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Theoretical limits for negative elastic moduli in subacoustic lattice materials
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An insightful mechanics-based bottom-up framework is developed for probing the frequency dependence of
lattice material microstructures. Under a vibrating condition, effective elastic moduli of such microstructured
materials can become negative for certain frequency values, leading to an unusual mechanical behavior with
a multitude of potential applications. We have derived the fundamental theoretical limits for the minimum
frequency, beyond which the negative effective moduli of the materials could be obtained. An efficient dynamic

stiffness matrix based approach is developed to obtain the closed-form limits, which can exactly capture
the subwavelength scale dynamics. The limits turn out to be a fundamental property of the lattice materials
and depend on certain material and geometric parameters of the lattice in a unique manner. An explicit
characterization of the theoretical limits of negative elastic moduli along with adequate physical insights would

accelerate the process of its potential exploitation in various engineered materials and structural systems under

dynamic regime across the length scales.
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I. INTRODUCTION

The global mechanical properties can be engineered in
lattice materials by intelligently identifying the material mi-
crostructures as the properties in these materials are often
defined by their structural configuration along with the in-
trinsic material properties of the constituent members. This
novel class of materials with tailorable application-specific
mechanical properties (like equivalent elastic moduli, buck-
ling, vibration, and wave propagation characteristics with
modulation features) have tremendous potential applications
for future aerospace, civil, mechanical, electronics, and med-
ical applications across the length scales. Naturally occur-
ring materials cannot exhibit unprecedented and fascinating
properties such as extremely lightweight, negative elastic
moduli, negative mass density, pentamode material charac-
teristics (metafluid), which can be achieved by an intelligent
microstructural design [1,2]. For example, the conventional
positive value of Poisson’s ratio in a hexagonal lattice meta-
material can be converted to a negative value [3] by making
the cell angle 6 in Fig. 1(b) negative. Other unusual and
exciting properties can be realized in metamaterials under
dynamic condition, such as negative bulk modulus induced by
monopolar resonance [4], negative mass density induced by
dipolar resonance [5], and negative shear modulus induced
by quadrupolar resonance [6]. Elastic cloaks [7] and various
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other unprecedented dynamic behavior of such materials have
been widely reported in literature [8—14].

Lattice microstructures are often modeled as a continuous
solid medium with a set of effective elastic moduli throughout
the entire domain based on a unit cell approach [15-17].
The basic mechanics of deformation for the lattices being
scale independent, the formulations developed in this con-
text are generally applicable for a wide range of materials
and structural forms. Two-dimensional hexagonal lattices of
natural and artificial nature can be identified across different
length scales (nano to macro) in auxetic and nonauxetic forms
[18,19]. This has led to our focus on hexagonal lattices in this
article while selecting a lattice configuration to demonstrate
the concepts.

Honeycombs and other forms of lattice microstructures
are often intended to be utilized in vibrating structures such
as sandwich panels [20-22] used in aircraft structures [23].
Hexagonal latticelike structural form being a predominant
material structure at nanoscale (such as graphene, hBN, etc.
[24-27]), analysis of vibrating nanostructures are quite rele-
vant to various applications at nanoscale. Besides that, recent
developments in the field of metamaterials have prompted its
use as advanced materials in aircraft and other machineries
that experience vibration during operation. Dynamic homoge-
nization of metamaterials have been reported in various recent
papers [28,29]. For relatively low-frequency vibrations, the
length of each unit cell will be significantly smaller than the
wavelengths of the global vibration modes. As a result, each
unit cell would effectively behave as a subwavelength scale
resonator. Several exciting and unusual bulk properties of
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metamaterials have been reported exploiting subwavelength
scale resonators [30]. These include negative stiffness [31],
negative density (or mass) [32], or both [33], anisotropy in the
effective mass or density [34,35], and nonreciprocal response
[36,37].

Theoretically, lattice materials under the effect of dynamic
forces can also show similar unusual behavior of negative
elastic moduli due to the subwavelength scale resonator.
However, this has not been widely reported primarily due
to the difficulties in modeling complex lattice unit cells as
subwavelength scale resonators. In principle, this is possible
using very fine finite element discretizations of the individual
beam elements in a unit cell. Such an approach will be purely
numerical involving infeasible computationally intensive sim-
ulations. Besides that, a large-scale simulation based approach
cannot provide an insightful physical framework for deriving
the theoretical limits of the frequencies to obtain negative
elastic moduli.

We aim to develop physically insightful theoretical lim-
its of natural frequency to obtain negative axial and shear
moduli in hexagonal lattice materials. We would exploit
the tremendous implicit capabilities of the dynamic stiffness
method [38] at high frequencies coupled with the concepts of
structural mechanics to derive closed-form analytical limits,
which are valid for steady-state dynamics under harmonic
excitations. Though we concentrate on hexagonal lattices
in this article, the basic concepts are general and it would
be applicable to other two- and three-dimensional lattice
geometries.

II. NEGATIVE ELASTIC MODULI OF LATTICE
MATERIALS AND THEIR THEORETICAL LIMITS

A bottom-up theoretical framework is developed here
(refer to Fig. 1) to investigate the limits of natural fre-
quency that would cause negative axial or shear moduli. A
latticelike structure can be analyzed by considering a unit
cell as shown in Fig. 1(b), while the unit cell consists of
beam elements. In a vibrating condition, the dynamic motion
of the overall lattice corresponds to vibration of individual
beams, which would exhibit a different frequency-dependent
deformation behavior compared to the conventional static
analyses. Thus we first form the frequency-dependent elastic
stiffness matrix for a beam element (D(w) = [D;;], where
i,jell,2,...,4] and w is the frequency of vibration) and,
thereby, the frequency-dependent deformation characteristics
of a unit cell are developed. Here the dynamic stiffness
matrix accounts for the compound effect of mass and stiffness
matrices as D(w) = K(w) — @*M(w), wherein the dynamic
equilibrium D(w)V(w) = f(w) is satisfied (refer to Sec. 1.3
of the Supplemental Material [39] for further details). Even-
tually, frequency-dependent equivalent elastic moduli of the
overall lattice structure are derived based on the deformation
behavior of a unit cell. A multitude of critical analyses can be
carried out based on the insightful closed-form expressions of
frequency-dependent elastic moduli. The theoretical limits of
frequencies to obtain negative elastic moduli are derived using
their respective frequency-dependent expressions.

The frequency-dependent elastic stiffness matrix of a beam
element is obtained based on an efficient dynamic stiffness

FIG. 1. Bottom-up approach (involving a hierarchy of analysis
with beam element, unit cell, and lattice structure) for analyzing the
frequency-dependent elastic moduli of lattice materials. (a) Typical
representation of a hexagonal cellular structure in a dynamic en-
vironment (such as the honeycomb as part of a host structure ex-
periencing wave propagation, vibrating structural component, etc.).
The curved arrows are symbolically used to indicate propagation of
wave. (b) One hexagonal unit cell under dynamic environment. (c) A
dynamic beam element for the damped bending vibration with two
nodes and four degrees of freedom.

method [40,41], which is a high fidelity approach at low to
high frequencies compared to the conventional “static” finite
element method. For characterizing the frequency-dependent
elastic moduli, the conventional static finite element method
could require very fine discretization for higher frequencies
that may be practically impossible to achieve in a complex lat-
tice metamaterial. The displacement field within the elements
can be expressed by complex frequency dependent shape
functions in dynamic stiffness method, leading to a radically
significant computational efficiency at higher frequencies.
The major advantages of this method and derivation of the
frequency-dependent elastic moduli of the hexagonal lattices
is provided as Supplemental Material [39]. Expressions of
the frequency-dependent Young’s moduli and shear modulus
[42] can be obtained based on the concepts of structural
mechanics using the elements of [D(w)] matrix as (refer to
the Supplemental Material [39] for derivation)

D53l cosf
El ((1)) = . T 2. (1)
(h+1 sin6)b sin” O
D33(l’l +1 sin@)
E == 2
2(@) [b cos3 6 @
(h+1 sinf) 1
G = = 3
12(@) 2lb cos %)
2 2
“ao, Y7o
(D33* Dy, )

For detailed description regarding the elements of dynamic
stiffness matrix [D(w)] involved in the above expressions,
refer to the Supplemental Material [39]. It can be noted in
the above expressions that the elements of [D(w)] matrix
are functions of the frequency-dependent parameter b, where
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b = EI( Tt The quantities ¢ and ¢, are stiffness and

mass proportional damping factors. Here E is the intrinsic
Young’s modulus of the lattice material, i.e., the Young’s
modulus of the material of the individual beam elements,
while E; and E, are the equivalent Young’s moduli of the
entire lattice structure. The parameter m denotes mass per unit
length and ¢ is the thickness of the lattice wall. The quantities
h, I, and 6 are the length of cell walls and cell angle as shown
in Fig. 1(b). Two in-plane Poisson’s ratios are found to be
independent of the frequency:

1 [ cos? 0

— = 4
Va1 (h+1 sinf)sinf

Vg =

The primary scope of this work is to extend the well-known
Gibson and Ashby’s formulas [15] for static elastic moduli
of lattice structures to the dynamic domain. In most of the
engineering applications, the elastic properties required in
design are presented in terms of the two principle axes, such
as Ey, E,, Gy, etc. Thus we concentrated on these quantities
in the current paper to find out the effect of vibration and
deriving the expression for frequencies to cause the onset of
negative elastic moduli.

It can be noted in this context that the expressions of
Ey, E;, and Gy, for the undamped case converge to the
closed-form solution provided in [15], when the frequency
parameter (w) tends to zero, while the expressions of the
Poisson’s ratios are exactly the same as that provided in [15].
The expressions of frequency dependent elastic moduli also
conform the reciprocal theorem, i.e., Ej(w)vy = Ex(w)vys.
Regular lattice material (6 = 30°) shows an isotropic behavior
under dynamic condition

V3 b
At the static limit (w — 0), the isotropic behavior of a regular
lattice material (¢ = 30°) can be expressed as

4 (t\°
Bi=F= -k <Z) . (6)

The isotropic behavior of a regular lattice depends on
two factors: the interaction between different elements of the
[D(w)] matrix (i.e., the dynamic stiffness matrix of a single
beam element) and the geometry of a unit cell. It can be
noted that the Young’s moduli E; and E, of a hexagonal
lattice depend on a single element Ds;3 [refer to Egs. (1) and
(2)], except the geometric parameters. For a regular hexagonal
lattice, the rest of the components in the expression of E|
and E; (i.e., the geometric part) become the same for 7 = [
and 6 = 30°. This causes the isotropy in a regular hexagonal
system. For other kinds of regular lattices (e.g., triangular or
square [43]), the isotropic behavior will depend on the above
mentioned two factors, the crucial insights of which could be
obtained following a similar framework as proposed in this
paper.

The expressions of E; and E; are proportional to the com-
plex frequency-dependent element D33 of the [D(w)] matrix.
Therefore, we study its behavior in the undamped limit to
understand if the real part of E; and E, can become negative.
Assuming no damping in the system, the critical value of

E =E, (5)

frequency beyond which the Young’s moduli become negative
can be obtained based on Taylor series expansion of D33 (refer
to the Supplemental Material [39] for detailed derivation)

. 1 [EI
WF g, 55985\ —. 7)

Here, wg, p, represents the fundamental inflection frequency,
where the Young’s moduli change sign from positive to nega-
tive. For lightly damped systems, beyond this frequency value,
the equivalent Young’s moduli £, and E, will be negative
for the first time when viewed on the frequency axis. As the
frequency increases, the Young’s moduli will become posi-
tive and negative again. The significance of the fundamental
inflection frequency derived in Eq. (7) is that it is the lowest
frequency value beyond which the effective Young’s modulus
can become negative. Physically, negative Young’s modulus
means that when a force is applied at the inflection frequency,
the direction of the steady-state dynamic response will be
in the opposite direction to the applied forcing at the same
frequency.

Since the discovery of the Young’s modulus over three
centuries ago, it has been generally recognized as a positive
quantity. This can be mathematically explained in the light
of Eq. (7). Since m # 0, this implies that wy, p, > 0 for any
lattice with finite-length beams. A static analysis normally
used to obtain the classical Young’s modulus can be viewed
as a dynamic analysis with @ = 0. Therefore, according to
Eq. (7) it is not possible to observe a negative Young’s
modulus as wy, g, > 0. Only when a dynamic equilibrium is
considered, our results show that for cellular metamaterials
the Young’s moduli can be negative, apparently contradicting
notions established for centuries. It should be noted that a
similar observation has been made in the context of acoustics
metamaterials with subwavelength scale oscillators (see the
review paper [30] for more discussions). The result derived
through Eq. (7) is an explicit analysis towards establishing
the existence of negative Young’s modulus in the context of
dynamics of elastic cellular metamaterials.

Unlike the case of Young’s moduli, the frequency-
dependent closed-form expression (3) for shear modulus
shows a compound effect of multiple elements of the [D(w)]
matrix. It is possible to obtain the expression of a tight bound
for the frequency, beyond which the shear modulus becomes
negative. Expanding the closed-form expression of G, in a
Taylor series, the following fundamental inequality regarding
the frequency for negative value of G, can be derived (refer
to the Supplemental Material [39] for detailed derivation):

120 1 [EI
V160 + 75 (h/D* PV m

1+2h/1) 1 [ET
<l <302715 M—,/—. ®)
° 8+9(h/1)5 12V m

Here, wg; , represents the fundamental inflection frequency for

shear modulus, where the shear modulus changes sign.
Adequate physical insights can be drawn from the closed-

form expressions for the elastic moduli in terms of explicit
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characterization of the parameters involved in the onset of
negative Young’s moduli or shear modulus. For example, if we
notice Eq. (7), it is clear that wj, g, is inversely proportional
to the parameters / and m, while proportional to the flexural
rigidity EI. Further, based on the power(/exponent) of the
parameters, it can be realized that the sensitivity of / (with
a power of 2) is much higher than the other two parameters m
and ET (with a power of 0.5). Unlike the equivalent expression
for the Young’s moduli E; and E, in Eq. (7), the minimum
frequency above which G, becomes negative depends on the
h/l ratio in addition to the other parameters (i.e., [, EI, and
m). Similar conclusions as the Young’s moduli can be readily
derived in the case of the shear modulus on the dependence
of the onset of negative shear modulus on different system
parameters.

III. RESULTS AND DISCUSSION

Numerical results based on the derived expressions of
analytical limits of negative elastic moduli are presented in the
following paragraphs. However, before discussing the results
concerning negative axial and shear moduli, the dynamic
stiffness based framework needs to be validated first. We have
presented representative results for validation of the analytical
expression for frequency dependent Young’s modulus in the
Supplemental Material [39]. Unless otherwise mentioned,
numerical results are presented for a structural configuration
of 6 =30° and i/l = 1, with § = 0.002 and &,, = 0.05. The
geometric parameters of the honeycomb and intrinsic material
properties are assumed as [ = 3.67 mm, h =1, E = 69.5 x
103 N/mmz, d = 0.8 mm, t = 0.0635 mm, and m = 0.137
kg/mm.

The Young’s moduli E; and E, are functions of only the
frequency dependent coefficient D33 [refer to Eqgs. (1) and
(2)]. When E| and E, are normalized with respect to their
equivalent static values, they both essentially become the
same mathematical function

E,  E D33

E, E, 12EI/I3 ©)
For any positive values of the damping coefficients, D33
becomes complex. This in turn makes the Young’s moduli
E; and E, complex quantities. The real and imaginary parts
and also the amplitude of the normalized value of E; and
E, [see Eq. (9)] are shown in Fig. 2. It can be observed
that the real part of E; and E, becomes negative and then
changes to positive again with the change of frequency. This
confirms that the value of the elastic moduli £ and E, (and
subsequently the axial stiffness in the two directions) will
be negative at certain frequencies. In Fig. 2, the frequency
axis is zoomed to observe the first frequency point when
D33 becomes negative. This frequency point is predicted by
Eq. (7) as w = 1.2231. This matches exactly with what is
observed (marked by “+”) in Fig. 2 confirming the validity
of Eq. (7). The frequency at which the Young’s moduli £, and
E, of a hexagonal lattice becomes negative is a fundamental
property of the lattice and it depends only on the length of
the inclined beams (/), the bending rigidity (E7), and mass
density per unit length (m). The imaginary parts of E; and
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FIG. 2. Real and imaginary parts and the amplitude of the nor-
malized value of E; and E, as a function of frequency. Here the
first frequency value when the Young’s moduli become negative is
marked by “+7.

E, remain positive at all frequencies for any positive value of
damping.

The normalized shear modulus is presented in Fig. 3 for
two different values of /// ratios. The real and imaginary parts
along with the absolute values are shown in the figure. The
upper and lower bounds of the values of wg, ,, the frequency
at which G|, becomes negative, are shown by “x” and “4”
in the figure. It is found that the actual value of wg , lies
within the bounds given by Eq. (8). The value of wg; , reduces
with the increase in A/l ratio, which is also evident from
the derived inequality. It can be noted here that the real part
becomes negative for all the three elastic moduli beyond
the fundamental inflection frequency. Amplitude is always a
positive quantity by definition. The imaginary part cannot be
negative for a positive value of damping in a stable dynamic
system.

IV. SUMMARY AND PERSPECTIVE

We have developed a robust analytical framework to ex-
plain the negative elastic moduli (the real parts of E;, E,
and Gyy) of lattice materials under vibrating condition. In
the steady-state dynamic environment, a metamaterial could
subsequently be developed with both negative elastic moduli
and negative Poisson’s ratio when the cell angle becomes
negative [refer to Fig. 1(b)]. Similar observation of nega-
tive stiffness was made for acoustic metamaterials [31] and
through destabilizations of (meta)stable equilibria of the con-
stituents [44,45]. Here we demonstrate such a possibility
for lattice materials in the subacoustic range. Theoretical
limits of frequencies are reported for the first time to achieve
such negative axial and shear moduli. The main approach to
establish the negative effective elastic moduli hinges upon
exploitation of the dynamic stiffness matrix. In contrast to the
conventional static analysis, the dynamic stiffness approach
accurately models the subwavelength scale dynamics of the
unit cells.
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FIG. 3. Real and imaginary parts and the amplitude of the normalized value of G, as a function of frequency for two different values
of h/l. Bounds of wg, , the frequency at which the Gy, becomes negative, are calculated from Eq. (8). Here the upper and lower bounds of

frequency where Gy, becomes negative for the first time are shown by

Assuming the undamped limit, an explicit closed-form
expression of the minimum frequency value, referred to as
fundamental inflection frequency [refer to Eq. (7)] beyond
which the effective elastic moduli E; and E, become negative,
has been obtained. This is achieved using a Taylor series
expansion of a relevant dynamic stiffness coefficient. For
the shear modulus, a closed-form solution for the frequency
(fundamental inflection frequency) when it becomes negative
was not found. However, a tight bound has been derived [refer
to Eq. (8)]. The frequencies wy, 5, and wg, , are fundamental
properties of a lattice metamaterial and they depend only on
the length of the inclined and vertical beams, the bending
rigidity, and the mass density per unit length. The imaginary
part of the elastic moduli remain positive for all frequency val-
ues, indicating that the material would result in dynamically
stable responses. The expressions of wy, p, and wy; , clearly
show the relative mass (m) and stiffness (E7) contributions
on the critical frequencies. A higher value of the stiffness
contribution increases the critical frequencies and vice versa,
while the mass contribution has an opposite effect. The values
of the fundamental inflection frequencies are proportional to
the square root of the ratio (%). In addition to this ratio, g, g,
depends only on /, while wg;, , depends on both / and /// ratio.
The expressions reveal another interesting fact in terms of
static limits. In the static limit, the contribution of mass (effect
of inertia) tends to zero. This leads to the value of wg,  and
wg,, as infinity. In other words, there cannot be a negative
value of the Young’s modulus and the shear modulus in the
static case. Thus, besides characterizing the negative elastic
moduli, our analysis gives a new and alternative explanation
of the classical positive elastic moduli of lattice metama-
terials. Although we have focused here on hexagonal two-
dimensional lattices to present numerical results, the dissemi-
nated concepts can be extended to other forms of lattices and

[TIOAL]

x” and “+”, respectively.

metamaterials in two and three dimensions, the complexity of
which will depend on the nature of microstructure.

Realization of negative elastic moduli in metamaterials is
not new, as discussed in the Introduction section. However, the
contribution of this paper is to develop the fundamental limits
for the minimum frequency, beyond which the negative elastic
moduli (Young’s modulus and shear modulus) can be realized.
These are derived in closed form for the first time. The limits
turn out to be intrinsic properties of the lattice material and
certain geometric parameters. Exact characterization of the
influencing intrinsic mechanical properties at the onset of neg-
ative elastic properties is an important aspect for mechanical
metamaterials. These closed-form limits will have tremendous
impact in efficient development of future microstructured
materials within a dynamic paradigm exploiting the accurate
onset of negative elastic moduli.

In summary, this article sheds light on the negative ax-
ial and shear moduli of lattice materials under subacoustic
conditions based on a physics-based insightful framework.
Theoretical limits of the minimum frequency beyond which
the elastic moduli change sign, referred to as the fundamental
inflection frequencies, have been derived in closed form.
These frequency values are intrinsic properties of the lattice
and are unique to a given geometrical pattern and material
properties. These expressions and the disseminated generic
concepts can be used to pinpoint the onset of negative elastic
moduli and help to design and develop the next generation of
lattice materials in different length scales.
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