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Potential and spin-exchange interaction between Anderson impurities in graphene
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The effective interaction between resonant magnetic Anderson impurities in graphene, mediated by con-
duction electrons, is studied as a function of the strength of the on-site energy level of the impurities and the
amplitude of coupling to conduction electrons. The sign and character of the interaction depend on whether the
impurities reside on the same or opposite sublattices. For the same (opposite) sublattice, the potential interaction
is attractive (repulsive) in the weak coupling limit with 1/R3 dependence on the distance; the interaction
reverses sign and becomes repulsive (attractive) in the strong coupling limit and displays 1/R behavior. The
spin-exchange coupling is ferromagnetic (antiferromagnetic) at both large and small distances, but reverses sign
and becomes antiferromagnetic (ferromagnetic) for intermediate distances. For opposite sublattices, the effective
spin-exchange coupling is resonantly enhanced at distances where the energy levels cross the Dirac points.
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I. INTRODUCTION

Doping novel two-dimensional materials with magnetic
atoms is one of the active areas of research where the ultimate
objective is to design systems with the desired magnetic
properties. To better exploit an emerging magnetism in such
doped materials, it is important to understand how magnetic
impurities [1–9] interact with each other.

Impurities in conventional three-dimensional metals
induce famous charge (Friedel) and spin density
(Ruderman-Kittel-Kasuya-Yosida) oscillations of the
conduction electron density, ∝ cos(2kF R)/(kF R)3, in
the long-distance limit. In conventional two-dimensional
electronic systems [10,11], the amplitude of these oscillations
decays inversely proportional to the square of the distance.
One exception is graphene, a two-dimensional material
known for its remarkable electronic properties and potential
for applications [12–16]. Density oscillations in graphene in
both intrinsic (undoped) and extrinsic (doped) limit decay
as [17] ∝1/R3, much like in three-dimensional systems.
The RKKY interaction between magnetic impurities in
graphene has also been studied extensively [18–25]. The sign
of the RKKY interaction for a bipartite lattice of intrinsic
graphene at half-filling is dictated by the particle-hole
symmetry and is antiferromagnetic (ferromagnetic) when
the impurities reside on different (same) sublattices.
This is found at all length scales, with the exception of
graphene nanoribbons, where presence of zero-energy modes
complicates the picture [25–28]. For example, RKKY
exchange coupling between spins of impurities located on
the same sublattice has the following oscillatory behavior
[21]: JAA ∝ −{1 + cos[(K − K′) · R]}/R3, where K and K′
are the positions of two Dirac valleys in the reciprocal lattice.
The coupling between spins on different sublattices, JAB, has
a similar oscillatory pattern, but the negative sign and the
amplitude that is three times larger than in the AA case.

The above-referenced studies considered interactions of
impurity atoms with the host material perturbatively. On the
other hand, some adatoms (such as hydrogen) are better

described by the Anderson model of a localized orbital hy-
bridized with a conduction band of a host material. Such a
model allows for a strong coupling of the localized orbital to
conduction electrons. In the present paper, we consider two
Anderson impurities with a low energy orbital εo hybridized
with the π -band of graphene with some amplitude γ . We
further assume that the orbital is below the Fermi energy
(Dirac point) of undoped graphene, εo < 0, and that the
Coulomb on-site energy UC is large enough, εo + UC > 0, so
there is always an uncompensated spin 1/2 associated with the
impurity. Such assumptions work well for hydrogen adatoms,
which have energy levels close to the Dirac point of graphene
[29]. It is known that chemisorption of hydrogen atoms on
graphene can indeed induce magnetic moments [30].

Magnetic applications of graphene would benefit from the
ability to control magnetic moments. This, in turn, requires
knowledge of the magnitude and sign of the effective ex-
change coupling between dopants. Of particular interest is the
behavior of resonant Anderson impurities, where the orbital
εo resides close to the Dirac points [17,29]. This results
in the enhanced scattering of conduction electrons off the
impurity [17].

It is instructive to begin our analysis of the Anderson-type
impurities with a discussion of potential impurities. Recent
studies [31–34] of impurity-impurity interaction in the case
of substitution impurities with an on-site potential U have
obtained an analytical expression exact in U [35–37]. In
particular, in the large U limit, interaction between impurities
on the same sublattice is long range, ∝1/R (up to logarithmic
factors), and is repulsive, in contrast to the weak U limit,
where it decays as 1/R3 and is attractive. The interaction
between impurities residing on opposite sublattices similarly
reverses sign and changes behavior when the strength U
varies. Effectively, the Anderson impurity maps on the po-
tential impurity model if one replaces the on-site potential
strength U with the energy-dependent coupling parameter
γ (E ), U → γ (E ) = γ 2

E−εo
. The weak potential impurity limit,

analogous to the Anderson model with small γ (E ), maps onto
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the case of a large on-site energy εo and/or small amplitude γ

such that γ (E ) = −γ 2/εo is an energy-independent constant
for most energies except E ∼ εo. As a result, the interaction of
both types of impurities depends on the coordinate in a similar
fashion, ∝U 2/R3 → γ 4/ε2

o R3. With decreasing the distance R
between the impurities, the strong coupling limit is achieved
when the on-site energy U becomes of the order of v/R. In this
strong coupling limit, the effective interaction energy is given
by this very ratio v/R, since once U drops out of the picture,
there is only one remaining low-energy scale in the system.
The sign of the interaction is repulsive (attractive) for impu-
rities belonging to the same (different) sublattices. Below, in
Sec. III, we confirm that Anderson impurities in the resonant
coupling regime demonstrate a similar R dependence.

We then investigate the effective spin-spin-exchange cou-
pling Jeff (R) between two Anderson impurities in graphene
and compare it with our recent results for substitutional
potential impurities [37]. We limit our analysis to the low-
est (second) order in the coupling J between the localized
spins and conduction electrons but explore a broad range
of the parameters εo and γ . The case of weak Anderson
impurities yields Jeff (R) ∝ J2/R3, similar to effective spin
coupling in the potential impurity case. Both the sign and
the 1/R3 dependence of the exchange coupling constants are
consistent with the results in the existing literature, calculated
within the conventional RKKY approach [21,25,31]. We then
explore how Jeff (R) behaves in the strong coupling limit.
In our recent work [37], we have shown that the effective
spin-exchange coupling between substitutional magnetic im-
purities can become resonantly enhanced at a specific distance
where an impurity level crosses the Dirac point. We find
similar enhancement for Anderson impurities for sufficiently
large couplings γ 2/εo.

We also consider a case where impurities are of different
types, namely an Anderson impurity interacting with a substi-
tutional impurity. A rather interesting situation arises where
one of the impurities is weak whereas the second impurity
is strong or resonant. This situation cannot be reduced to the
perturbative RKKY-type calculations. In this situation, both
the potential part of the interaction and its spin-spin-exchange
part depends on the distance between the impurities as 1/R2.

This paper is organized as follows: In Sec. II, we discuss
the energy levels of two Anderson impurities. In Secs. III and
IV, we derive general expressions for the potential interac-
tion and the spin-exchange coupling between the impurities,
respectively, and consider the limiting case of εo = 0. In
Sec. V, we derive expressions for the potential interaction
between an Anderson impurity and a substitutional impurity.
We also looked at the spin-spin exchange coupling for a weak
Anderson impurity and a strong potential impurity.

II. ENERGY LEVELS OF A TWO-IMPURITY SYSTEM

We consider the tight-binding model of π electrons in
graphene interacting with two Anderson impurities located
at r1 = 0 and r2 = R. To calculate the interaction between
the impurities, we first determine the energy spectrum of the
system. The Hamiltonian of the system consists of the kinetic
energy of electrons, the on-site impurity energy level εo, and
a coupling term describing hybridization of conduction band

with the impurity states with amplitude γ ,

Ha = t
∑

r

∑
i=1,2,3

ψ̂†(r)ψ̂ (r + ai ) + εo

∑
j=1,2

d̂†(r j )d̂ (r j )

+ γ
∑
j=1,2

[d̂†(r j )ψ̂ (r j ) + ψ̂†(r j )d̂ (r j )]. (1)

Here t is the hopping integral, ψ̂ is electron operator of con-
duction electrons; ψ̂ (r) = â(r) when r belongs to sublattice
A, ψ̂ (r) = b̂(r) when it belongs to sublattice B, and d̂ is the
operator of the localized impurity states. The index j enumer-
ates the impurities. Using the Fourier representation for the

electron operators, ψ̂ (r) =
√

2
N

∑
k ψ̂ (k)eik·r−iEt , we obtain

from the equation of motion, i∂ψ̂ (r, t )/∂t = [ψ̂ (r, t ), H], the
following system of coupled equations (for the AB impurity
configuration):

Eâ(k) = t (k)b̂(k) +
√

2

N
γ d (̂0), (2)

Eb̂(k) = t∗(k)â(k) +
√

2

N
γ e−ik·Rd̂ (R), (3)

Ed̂ (0) = εod̂ (0) +
√

2

N
γ

∑
k

â(k), (4)

Ed̂ (R) = εod̂ (R) +
√

2

N
γ

∑
k

b̂(k)eik·R, (5)

where t (k) = t
∑

i eik·ai and N is the total number of carbon
atoms. Eliminating d̂ (0) and d̂ (R) gives

(E − εo)[Eâ(k) − t (k)b̂(k)] = 2γ 2

N

∑
k′

â(k′),

(E − εo)[Eb̂(k) − t∗(k)â(k)] = 2γ 2

N

∑
k′

b̂(k′)ei(k′−k)·R.

Solving the above two equations yields the equation for the
localized impurity energy levels,[

1 − γ 2
∑

k

A(k, 0)

]2

= γ 4
∑

k

B(k, R)
∑

k′
B(−k′, R), (6)

where {
A(k, R)

B(k, R)

}
= 2e−ik·R

N (E2 − |t (k)|2)(E − εo)

{
E

t (k)

}
.

The poles in the above expression should be avoided in the
usual way by replacing E → E + iη.

Considering only low-energy physics of the Hamiltonian,
we expand momentum vector k near the two Dirac points,
k = K± + q. Summation over momentum vectors then gives

E = εo ± α0v| sin(θAB)|/R

α0
(

ln |t/εo| + i π
2

) + 1
, α0 = γ 2Ao

πv2
. (7)

Here θAB(R) = φ + 2πR
3
√

3a
cos φ, where φ is the angle mea-

sured from zigzag direction as shown in Fig. 1. The di-
mensionless constant α0 ∼ γ 2/t2 describes the strength of
hybridization relative to the hopping integral. Importantly, one
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FIG. 1. Graphene honeycomb structure consisting of two sub-
lattices A (green) and B (red). Two impurities sitting on top of
the carbon atoms with spin S1 and S2 are shown in black and are
separated by vector R. φ is the angle made by the R with zigzag
direction.

of the impurity levels in AB configuration can cross the Dirac
point at a particular distance R ∼ α0v/εo. As we will see in
Sec. IV, the spin-exchange coupling between impurities resid-
ing on different sublattices can become resonantly enhanced
at this distance where crossing occurs.

III. INTERACTION ENERGY: POTENTIAL PART

The interaction energy of conduction electrons described
by the Anderson Hamiltonian Eq. (1) can be calculated using
the following well-known quantum-mechanical identity:

∂W

∂γ
=

〈
∂H

∂γ

〉
=

∑
j=1,2

〈d̂†(r j )ψ̂ (r j ) + ψ̂†(r j )d̂ (r j )〉. (8)

This identity can be written in terms of electron Green’s
function:

G(r, r′, t ) = −i〈T ψ̂ (r, t )ψ̂†(r′, 0)〉. (9)

Because, according to Eqs. (4) and (5), d̂ (r j ) = γ ψ̂ (r j )/(E −
ε0), we obtain from Eq. (8):

∂W

∂γ
= − 2iγ

E − εo

∑
j=1,2

G(r j, r j, t = 0−). (10)

The equation for Green’s function in the energy representation
is

EGE (r, r′) − t
∑

i

GE (r + ai, r′) − γ (E )δr,0GE (0, r′)

− γ (E )δr,RGE (R, r′) = δr,r′ , (11)

where we introduced the shorthand:

γ (E ) = γ 2

E − εo
. (12)

The solution of Eq. (11) has been found elsewhere [36]
for the case of two impurities with the onsite potential U .
Because the present case differs from that situation only by the
replacement U → γ (E ), we can use the result of Ref. [36],

GE (R, 0) = GE (R, 0)
1 + 2TE GE (0, 0) + T 2

E G2
E (0, 0)

1 − T 2
E G2

E (0, R)GE (R, 0)
,

(13)

which expresses the two impurity Green’s function GE (for
the electron propagation between two impurities) via the free-
electron Green’s function GE .

The interaction energy (that part of W that depends on the
distance R between impurities) then follows from Eq. (10):

W (R) = 2i
∫ ∞

−∞

dE

2π
ln

[
1 − T 2

E GE (R, 0)GE (0, R)
]
, (14)

where TE stands for the T matrix:

TE = γ (E )

1 − γ (E )GE (0, 0)
. (15)

The free-electron Green’s function evaluated at coinciding
points r = r′ = 0 is

GE (0, 0) = −EA0

πv2

[
ln

(
t

|E |
)

+ i
π

2
sgn E

]
. (16)

Using now the fact that the time-ordered Green’s functions
do not have singularities in the first and third quadrants of the
complex E plane, and rotating the integration path counter-
clockwise by the angle π/2 so it follows the imaginary axis,
E = iω, we obtain the expression for the interaction energy,

W (R) = −2
∫ ∞

−∞

dω

2π
ln

[
1 − T 2

iωiω(R)
]
, (17)

where we introduced the following shorthand for the product
of two Green’s functions:

iω(R) = Giω(0, R)Giω(R, 0). (18)

For the AA configuration of adatoms [35,36],

iω(R) = −ω2A2
o

π2v4
K2

0

( |ω|R
v

)
cos2 θAA, (19)

where K0 is the Macdonald function of the zeroth order and
θAA(R) = 2πR

3
√

3a
cos φ. For AB configuration, the product is

given by [35,36]

iω(R) = ω2A2
o

π2v4
K2

1

( |ω|R
v

)
sin2 θAB, (20)

where K1 is the Macdonald function of the first order and
θAB is defined after Eqs. (7).To make subsequent calculations
of the energy W (R) given by Eq. (17) more compact, let us
introduce the two dimensionless parameters,

α = α0

1 + α0 ln
(

R
a

) , β = R

v

εo

1 + α0 ln
(

R
a

) , (21)

namely, the renormalized impurity coupling strength α and
the parameter β that characterizes the location of the impurity
level εo relative to the energy scale v/R of the electron travel
between the impurities. With increasing the “bare” coupling
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α0, the renormalized α approaches a (distance-dependent)
constant. Note that in the long-range limit R � a, to which
the present theory only applies, α is always less than 1. The
parameter β, as we are about to see, describes the effective
strength of the impurity with large β > 1 corresponding to the
weak impurity limit and β < 1 to the strong coupling domain.

The potential interaction energy expression for impurities
residing on different sublattices in terms of α and β is given
by

WAB(R) = −2v

R

∫ ∞

−∞

dx

2π
ln

(
1 − α2x2K2

1 (|x|) sin2 θAB

(ix − β )2

)
.

(22)

In deriving the above expression, we have used Eq. (20) for the
product of two Green’s functions and the expression for the T
matrix given by Eqs. (15) and (12). The integral in Eq. (22)
can be calculated in different limits of α and β.

(i) When the distance between the impurities is large
enough so β � 1, we can neglect x in the denominator and
calculate the remaining integral by expanding the logarithms
over a small ratio α/β (as explained before, α < 1):

WAB(R) ≈ −2v

R

∫ ∞

−∞

dx

2π
ln

[
1 −

(
α

β

)2

x2K2
1 (|x|) sin2 θAB

]

≈ 3πα2
0

16

v3

R3ε2
o

sin2 θAB. (23)

This is simply the weak impurity limit, where interaction
decays with the distance as 1/R3, just like in a case of a
substitution impurity. The interaction is positive (repulsive)
there. This regime is also realized when the impurity level εo

is sufficiently far away from the Dirac point.
(ii) As the distance R decreases or, alternatively, the energy

level εo approaches the Dirac point, a situation of small
β  1 is eventually realized. (This condition means that the
impurity level has the energy, εo  v/R, i.e., much smaller
than the energy corresponding to the distance R). In the most
interesting case of α  1, two scenarios can occur, depending
on how β compares with α. In the limit of α  β  1, one
can still expand the logarithm in the integrand,

WAB(R) ≈ vα2 sin2 θAB

πR

∫ ∞

−∞
dx

x2K2
1 (|x|)

(ix − β )2
, (24)

even though it is no longer possible to neglect ix in compari-
son to β in the denominator. Because this limit requires small
γ , the difference between two coupling constants becomes
insignificant, α ≈ α0, whereas β ≈ εoR/v. The remaining
integral is calculated in Appendix A to give

WAB(R) = πα2
0v

2R
sin2 θAB

[
1 + 4εoR

πv
ln

(
0.89

εoR

v

)]
. (25)

The sign of the interaction remains the same as in Eq. (23)
but the dependence on R changes from 1/R3 to a long-range
1/R. As should be, the two expressions, Eqs. (23) and (25),
become of the same order when β ∼ 1; this happens when
εo ∼ v/R. Note that this situation of the repulsive interaction
WAB described by Eq. (25) does not occur in case of potential
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FIG. 2. Interaction energy is plotted as a function of distance
between the impurities R/a in AB configuration for three different
values of on-site energy εo: 0.01, 0.03, and 0.1 eV. The coupling
constant γ = 1 eV is same for all three plots in this figure. It is exact
numerical plot of Eq. (22).

substitutional impurities where WAB always remains attractive.
In the second limit of β  α  1, where the impurity-

level energy εo is negligible in comparison with v/R, it is
appropriate to ignore β in the integrand in Eq. (22):

WAB(R) ≈ −2v

R

∫ ∞

0

dx

π
ln

[
1 + α2 sin2 θABK2

1 (x)
]

≈ −2v

R

∫ ∞

0

dx

π
ln

(
1 + α2 sin2 θAB

x2

)
. (26)

Since the relevant values of x in this integral are of the order
of α, neglecting β in the original integral is justified. Utilizing
also that α is small, we used the small-argument expansion
of the Macdonald function, K1(x) ∼ 1/x. The remaining inte-
gral is straightforward to calculate using integration by parts
and is equal to πα| sin(θAB)|. The expression of interaction
energy is thus given by

WAB(R) = −2αv

R
| sin θAB|. (27)

Note that the presence of the logarithmic term in α indicates
the onset of multiple scattering of electrons off the impurities.
This is the strong impurity limit where the interaction is
attractive, in contrast to the weak impurity limit. In the limit
of α0 ln(R/a) � 1, we recover the expression found earlier in
Refs. [35,36] for strong potential impurities.

Figure 2 illustrates the dependence of WAB on the distance
between impurities for different values of on-site energy εo:
0.1, 0.03, and 0.01 eV and coupling γ = 1 eV. The inset plot in
the figure is to explain the behavior of interaction energy with
the help of impurity strength parameter β and renormalized
impurity coupling α. It shows the variation of β with distance
R/a for the above set of on-site energies εo along with α

plotted for γ = 1 eV. For εo = 0.1 eV, β remains greater than
α for all values of R/a, hence the interaction energy is always
repulsive. As we decrease εo to 0.03 eV and further down to
0.01 eV, we see the transition from weak coupling to strong
coupling occurs, leading to attractive interaction. It happens
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FIG. 3. Interaction energy is plotted as a function of distance
between the impurities R/a in AB configuration for on-site energy
εo = 0.05 eV and coupling constant γ = 0.1 eV. The first plot
labeled exact is a result of the exact numerical integration Eq. (22).
The other two plots labeled 1/R and 1/R3 are plotted using Eqs. (25)
and (23), respectively.

at the value of R/a when β ∼ α. Figure 3, on the other hand,
shows the dependence of WAB on the distance in different
regimes. Even though the potential interaction in this regime is
repulsive, it changes from 1/R to 1/R3 dependence at β ∼ 1.

The interaction energy for the two impurities residing on
same sublattices is given by

WAA(R) = −2v

R

∫ ∞

−∞

dx

2π
ln

(
1 + α2x2K2

0 (|x|) cos2 θAA

(ix − β )2

)
.

(28)

As in the AB case, we calculate the above integral in different
limits of α and β. In the weak impurity limit, β � 1, the
integrand is simplified by neglecting x in the denominator and
the remaining integral can be calculated by expansion of the
log:

WAA(R) ≈ −2v

R

∫ ∞

−∞

dx

2π
ln

[
1 +

(
α

β

)2

x2K2
0 (|x|)

]

≈ −πα2
o

16

v3

R3ε2
o

cos2 θAA. (29)

Because the integral converges over x ∼ 1  β, neglecting
x in comparison to β in the denominator is justified. The
interaction in the AA configuration in the weak impurity limit
is attractive, in contrast to the repulsive interaction in the AB
case, and is three times smaller in magnitude.

When β  1, similar to the AB case, two limits arise:
(i) For α  β  1, we are still justified to expand the log-
arithm (but not to neglect x in the denominator):

WAA(R) ≈ vα2 cos2 θAA

πR

∫ ∞

−∞
dx

x2K2
0 (|x|)

(x + iβ )2
. (30)
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FIG. 4. Interaction energy WAA is plotted as a function of distance
between the impurities R/a in AA configuration for three different
values of on-site energy εo: 0.01, 0.2, and 1 eV. The coupling constant
γ = 1 eV is same for all three plots in this figure. WAA is scaled by
dimensionless ratio πvaεo/γ

2Ao. It is the exact numerical plot of
Eq. (28).

The above integral is calculated in Appendix A and the
expression of interaction energy is given by

WAA(R) = vα2 cos2 θAA

πR

[
π

2
− π2

2

εoR

v

− 2εoR

v
ln2

(
εoR

v

)
− 2εoR

v
ln

(
εoR

v

)]
. (31)

(ii) In the remaining limit of β  α  1, we can neglect
β in denominator of the integral in Eq. (30) and obtain

WAA(R) = πα2v

2R
cos2 θAA. (32)

We see that in the strong impurity limit the interaction is
repulsive, in contrast to the weak impurity limit Eq. (29)
where it is attractive.

Figure 4 illustrates the dependence of WAA on the distance
between impurities for different values of the on-site energy
εo: 1, 0.2, 0.01 eV and coupling γ = 1 eV. The inset plot in
the figure is to explain the behavior of interaction energy with
the help of impurity strength parameter β and renormalized
impurity coupling α. It shows the variation of β with distance
R/a for the above set of on-site energies εo along with α

plotted for γ = 1 eV. For εo = 1 eV, β remains greater than
one for all values of R/a, hence the interaction energy is
always attractive. As we decrease εo to 0.2 eV and further
down to 0.01 eV, we see the transition from weak coupling
to strong coupling occurs leading to repulsive interaction. It
happens at the value of R/a when β ∼ α. Figure 5, on the
other hand, shows the dependence of WAA on the distance in
a different regime. The potential interaction in this regime
changes from attractive, 1/R3, to repulsive, 1/R, at β ∼ 1.

IV. INTERACTION ENERGY: SPIN-DEPENDENT PART

To describe a spin-dependent part of the interaction be-
tween Anderson magnetic impurities in graphene, we add to
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FIG. 5. Interaction energy is plotted as a function of distance
between the impurities R/a in AA configuration for on-site energy
εo = 0.05 eV and coupling constant γ = 0.1 eV. The first plot
labeled exact is a result of the exact numerical integration Eq. (28).
The other two plots labeled 1/R and 1/R3 are plotted using Eqs. (31)
and (29), respectively.

our Hamiltonian the spin term

H = Ha + Hsp, (33)

where Ha is given by Eq. (1) and

Hsp = JS1 · ψ̂†
α (0)σ̂αβψ̂β (0) + JS2 · ψ̂†

α (R)σ̂αβψ̂β (R)

(34)

contains two short-range exchange interactions between spins
of impurities, S1, S2, and those of conduction electrons
described by the Pauli matrices σ̂. The exchange coupling J
is assumed to be small compared with both t and γ . As a
result of the coupling to conduction electrons, there appears
the effective coupling of impurity spins,

Heff = Jeff (R) S1 · S2. (35)

The effective exchange constant Jeff can be obtained from the
already familiar method of differentiation with respect to the
coupling parameter J ,

∂Jeff

∂J
S1 · S2 =

〈
∂H

∂J

〉
=

∑
j=1,2

S j · 〈ψ̂†(r j )σ̂ψ̂ (r j )〉. (36)

The expectation values in Eq. (36) should be calculated to the
lowest (first) order in the Hamiltonian Eq. (34). This yields

Jeff = −2iJ2
∫ ∞

−∞

dE

2π
GE (R, 0)GE (0, R). (37)

The last expression can be simplified further by express-
ing Green’s functions via free-electron Green’s functions,
Eq. (13). At last, rotating the integration path counterclock-
wise by the angle π/2, E = iω, we obtain

Jeff = J2

π

∫ ∞

−∞
dω

× iω(R)

[(1 − γ (iω)Giω(0, 0))2 − γ 2(iω)iω(R)]2
. (38)

Having obtained the general expression for the effective spin-
exchange coupling for two impurities in the AA or AB config-
uration, we can now proceed with evaluating it for different
limits of the coupling strength γ and the position of the
impurity level εo.

A. AB configuration

We begin by calculating spin-exchange coupling in AB
configuration using Eq. (20) for the product of two Green’s
functions (R) and γ (iω) = γ 2/(iω − εo). The Green’s
function at coinciding points Giω(0, 0) is given by Eq. (16).
To simplify calculations further, let us introduce dimension-
less distance ρ = εoR/vα0 as [here, αo = γ 2Ao/πv2, defined
earlier in Eqs. (7)]:

JAB
eff (R) = J2

π3α4
0

A2
o

vR3
sin2θAB

∫ ∞

−∞

dxx2K2
1 (|x|)(ix − α0ρ)4[(

ρ − ix
(

1
α0

+ ln
[

R
a|x|

]))2 − sin2θABx2K2
1 (|x|)]2 . (39)

Below we consider the dependence of the effective exchange
constant on the distance R (represented by the dimensionless
variable ρ), as predicted by Eq. (39).

At both large and small distances R, we obtain the same
power-law dependence, JAB ∝ 1/R3. Indeed, for very large
ρ, the integral in Eq. (39) is equal to α4

0

∫ ∞
−∞ dxx2K2

1 (|x|) =
3π2α4

0/16, so the exchange coupling becomes

JAB
eff (R) = 3J2

16π

A2
o

vR3
sin2θAB. (40)

The applicability of this expression follows from the obser-
vation that x ∼ 1 contributes to the integral and that ρ must
be large enough compared with 1

α0
+ ln R

a , or in terms of the

actual distance, R � (v/εo)(1 + α0 ln R
a ).

On the other hand, at small distances one can simply set
ρ → 0 in the integral. This again reveals the R−3 dependence

as the integral still converges at x ∼ 1. Provided that 1
α0

+
ln R

a � 1, one can also neglect the K2
1 (|x|) ∼ 1 term in the

denominator. The exchange constant then assumes the form

JAB
eff (R) = 3J2

16π

A2
o

vR3

sin2θAB(
1 + α0 ln R

a

)4 . (41)

The short-distance value Eq. (41) is suppressed, compared
with the long-distance asymptotic Eq. (40), by the additional
factor that depends weakly (logarithmically) on R. To justify
neglecting ρ in both the numerator and the denominator, it
is sufficient to have α0ρ  1 or, equivalently, R  v/εo. The
1/R3 increase of the exchange constant at short distances de-
scribed by Eq. (41) does not occur in the case of substitutional
impurities [37]. In the latter case, where at small distance

085439-6



POTENTIAL AND SPIN-EXCHANGE INTERACTION … PHYSICAL REVIEW B 99, 085439 (2019)

a strong impurity limit is realized, is characterized by the
exchange constant decreasing with decreasing distance R.

At ρ → 0, the contribution of x ∼ 1 to the integral in
Eq. (39) is the only one that matters, and leads to Eq. (41).
However, as ρ increases (but still does not exceed 1, see
below), a contribution of small x  1 might become dom-
inant, where the term ix in the numerator of the integrand
can be neglected in comparison with α0ρ and where one
can approximate K1(x) ≈ 1/x. As long as the poles of the
integrand are on opposite sides of the real axis (see discussion
below), the remaining integral can be calculated by the residue
method:

JAB
eff (R) = J2

π3

A2
o

vR3

(
εoR

vα0

)4

sin2θAB

×
∫ ∞

−∞

dx[(
ρ − ix ln

[
cR
a|x|

])2 − sin2θAB
]2

= π2J2

2π2

ε4
ov

3R

A2
oγ

8

1

| sin θAB| ln
(

α0v
aεo

) . (42)

Because sin θAB ∼ 1, the typical value x ∼ 1/ ln(R/a) and the
condition x  1 is satisfied automatically. But to ensure that
x is smaller than α0ρ, one must also have α0ρ � 1/ ln R

a
or, equivalently, R � (v/εo)/ ln R

a . We conclude that the ex-
change coupling constant is the sum of contributions Eqs. (41)
and (42) in the range of distances, (v/εo)/ ln R

a  R  v/εo.
Within this range, with increasing R, the ∝R−3 contribution
gradually becomes dominated by the linear ∝R term. The
crossover occurs at the point where the two terms are of the
same order of magnitude, at R ∼ (v/εo)/(ln R

a )3/4.
One additional condition should be emphasized. The

residue method applies only if ρ < ρ0 = | sin θAB| or equiv-
alently R < γ 2A0| sin θAB|/πvεo; otherwise, the poles of the
integrand in Eq. (42) reside on the same side of the real
axis. To ensure that one nonetheless has α0ρ ln R

a � 1, it is
necessary that the value α0 ∼ (γ /t )2 is not too small, i.e., that
α0 ln R

a � 1.
The linear increase of the effective spin-exchange coupling

is caused by multiple scattering of conduction electrons off
the two impurities. As the distance ρ increases even further
and approaches ρ0 = | sin θAB|, a resonant enhancement of the
exchange constant occurs. There, one of the energy levels of
the impurities in AB configuration crosses the Dirac point,
see Eqs. (7). As a result, at ρ = ρ0 the integrand has the
singularity at x = 0. For small values ρ − ρo, the integral
can be calculated by keeping only terms linear in x in the
denominator. This is justified by the fact that the integral con-
verges at x ∼ (ρ2 − ρ2

0 )/(ρ0 ln R
a ). In the leading logarithm

approximation we obtain (see Appendix B for details)

JAB
eff (R) = − vJ2ε2

o

4γ 4|R − R0|
| sin θAB|

ln2
( R2

0
a(R−R0 )

) . (43)

Figure 6 illustrates the dependence of the spin-exchange
coupling JAB on the distance between the impurities for differ-
ent values of the on-site energy εo and γ = 3 eV. The interac-
tion changes from the weak impurity limit to strong impurity
limit at short distances on decreasing value of εo. This can
be understood from the inset plot shown inside the graph,
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FIG. 6. Effective spin coupling is plotted as a function of dis-
tance between the impurities R/a in AB configuration for three
different values of on-site energy εo: 0.5, 1.0, and 1.5 eV. The
coupling constant γ = 3 eV is the same for all three plots in this
figure. It is the exact numerical plot of Eq. (39).

it shows the variation of γ 2Ao ln(R/a)/πvR and v/R with
R/a. εo is always greater than γ 2Ao ln(R/a)/πvR for εo =
1.5 eV and thus the interaction is always antiferromagnetic. It
changes to strong impurity limit for R ∼ γ 2Ao ln(R/a)/πvεo

for εo = 0.5 eV where the impurities are ferromagnetically
coupled.

Figure 7 illustrates the dependence of the spin-exchange
coupling JAB on the distance between the impurities for two
values of on-site energy εo = 0.01 and 0.05 eV and γ =
3 eV. At small distances R < (v/εo)/(ln R

a )3/4, the interaction
is antiferromagnetic and decreases with increasing R. On
increasing distance, we see a transition from weak coupling
to strong coupling. Above R ∼ (v/εo)/(ln R

a )3/4, the inter-
action remains antiferromagnetic but increases linearly with
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FIG. 7. Effective spin coupling JAB is plotted as a function of
distance between the impurities R/a in AB configuration for two
different values of on-site energy εo: 0.01 and 0.05 eV. The coupling
constant γ = 3 eV is same for all three plots in this figure. JAB is
scaled by dimensionless ratio γ 2Ao/πvaεo. It is the exact numerical
plot of Eq. (39).
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R. At R = γ 2A0| sin θAB|/πvεo, the spin-exchange coupling
becomes resonant ferromagnetic.

B. AA configuration

In the AA configuration of impurities, the spin exchange
coupling is given by

JAA
eff (R) = − J2

π3α4
0

A2
o

vR3
cos2θAA

∫ ∞

−∞
dx

x2K2
0 (|x|)(ix − α0ρ)4[(

ρ + ix
(

1
α0

+ ln
[

R
a|x|

]))2 + cos2θAAx2K2
0 (|x|)]2 . (44)

Similar to the AB case, we obtain the same 1/R3 de-
pendence of spin-exchange coupling for both small and
large distances R. For large ρ � 1

α0
+ ln( R

a ), we can keep
only the ρ terms in both numerator and denominator and
utilize the fact that the integral in Eq. (44) converges at x ∼ 1.
Because

∫ ∞
−∞ dxx2K2

0 (|x|) = π2/16, the exchange coupling
becomes

JAA
eff (R) = − J2

16π

A2
o

vR3
cos2θAA. (45)

On the other hand, for small ρ → 0 and large value of 1
α0

+
ln( R

a ) � 1, we can neglect in the denominator both ρ and the
term containing K0(x):

JAA
eff (R) = − J2

16π

A2
o

vR3

cos2θAA(
1 + α0 ln R

a

)4 . (46)

Again x ∼ 1 values determine the integral, and thus the last
expression is valid as long as α0ρ  1, which is equivalent
to R  v/εo. Unlike in the case of substitutional impurities
[37], the small-distance 1/R3 dependence of the exchange
coupling constant is similar to the large-distance perturbative
expression, but is suppressed by the factor (1 + α0 ln R/a)4.

As ρ increases, the contribution of small x  1 can be-
come important, where we can neglect ix term in the numera-
tor in comparison to α0ρ. For ρ  1, the integral in Eq. (44)
converges on x ∼ ρ where we can approximate the Mac-
donald function K0(x) ≈ − ln x. In the leading logarithmic
approximation, it is typically sufficient to take the logarithms
at the characteristic arguments; in this case, x ∼ ρ. But the
integral thus evaluated will vanish because both poles of the
integrand will lie on the same side of the x axis. Thus, it
is important to calculate the subleading contribution to the
integral where one can no longer treat logarithms as constant.
The corresponding calculation is presented in Appendix C. In
the limit of small εo and large distances R, it amounts to

JAA
eff (R) = 2J2πv2ε3

o

3A0γ 6
ln

(
vα0

Rεo

)
cos2 θAA

ln3
(

vα0
aεo

) . (47)

We note that since x ∼ ρ, the condition α0ρ � x re-
quires that the value of α0 is large, α0 � 1. If this is
the case, the exchange coupling constant for R  v/εo is the
sum of two contributions, Eqs. (46) and (47). With increasing
R, the logarithmic contribution Eq. (47) exceeds the R−3 part,
Eq. (46). This crossover occurs when the two terms becomes

of the same order, at R ∼ v
εo

ln ( vαo
aεo

)[ t
γ (ln R/a)2 ]

2/3
.

Figure 8 illustrates dependence of the spin-exchange cou-
pling JAA on the distance between impurities for γ = 3 eV
and different values of the on-site energy εo. The impurities
are ferromagnetically coupled for large distances R. The

change from weak to strong impurity occurs at distances R ∼
γ 2Ao ln(R/a)/πvεo as seen from the inset plot. The impuri-
ties are antiferromagnetically coupled in the strong impurity
limit until εo  v/R, where it switches back to ferromagnetic
coupling.

V. INTERACTION BETWEEN ANDERSON
AND POTENTIAL IMPURITIES

Graphene can simultaneously have impurities or defects of
multiple types. For example, a hydrogen atom can be present
together with a lattice vacancy. In this situation, it would be
important to understand how the two objects might interact, if
they attract or repel each other. While the hydrogen atom is
well described by a resonant Anderson impurity, the vacancy
can be viewed as a potential (substitution) impurity with a
very large on-site potential. What makes this case particularly
interesting is the fact that the nature of the two impurities can
be very different, unlike the cases considered so far, of the
same-type impurities. For example, one of the impurities can
be weak (small on-site potential U ) while the other impurity
can be resonant (for example, an Anderson impurity having
the on-site energy εo close to the Dirac point).

A. Potential part of interaction

Repeating the derivation of Sec. III, we obtain that the
potential energy of the interaction between a substitution
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FIG. 8. Effective spin coupling JAA is plotted as a function of
distance between the impurities R/a in AA configuration for three
different values of onsite energy εo: 0.1, 0.5, and 2 eV. The coupling
constant γ = 3 eV is the same for all three plots in this figure. It is
the exact numerical plot of Eq. (44).
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impurity and an Anderson impurity is

W (R) = −2
∫ ∞

−∞

dω

2π
ln [1 − TU (iω)Tγ (iω)iω(R)], (48)

where, TU and Tγ are the T matrices corresponding to the
scattering from the potential and the Anderson impurities,
respectively: Tγ is defined in Eq. (15) and TU is given by the
same expression where γE is replaced with U . We consider
the most interesting situation of the two impurities residing
on different sublattices, where a new 1/R2 dependence exists
when one of the impurities is a strong Anderson impurity and
the other impurity is a weak potential impurity. In case of two
impurities on the same sublattice, the less divergent behavior
of K0(|x|), as compared to K1(|x|), for x  1 makes it always
possible to expand the logarithm, so that no new dependence
on R emerges. Thus we look at the interaction energy in AB
configuration,

W (R) = −2v

R

∫ ∞

−∞

dx

2π
ln

(
1 − αux2K2

1 (|x|) sin2 θAB

[1 + iux ln( R
a|x| )](ix − β )

)
.

(49)

According to the definitions, Eqs. (21), the coefficient α is
a number between 0 and 1, which describes how strongly
the Anderson impurity is coupled to the conduction band.
The distance-dependent parameter β describes the effective
strength of the Anderson impurity. Finally, u is the dimen-
sionless potential impurity strength, u = UA0/πvR.

We first consider the case of a weak potential impurity,
u ln (R/a)  1, where one can approximate 1 + iux ln( R

a|x| ) ≈
1, as x is at most of the order 1 due to the presence of the
exponentially decaying Macdonald function K1. For a weak
Anderson impurity, β > 1, the small value of u makes it
possible to expand the logarithm in Eq. (49). The resulting
x integral converges over x ∼ 1 and the interaction Eq. (50)
reduces to the usual perturbative form, W ∝ R−3.

If the effective strength of the Anderson impurity increases
(for example, due to decreasing distance R), we enter the
domain where β  1. Because small values of x are important
now, we can approximate K1(x) ∼ 1/x. The interaction energy
becomes

W (R) = − v

R

∫ ∞

0

dx

π
ln

x2 + β ′2

x2 + β2
, (50)

where β ′ = β + αu sin2 θAB. Using the integration by parts,
we obtain

W (R) = −UA0

πR2
α sin2 θAB. (51)

We see that the interaction energy in the case of a weak poten-
tial impurity and a strong Anderson impurity is proportional to
1/R2, in contrast to the 1/R3 and 1/R results previously seen
for two identical weak and strong impurities, respectively.
Interestingly, the sign of the interaction depends only on the
sign of U but not on the sign of β: The actual location of
the resonant level (above or below the Dirac point) is not
important.

Figure 9 illustrates the dependence of WAB on the distance
between impurities for on-site energy εo = 0.005 eV, coupling
constant γ = 0.1 eV and U = 1 eV. For these values and range
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FIG. 9. Interaction energy is plotted as a function of distance
between the impurities R/a in AB configuration for on-site energy
εo = 0.005 eV, coupling constant γ = 0.1 eV and on-site potential
U = 1 eV. The first plot labeled exact is a result of the exact
numerical integration Eq. (49) and the other plot labeled analyt ical
is plotted using Eq. (51).

of distances shown in the plot, the potential impurity is weak
while Anderson impurity is strong. The interaction energy is
proportional to 1/R2, as given by Eq. (51) and is attractive in
nature.

Next, we consider the opposite limit of a strong potential
impurity, u � 1. In this limit, the TU matrix is independent of
U : TU ≈ −iπv2

ωA0 ln(t/|ω|) . The interaction energy expression in this
limit is given by

W (R) = −2v

R

∫ ∞

−∞

dx

2π
ln

(
1 + iα sin2 θABx2K2

1 (|x|)
x ln( R

a|x| )(ix − β )

)
.

(52)
In the case of a weak Anderson impurity, β � 1, the loga-
rithm can be expanded and the interaction energy assumes the
form W (R) ∝ 1/R3.

When the strength of the Anderson impurity increases
so that β  1, the small-argument approximation of the
Macdonald function can be used, K1(x) ∼ 1/x. Utilizing the
integration by parts and changing the variable, x = βy, we
reduce the remaining integral to

W (R) = − ivα sin2 θAB

πβR

×
∫ ∞

−∞
dy

(2iy − 1)L + 1 − iy

(iy − 1)L
[
y(iy − 1)L + iα/β2

] , (53)

where we denoted L = ln (R/aβ|y|). In the last integral, it is
now sufficient to approximate the slowly varying logarithm
with its typical value within the range of integration, L ≈
ln (R/aβ ); the remaining integral is elementary and yields

W (R) = − 4vα sin2 θAB

βRL2

( L
1 + K

− 1

2K

)
, (54)

where K =
√

1 + 4α/β2L.
From the last result, we see that in the case of an Anderson

impurity of intermediate strength,
√

α/L  β  1, where
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FIG. 10. Interaction energy is plotted as a function of distance
between the impurities R/a in AB configuration for on-site energy
εo = 0.005 eV, coupling constant γ = 0.1 eV, and on-site potential
U = 50 eV. The first plot labeled exact is a result of the exact
numerical integration Eq. (49) and the other plot labeled analyt ical
is plotted using Eq. (54).

K ≈ 1, the interaction energy is proportional to 1/R2, similar
to the above case of a weak potential impurity, Eq. (51),
although suppressed by the factor ln(R/aβ ).

If the strength of the Anderson impurity increases even
more, β  √

α/L, so that K � 1—which happens at small
distances—the dependence of the interaction energy switches
to ∝1/R.

Figure 10 illustrates the dependence of WAB on the distance
between impurities for on-site energy εo = 0.005 eV, coupling
constant γ = 0.1 eV, and U = 50 eV. For these values and the
range of distances shown in the plot, the potential impurity is
strong while the Anderson impurity is in the intermediately
strong regime. The interaction energy is proportional to 1/R2,
as given by Eq. (54) and is attractive in nature.

B. Spin-exchange energy

The spin interaction energy expression between a potential
and an Anderson impurity can be derived by following the
method of Sec. IV, which gives

Jeff = J2

πU 2

∫ ∞

−∞
dω

γ −2(iω) iω(R)

[T −1
γ (iω)T −1

U (iω) − iω(R)]2
. (55)

Let us consider the more interesting case of impurities re-
siding on different sublattices. The coupling constant is then
given by

JAB
eff (R) = J2s2A2

o

π3vR3

∫ ∞

−∞
(56)

× dx x2K2
1 (|x|)(i f x/α0 − 1)2

[(1 + iuxL)(1 − ix fL1) + f us2x2K2
1 (|x|)]2

,

where, as before, u = UA0/πvR is the dimensionless strength
of the potential impurity, and L = ln R

a|x| . We further introduce
L1 = 1/α0 + L. Additionally, we define the shorthand s =
sin θAB and the effective strength of the Anderson impurity,
f = α0v/Rεo.
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FIG. 11. Effective spin coupling JAB is plotted as a function of
distance between the impurities R/a in AB configuration for on-
site energy εo = 0.5 eV, coupling constant γ = 0.1 eV, and on-site
potential U = 100 eV. The first plot labeled exact is a result of
the exact numerical integration Eq. (56) and the other plot labeled
analyt ical is plotted using Eq. (58).

We now consider the case of a strong potential impurity,
u � 1 and a weak Anderson impurity, fL1  1. The latter
condition implies that the localized level εo is lying not too
close to the Dirac point, on the scale of the energy v/R. For
large u, as it turns out, only small values of x are important,
where K1(x) ∼ 1/x. This simplifies Eq. (56) to the following
expression:

JAB
eff (R) = J2s2A2

o

π3vR3

∫ ∞

−∞

dx

(1 + iuxL + f us2)2
. (57)

Importantly, even though the logarithm L = ln R
a|x| is a slow

function of x, approximating it with a constant would lead
to a zero value of the integral since the two poles of the
integrand reside on the same side of the x axis. The nonzero
contribution to JAB

eff arises from the variation of L. The method
of calculating such corrections is explained in Appendix C.
Using this method, we find

JAB
eff (R) = − J2Ao sin2θAB

πUR2
∣∣1 + α0UA0

πR2εo
sin2θAB

∣∣L2(R)
, (58)

where the logarithm assumes the value

L(R) = ln
|U |Ao

πav
− ln

∣∣∣∣1 + α0UA0

πR2εo
sin2θAB

∣∣∣∣. (59)

We see that the two impurities, a strong potential impurity
and a weak Anderson impurity, are always ferromagnetically
coupled independent of the location of the resonant energy
level with respect to the Dirac point. The transition from
strong potential impurity to weak impurity limit occurs at
R ∼ UA0/πv, where the integral in Eq. (57) converges over
x ∼ 1 and we get the usual 1/R3 dependence, similar to two
identical weak impurities, antiferromagnetically coupled.

Figure 11 illustrates the dependence of the spin-exchange
coupling JAB on the distance between the impurities for on-site
energy εo = 0.5 eV, γ = 0.1 eV, and on-site potential, U =
100 eV. For these values and range of distances shown in the
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plot, the potential impurity is strong while Anderson impurity
is weak. The impurities are ferromagnetically coupled as
given by Eq. (58).

VI. SUMMARY

Two singly occupied Anderson impurities with the energy
level below the Fermi energy interact resonantly with each
other. The interaction is facilitated by the exchange of virtual
electron-hole excitations. The sign and nature of the inter-
action depend on whether the impurities reside on the same
sublattice or then opposite sublattices.

For opposite sublattices, both the potential part of the
interaction and the effective spin-exchange coupling have
resonant character when one of the energy levels of the two-
impurity system passes through the Dirac points. The poten-
tial interaction is repulsive and decays with the third power
of the distance R in the weak coupling limit. The resonant
potential interaction decays as the first power of the distance
and is attractive. The spin-exchange part of the interaction is
antiferromagnetic both at small and large distances. At the
distances where level crosses the Dirac points, the coupling
is ferromagnetic and resonantly enhanced.

For the same sublattice, the potential part of the interaction
is attractive in the weak coupling limit and repulsive in the
strong coupling limit. The spin-exchange coupling is ferro-
magnetic at large and small distances but reverses sign and
becomes antiferromagnetic for intermediate distances.

In the presence of different types of impurities or defects on
graphene, understanding the nature of the interaction between
them becomes important as well. The presence of a hydrogen
atom along with the vacancy defect can be viewed as the
interaction between an Anderson and a substitutional impurity
with large on-site potential. In such case, where we have
a weak Anderson impurity and a strong potential impurity,
both the potential part of the interaction and the spin-spin-
exchange coupling behave as 1/R2 and are attractive in nature.
This result is different from those for two Anderson or two
substitutional impurities.

ACKNOWLEDGMENTS

We thank Oleg Starykh for helpful discussions. The work
was supported by the Department of Energy, Office of Basic
Energy Sciences, Grant No. DE-FG02-06ER46313.

APPENDIX A: CALCULATION OF INTEGRALS
INVOLVING SPECIAL FUNCTIONS

(i) The integral in Eq. (24) is of the form

I (β ) = −
∫ ∞

−∞
dx

x2K2
1 (|x|)

(x + iβ )2
= −2

∫ ∞

0
dx

x2K2
1 (x)(x2 − β2)

(x2 + β2)2
.

(A1)
Integrating by parts and separating the leading contribution to
the integral then gives

I (β ) = π2

2
+ 4β2

∫ ∞

0
dx

K1(x)

(x2 + β2)

d

dx
[xK1(x]. (A2)

The main contribution to the remaining integral comes from
x  1, where we can expand K1(x) up to second order

x2K2
1 (x) ≈ 1 + x2 ln(0.54x)/2 and differentiate it to rewrite

the integral as

I (β ) = π2

2
+ 4β2

∫ ∞

0
dx

ln(0.89x)

(x2 + β2)

= π2

2
+ 2πβ ln (0.89β ). (A3)

(ii) The integral in Eq. (30) can also be calculated in a
similar way. On integration by parts we get

I (β ) =
∫ ∞

−∞
dx

x2K2
0 (|x|)

(x + iβ )2
≈ 4

∫ ∞

0
dx

x2K0(x)

(x2 + β2)

d

dx
[xK0(x)].

(A4)
Using d (xK0(x))/dx = K0(x) − xK1(x) and separating lead-
ing contribution to the integral gives

I (β ) = π2

2
− 4β2

∫ ∞

0
dx

K2
0 (x)

(x2 + β2)

+ 4β2
∫ ∞

0
dx

xK0(x)K1(x)

(x2 + β2)
. (A5)

The remaining integrals are easy to calculate by noting that
only x ∼ β are important to the integral and hence for small ε

we can approximate K0(x) ≈ − ln x and K1(x) ≈ 1/x to get

I (β ) = π2

2
− π3β

2
− 2πβ ln2 β − 2πβ ln β. (A6)

APPENDIX B: CALCULATION OF RESONANT INTEGRAL

To calculate the integral in Eq. (39) near resonance, i.e., for
small values of ρ − ρo keep terms of lowest order in x. This is
justified by the fact that the most important contribution to the
integral comes from small arguments x  1. Denoting now
ξ = ρ2 − ρ2

0 , in the leading logarithmic approximation,∫ ∞

−∞

dx( ixv
R − εo)4(

ξ − 2iρ0x
(

ln ( cR
a|x|

))2

= −ε4
o

∂

∂ξ

∫ ∞

0

2ξ dx

ξ 2 + 4ρ2
0 x2 ln2

(
cR
a|x|

)
= −ε4

o

π

2ρ0|ξ | ln2
(

cR
a|ξ | .

) , (B1)

where c is introduced as ln c = 1
α0

. In calculating the above
integral, we have made use of the approximation that

ξv

ρo ln( cR
a|ξ | )R

 εo, thus neglecting xv/R term in the first line in

the numerator of Eq. (B1).

APPENDIX C: CALCULATION OF LOGARITHMIC
INTEGRALS

To calculate the integral in Eq. (44) for ρ  1, we rewrite
the spin-exchange coupling in the following form:

JAA
eff (R) = − J2

π3

A2
o

vR3

(
εoR

α0v

)3 ∫ ∞

−∞
dzc2z2 ln2(B/|z|)

× 1[{
1 + iz ln

( c1A
|z|

)}2 + c2z2 ln2
(

B
|z|

)]2 , (C1)
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where we have rescaled the integration variable, x = ρz
and introduced the shorthands A = R/(aρ), B = 1/ρ, c =
| cos θAA|, and ln c1 = 1

α0
. The above integral converges at

z ∼ 1, where we can expand the integrand up to first order
in ln z to get

I = c

2

∂

∂c

∫ ∞

−∞

dz[{
1 + iz ln

( c1A
|z|

)}2 + c2z2 ln2
(

B
|z|

)]
= c

∂

∂c

∫ ∞

−∞
dz ln |z| iz(1 + iz ln c1A) + c2z2 ln B

[(1 + iz ln c1A)2 + c2z2 ln2 B]2
. (C2)

The above integral is of the form
∫ ∞
−∞ dz ln |z|K (z), where

K (z) is a rational function with all its singularities located in
the upper half-plane of complex z. Defining a new function
Q(z) according to Q(z) = ∫ z

−∞ dzK (z), one can use the inte-
gration by parts to obtain∫ ∞

−∞
dz ln |z|dQ(z)

dz
= −P

∫ ∞

−∞
dz

Q(z)

z

= iπQ(0) = iπ
∫ 0

−∞
dzK (z). (C3)

In performing this transformation, we have used that Q(∞) =∫ ∞
−∞ dzK (z) = 0 since the function K (z) does not have any

singularities in the lower half-plane of z. Additionally, to
express the principal value integral in Eq. (C3) via Q(0), we
observe that∫ ∞

−∞
dz

Q(z)

z − i0
= P

∫ ∞

−∞
dz

Q(z)

z
+ iπQ(0) = 0, (C4)

as the integral in the left-hand side of Eq. (C4) is zero for the
already familiar reason: All its poles reside in the upper half-
plane. From Eq. (C3), we obtain that the exchange coupling
constant Eq. (C2) is expressed in terms of the following
integral of a rational function:

I = iπc
∂

∂c

∫ 0

−∞
dz

iz(1 + iz ln c1A) + c2z2 ln B

[(1 + iz ln c1A)2 + c2z2 ln2 B]2
. (C5)

The above integral can be easily calculated to get

I = π

4c ln2 B

[
4c3 ln(c1A/B) ln3 B

(ln2c1A − c2 ln2 B)2

− 2c ln c1A ln B

ln2 c1A − c2 ln2 B
+ ln

(
ln c1A + c ln B

ln c1A − c ln B

)]
. (C6)
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[7] T. Eelbo, M. Waśniowska, M. Gyamfi, S. Forti, U. Starke, and
R. Wiesendanger, Phys. Rev. B 87, 205443 (2013).
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