)

n 〉

+ 〈ψ̃ (0)
n

∣∣∑
ii′

(χii′ ) j
∂| p̃i〉〈p̃i′ |

∂λ1

∣∣ψ̃ (0)
n

〉
+ 〈ψ̃ (0)

n

∣∣∑
ii′

sii′
∂| p̃i〉〈p̃i′ |

∂λ1

∣∣∣∣i∂ψ̃ (0)
n

∂k j

〉]
dk. (90)

The derivatives of the projectors p̃i are given in the Ap-
pendix.

IV. VALIDATION

A. Validation procedure

In the ABINIT software package [24–26], the DFPT for-
malism was already available within the PAW approach, and
the elastic formalism within the norm-conserving pseudopo-
tential approach [17]. Here we have extended the DFPT
implementation within PAW to include the elastic response,
according to the formulas of the previous sections. In the fol-
lowing, we discuss numerical aspects of the implementation,
and compare results obtained with the two implementations
of the nonstationary expressions [Eqs. (42) and (43)]. Then
we compare the DFPT approach with the finite difference
(FD) one on several high-symmetry systems. We end with
applications on two realistic low-symmetry systems.

We perform the FD calculations of the strain and electric
field derivatives using a five-point formula and sufficiently
small deformations to ensure a constant set of K-points.
We thoroughly converge our calculations in terms of cutoff
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energies and Brillouin zone sampling. We especially check for
the charge neutrality as an efficient indication of convergence.
When available we provide also experimental values.

B. Numerical issues

The practical implementation aspects of the computation
of the energy derivatives are highly dependent of the for-
malism. Consequently direct numerical comparisons of the
results are highly challenging. This is particularly true when
the derivatives concern deformations combined with atomic
relaxations and electric fields. The multiple interdependencies
of the various terms, as shown in the big Hessian matrix [27],
may easily induce numerical errors.

In FD we obtain the elastic tensor assuming linear stress-
strain relations. We apply positive and negative deformations
with ε and 2ε amplitude. The value of ε has to be carefully
chosen as it directly controls the precision of the test. It has
to be sufficiently small to ensure that we are in the linear
regime but not too small to avoid round-off errors. In case
of a significant discrepancy between the DFPT and the FD
approaches, the amplitude of the deformation in FD is the
first parameter that has to be questioned. Its optimal value is
strongly system dependent and relies on several factors like
the amplitude of the atomic relaxations.

The deformation of the system due to the application of a
strain generates a change of the real-space grid used to define
the integrals centered on the atoms and to represent the scalar
fields, like densities and potentials. This grid is usually defined
in reduced coordinates related to the primitive vector of the
unit cell. Its deformation can induce large fluctuations for the
integrals. Actually, this lays at the origin of the Pulay contri-
bution to the stresses, a side effect of the grid spacing changes
under strain. In the present case, it makes the numerical check
of the integrals and of the partial derivatives of scalar fields
very complicated. The latter have to be maintained constant
which is not easy with an evolving grid. An interpolation
allows to match the deformed grid to the original one.

In order to validate the implementation of the effective
charges and of the piezoelectric tensors by FD it is necessary
to take a different approach because of the electric field
specificities. There are two alternatives: (i) compute the po-
larizability on different perturbed cells, or (ii) compute small
variations of the forces and/or stresses on cells under varying
electric field. In both cases, it is necessary to carry out PAW
ground state calculations in the formalism of the “Modern
Theory of Polarization”, as implemented in ABINIT [9]. Such
calculations are known to have a poor convergence behavior
with respect to the k-point sampling because they include a
numerical computation of the derivative of the wavefunction
with respect to the k-points. Therefore it is difficult to get a
perfect agreement between DFPT and FD, as shown on Fig 1.

C. Numerical validation on highly symmetric systems

Tables I, II, and III show, respectively, a partial set of the
internal-strain coupling parameters, the Born effective charges
and the clamped-ion piezoelectric tensor of AlAs. They have
been computed using the two nonvariational expressions of
the second-order energy and converged up to between 6 and
9 significant digits. As shown by these tables these two ex-

0 500 1,000 1,500 2,000 2,500 3,000

2.2

2.4

2.6

Number of k points in the Brillouin zone

Z
A

l,
z
,z

Analytical (DFPT)
Numerical (Finite differences)

FIG. 1. Convergence of the effective charges in AlAs with re-
spect to the Brillouin zone sampling as obtained in both finite
differences and in DFPT.

pressions give the same values, up to many enough significant
digits to validate the formulas and their implementation.

Table IV lists the three independent values of the elastic
tensor of FCC aluminum, obtained with DFPT and FD, clearly
showing the agreement between the two approaches.

In this test involving a metal, we use a specific treatment
of the Fermi energy [28], not discussed in this paper. Indeed,
changes of the lattice parameters affect the grid of G-points
and thus the occupancy of the electronic bands around the
Fermi energy.

D. Validation on low-symmetry systems

To make the validation more complete we consider a struc-
ture with lower symmetry: C-bearing ε-iron, a structure that
can potentially be present in the Earth’s solid inner core. [30]
We build a 2 × 2 × 1 super-cell of the hexagonal close packed
(hcp) structure of ε-iron, containing 16 Fe atoms and we place
one interstitial carbon atom. The symmetry is reduced from
hexagonal (P63mmc) to trigonal (P − 3m1), and all the atoms
need to be relaxed as they do not occupy anymore special
positions fixed by the symmetry.

The determination of the full elastic tensor requires com-
putation of 7 independent elastic constants. In FD appropriate

TABLE I. Clamped-ion force-strain coupling parameters of
AlAs in reduced coordinates, in Ha. Comparison of the numerical

values obtained with DFPT and FD: −�
∂2Evol

∂τκk∂εαβ
[Eq. (48)].

εαβ κ k FD+PAW DFPT+PAW

1 Al x 0.84452759 0.84452677
2 Al x − 0.84452759 − 0.84452679
3 Al x 0.00000000 0.00000000
4 Al x − 0.40239908 − 0.40239911
5 Al x − 0.69697561 − 0.69697569
6 Al x − 0.48758797 − 0.48758777
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TABLE II. Born effective charges of AlAs in units of charge
[Eq. (47)]. Comparison between the two nonvariational expressions,
Eqs. (30)–(32) and Eq. (86), in DFPT.

κ k −�
∂2Evol

∂τκk∂ �Ek
−�

∂2Evol

∂ �Ek∂τκk

Al x 2.07482486 2.07482525
Al y 2.07482486 2.07482525
Al z 2.22353351 2.22353327
As x − 2.07485811 − 2.07485849
As y − 2.07485811 − 2.07485849
As z − 2.22341484 − 2.22341461

strain systems need to be applied where all the atoms need to
be relaxed.

The relaxed-ion elastic tensors obtained from DFPT and
FD are shown in Table V. The differences between the values
obtained with the two approaches are on the order of tens of
MPa or less, two orders of magnitude smaller than the typical
error bars in this type of simulations.

Then we consider the MgSiO3 perovskite, the mineral
bridgmanite. It is by volume the most important mineral of the
Earth. It forms more than three quarters of the Earth’s lower
mantle—a spherical shell inside our planet that extends be-
tween about 660-km depth and 2900-km depth. Since its dis-
covery various groups of both computational and experimen-
tal researchers have extensively studied its physical properties,
with a special regard on the elasticity [27]. As all natural min-
erals, this is not a pure phase, with most notably Fe2+, Fe3+,
and Al3+ as major substitutions on the Mg and/or Si sites.

Here we determine the elastic tensors of pure MgSiO3
bridgmanite at pressures corresponding to the Earth’s lower
mantle. This is just to show how efficient the DFPT+PAW
method is for the determination of elastic properties on realis-
tic materials with direct applications.

MgSiO3 bridgmanite has a distorted perovskite structure
with Pnma space group and Z = 4 formula units per unit cell.
We employ a 8 × 8 × 8 grid of special k points, a kinetic en-
ergy cutoff of 30 Ha for the plane waves on the real-space grid,
and of 60 Ha for the grid inside the augmentation regions.

Table VI compares the elastic constants tensor computed
using various methods with the experimental values. The
values obtained in PAW, in both DFPT and FD, are strikingly
similar. They are also globally closer to the experimental
values than the ones obtained within norm-conserving.

TABLE III. Piezoelectric tensor of AlAs in units of
charge/Bohr2 [Eq. (46)]. Comparison between the two
nonvariational expressions, Eqs. (30)–(32) and Eq. (86), in
DFPT.

εαβ k − ∂2Evol

∂εαβ ∂ �Ek
− ∂2Evol

∂ �Ek∂εαβ

5 x 0.01036757 0.01036757
4 y 0.01036986 0.01036831
1 z 0.00645215 0.00645173
2 z 0.00645215 0.00645173
3 z − 0.00991493 − 0.00991383

TABLE IV. Elastic tensor of fcc Al in GPa, obtained with DFPT
and FD.

Elastic constant C11 C12 C44

FD 114.36042 60.01343 34.00284
DFPT 114.35981 60.01364 34.00364
Exp. [29] 114.30 61.92 31.62

E. Numerical efficiency of the DFPT implementation

Next we estimate and compare the total walltime necessary
to obtain the full elastic tensor in FD and DFPT. For this,
we consider the Fe16C unit cell, at 320 GPa with 17 atoms
per unit cell and trigonal symmetry. As a result, we need to
compute seven independent elastic constants. All simulations
were performed on 512 CPUs, on the Curie supercomputer at
the French TGCC supercomputing center.

For the FD simulations, this comes down to performing
a minimum of 29 independent structural relaxations, using a
simple 5-points derivative formula. Each of these relaxations
requires about 1400 CPU walltime hours. This makes a total
walltime of about 40000 CPU hours.

For the DFPT simulations, this comes down to performing
one structural relaxation (same 1400 CPU hours), followed
by one full dynamical matrix calculation in � and six inde-
pendent calculations of strain perturbation, which takes about
800 CPU hours. This makes a total walltime of about 2200
CPU hours.

In this particular case, the ratio is of about 18.5 in favor
of the DFPT. For higher-symmetry systems, this ratio is less
impressive, because of fewer relaxations in FD. However,
for the lower-symmetry ones this ratio becomes much more
important.

V. SUMMARY AND CONCLUSIONS

This study addresses the theoretical development and the
implementation of the response to strain and electric field
within the PAW approach of the DFPT. This implementation
combines the numerical stability and the ease of use of the
DFPT with the high precision and the speed of execution of
the PAW formalism. This paper follows those of Audouze
et al. [11] who developed, for the first time, the PAW ap-
proach in DFPT for the calculation of vibrational properties in
ABINIT, and of Hamann et al. [3] who implemented the for-

TABLE V. Relaxed-ion elastic tensors of Fe16C (in GPa) at 320
GPa. The comparison between the perturbative approach (DFPT) and
the finite difference approach (FD) shows differences on the order of
tens of MPa or less.

C11 C22 C33 C44 C55

FD 127.409 127.444 47.284 25.254 25.244
DFPT 127.428 127.428 47.295 25.244 25.244

C66 C12 C13 C14 C56

FD 41.037 45.339 31.510 −2.739 −2.739
DFPT 41.038 45.351 31.522 −2.739 −2.739
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TABLE VI. Elastic constants (in GPa) and sound velocities (in
km/s) of MgSiO3 perovskite at 0 GPa.

Ci j C11 C22 C33 C44 C55

DFPT+NC 512 579 488 213 181
FD+PAW 482 549 457 201 176
DFPT+PAW 482 549 457 201 176
S.V. Sinogeikin (exp.)[31] 481 528 456 200 182
Y.Haeri (exp.)[32] 482 537 485 186 186
Ci j C66 C13 C32 C12 Vp Vs

DFPT+NC 166 153 167 162 11.21 6.63
FD+PAW 156 137 150 137 10.85 6.49
DFPT+PAW 156 137 150 137 10.85 6.49
S.V. Sinogeikin (exp.)[31] 147 139 146 125 10.84 6.47
Y.Haeri (exp.) [32] 147 147 146 144 11.04 6.57

mulation of the metric tensor and the calculation of the elastic
properties in DFPT for norm-conserving pseudopotentials.

As in Hamann et al. [3], the central idea of our study is the
development of the derivatives in terms of the metric tensor.
The coupling of the strain perturbation with the electric field
perturbation yields the piezoelectric tensors; the coupling with
the atomic displacements provides the clamped and relaxed
tensors. Because the PAW specificities, the formulation be-
comes more complicated than in the norm-conserving case.

Numerical tests show that the current implementation is
robust and highly comparable to the standard stress-strain FD
approach. An important aspect is to ensure a thorough k-point
sampling of the Brillouin zone, because of the coupling with
the electric field perturbations. However, the convergence is
achieved faster than in the FD case.

The current implementation allows fast and accurate calcu-
lations of the elastic and related tensors even for large systems
with low symmetry, as shown by initial test calculations on
materials of geophysical interest with realistic compositions.
Numerical comparisons on perovskite and iron supercells with
impurities show that the ABINIT code can now be used on
such systems containing a few tens of atoms. DFPT calcula-
tions are faster than conventional FD ones. It will therefore
be possible to compute large cells, necessary to achieve low
dilution rates.
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APPENDIX A: DERIVATIVES OF THE NON-LOCAL
PROJECTORS IN A PLANE WAVE BASIS

1. Nonlocal energy

The contribution of the non-local operator to the energy is

Enl =
∑

n

∑
κ,i j

〈
ψ̃ (0)

n

∣∣ p̃κ
i

〉(
Dκ

i j − εnsκ
i j

)〈
p̃κ

j

∣∣ψ̃ (0)
n

〉
, (A1)

In this section, i and j indexes do not include the atom index
κ and run only over l, m, n angular momenta.

The nonlocal projectors are expressed in terms of spherical
harmonics:

p̃κ
i (r) = plini

(r)

r
Ylimi (̂r). (A2)

For the sake of brevity, we introduce the following nota-
tions:

V κ
n,i j = Dκ

i j − εnsκ
i j,

χκ
n,i = 〈

p̃κ
i

∣∣ψ̃ (0)
n

〉
.

(A3)

Note that in the usual case (collinear magnetism), we have
V κ

n,i j = V κ
n, ji. Using these notations, the nonlocal energy is

rewritten:

Enl =
∑

n

∑
κ,i j

V κ
n,i jχ

κ
n,i

∗
χκ

n, j = 2
∑

n

∑
κ,i j

V κ
n,i j�

[
χκ

n,i
∗
χκ

n, j

]
(A4)

The generalization to the non-collinear magnetism can be
achieved using the hermiticity of V κ

n,i j scalars.
In this Appendix, we consider only the contributions to

the nonlocal energy from the derivatives of the projectors.
The wave functions are frozen. The contributions from V κ

n,i j
derivatives have been detailed in Secs. III A 4 and III B 3. In
these conditions, we consider the following partial derivatives
of the nonlocal energy (λi runs over τκk , αβ and k j):

∂Enl

∂λ1
=
∑

n

∑
κ,i j

V κ
n,i j

〈
ψ̃ (0)

n

∣∣∂∣∣ p̃κ
i

〉〈
p̃κ

j

∣∣
∂λ1

∣∣ψ̃ (0)
n

〉
,

∂2Enl

∂λ1∂λ2
=
∑

n

∑
κ,i j

V κ
n,i j

〈
ψ̃ (0)

n

∣∣∂∣∣ p̃κ
i

〉〈
p̃κ

j

∣∣
∂λ1∂λ2

∣∣ψ̃ (0)
n

〉
.

(A5)

They involve the partial derivatives of χκ
n,i factors:

∂χκ
n,i

∂λ1
=
〈
∂ p̃κ

i

∂λ1

∣∣∣∣ψ̃ (0)
n

〉
,

∂2χκ
n,i

∂λ1∂λ2
=
〈

∂2 p̃κ
i

∂λ1∂λ2

∣∣∣∣ψ̃ (0)
n

〉
.

(A6)

2. Nonlocal form factors and their derivatives

On a plane-wave basis, the χκ
n,i factors are developed as

follows:

χκ
n,i = 4π√

�
ili
∑

G

Cn
G e2π iK·τκ F κ

limini
(K). (A7)

Where the F κ
limini

(K) are named nonlocal form factors,
Cn

G = 〈G|ψ̃ (0)
n 〉 and K = k + G.

The nonlocal form factors have a radial and an angular part
defined as

F κ
lmn(K) = Ylm(K̂) f κ

nl (K ), (A8)

with

f κ
nl (K ) =

∫
pκ

ln(r) jl (Kr)rdr. (A9)

jl (x) are the first-order spherical Bessel functions.
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The first and second order derivatives of a non-local form
factor with respect to the wave vector are expressed in terms
of reduced coordinates:

∂F κ
lmn(K)

∂Kγ

=
∑

μ

Gμ
γ F̃

′κ
lmn,μ(K),

∂2F κ
lmn(K)

∂Kγ ∂Kδ

=
∑
μν

Gμ
γ Gν

δ F̃
′′κ

lmn,μν (K).

(A10)

The reduced components are straightforwardly obtained
from

F̃
′κ

lmn,μ(K) =
(

∂Ylm(K̂)

∂K

)red

μ

f κ
nl (K ) + f κ ′

nl (K )

K
Ylm(K̂)K̃μ,

F̃
′′κ

lmn,μν (K) =
(

∂2Ylm(K̂)

∂K∂K

)red

μν

f κ
nl (K ),

+ K̃μK̃ν

f κ ′′
nl (K )

K2
Ylm(K̂)+

[(
�μν− K̃μK̃ν

K2

)
Ylm(K̂),

+
(
∂Ylm(K̂)

∂K

)red

μ

K̃ν+
(

∂Ylm(K̂)

∂K

)red

ν

K̃μ

]
f κ ′
nl (K )

K
,

(A11)
where (

∂Ylm(K̂)

∂K

)red

μ

=
∑

α

Rα
μ

∂Ylm(K̂)

∂Kγ(
∂2Ylm(K̂)

∂K∂K

)red

μν

=
∑
μν

Rγ
ν Rδ

μ

∂Ylm(K̂)

∂Kγ Kδ

(A12)

f κ ′
nl and f κ ′′

nl are the first and second order derivatives of the
non-local radial function f κ

nl .
The first-order derivative of a non-local form factor with

respect to the deformation εαβ is obtained as follows:

∂F κ
lmn(K)

∂εαβ

=
∑

γ

∂F κ
lmn(K)

∂Kγ

∂Kγ

∂εαβ

=
∑

γ

(∑
μ

F̃
′κ

lmn,μ(K)Gμ
γ

)(
−
∑

ν

Gν
βK̃νδαγ

)
= −

∑
μν

Gμ
α Gν

β F̃
′κ

lmn,μ(K)K̃ν

(A13)
Using the same development, we also can deduce the

expressions for the second order derivatives involving the
deformation:

∂2F κ
lmn(K)

∂εαβ∂εγ δ

=
∑
μνλρ

[
Gμ

α Gν
βGλ

γ Gρ

δ

(
F̃

′′κ
lmn,μλ(K)K̃νK̃ρ

+�μρF̃
′κ

lmn,μ(K)K̃ν

)] (A14)

∂2F κ
lmn(K)

∂εαβ∂Kγ

=
∑
μνλ

ϒγμGμ
α Gλ

β F̃
′′κ

lmn,μν (K)K̃λ

− Gγ

β

∑
μ

Gμ
α F̃

′κ
lmn,μ(K)

(A15)

3. Contribution to the stress tensor

σ nl
αβ = 1

�

∂Enl

∂εαβ

= 2

�

∑
n

∑
κ,i j

V κ
n,i j�

[
∂χκ

n,i
∗

∂εαβ

χκ
n, j

]
(A16)

with

∂χκ
n,i

∂εαβ

= 4π√
�

ili
∑

G

Cn
G e2π iK·τκ

∂F κ
lmn(K)

∂εαβ

− δαβ

2
χκ

n,i

(A17)

4. Contribution to the elastic tensor

Cnl
αβγ δ = 1

�

∂2Enl

∂εαβ∂εγ δ

= 2

�

∑
n

∑
κ,i j

V κ
n,i j�

[
∂2χκ

n,i
∗

∂εαβ∂εγ δ

χκ
n, j + ∂χκ

n,i
∗

∂εαβ

∂χκ
n, j

∂εγ δ

]
(A18)

with

∂2χκ
n,i

∂εαβ∂εγ δ

= 4π√
�

ili
∑

G

Cn
G e2π iK·τκ

∂2F κ
lmn(K)

∂εαβ∂εγ δ

− δγ δ

2

∂χκ
n,i

∂εαβ

− δαβ

2

∂χκ
n,i

∂εγ δ

(A19)

5. Contribution to the force-strain coupling tensor

�nl
κkαβ = − ∂2Enl

∂τκk∂εαβ

= −2
∑

n

∑
κ,i j

V κ
n,i j�

[
∂2χκ
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∗

∂εαβ∂τκk
χκ

n, j + ∂χκ
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∗

∂εαβ

∂χκ
n, j

∂τκk

]
(A20)

with

∂χκ
n,i

∂τκk
= 4π√

�
ili
∑

G

Cn
G K̃ke2π iK·τκ F κ

lmn(K) (A21)

∂2χκ
n,i

∂εαβ∂τκk
= 4π√

�
ili
∑

G

Cn
G K̃k e2π iK·τκ

∂F κ
lmn(K)

∂εαβ

− δαβ

2

∂χκ
n,i

∂τκk

(A22)

6. Contribution to the piezoelectric tensor

To compute enl
γαβ = − 1

�
∂2Enl

∂Eγ ∂εαβ
, we need (see Eq. 90):

∑
n

∑
κ,i j

V κ
n,i j

〈
ψ̃ (0)

n

∣∣ ∂

∂εαβ

(∣∣p̃κ
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〉∂ 〈p̃κ
j
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n

〉
=
∑

n

∑
κ,i j

V κ
n,i j

[
∂2χκ
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∗

∂εαβ∂Kγ

χκ
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∗
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∂χκ
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∂Kγ

]
,

(A23)
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with

∂2χκ
n,i

∂εαβ∂K̃γ

= 4π√
�

ili
∑

G

Cn
G e2π iK·τκ

∂2F κ
lmn(K)

∂εαβ∂Kγ

− δαβ

2

∂χκ
n,i

∂Kγ

(A24)

7. Contribution to the effective charges

To compute Znl
κkγ = − ∂2Enl

∂Eγ ∂τκk
, we need [see Eq. (90)]:

∑
n
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κ,i j

V κ
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∑
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(A25)

with

∂2χκ
n,i

∂τκk∂Kγ

= 4π√
�

ili
∑

G

Cn
G K̃ke2π iK·τκ

∂F κ
lmn(K)

∂Kγ

. (A26)

APPENDIX B: LIMITS AT ZERO OF THE RADIAL
FOURIER TRANSFORM OF THE ATOMIC

PSEUDO-CORE-DENSITY

To compute the nonlinear core correction to exchange and
correlation first-order potential, we need the limit at zero of
the radial Fourier transform of the atomic pseudo-core-density
derivatives ρ̃κ

c (G) [see Eqs. (58) and (74)]. These limits are
straightforwardly obtained by developing the Sinc function
near zero:

ρ̃κ
c (G) = 4π

�

∫ ∞

0
ρ̃κ

c (r)r2 sin(Gr)

Gr
dr, (B1)

lim
G→0

ρ̃κ
c (G) = 4π

�

∫ ∞

0
ρ̃κ

c (r)r2dr, (B2)

lim
G→0

ρ̃κ
c ’(G)

G
= −1

3

4π

�

∫ ∞

0
ρ̃κ

c (r)r4dr, (B3)

lim
G→0

(
ρ̃κ

c
′′(G)

G2
− ρ̃κ

c
′(G)

G3

)
= 29

30

4π

�

∫ ∞

0
ρ̃κ

c (r)r6dr. (B4)
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