
PHYSICAL REVIEW B 99, 085437 (2019)
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The contribution of bulk inversion asymmetry to the total spin-orbit coupling is commonly neglected for
group III-V nanowires grown in the generic [111] direction. We have solved the complete Hamiltonian of the
circular nanowire accounting for bulk inversion asymmetry via exact numerical diagonalization. Three different
symmetry classes of angular momentum states exist, which reflects the threefold rotation symmetry of the crystal
lattice about the [111] axis. A particular group of angular momentum states contains degenerate modes which are
strongly coupled via the Dresselhaus Hamiltonian, which results in a significant energy splitting with increasing
momentum. Hence, under certain conditions Dresselhaus spin-orbit coupling is relevant for [111] InAs and [111]
InSb nanowires. We demonstrate momentum-dependent energy splittings and the impact of Dresselhaus spin-
orbit coupling on the dispersion relation. In view of possible spintronics applications relying on bulk inversion
asymmetry we calculate the spin expectation values and the spin texture as a function of the Fermi energy.
Finally, we investigate the effect of an axial magnetic field on the energy spectrum and on the corresponding
spin polarization.
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I. INTRODUCTION

Spin-orbit coupling is an indispensable ingredient when
it comes to the realization of Majorana fermions in III-V
semiconductor nanowire-based structures [1,2]. Here, the shift
of the energy dispersions due to spin-orbit coupling together
with the Zeeman splitting leads to the formation of a helical
gap [3]. Partially covering such a nanowire with a supercon-
ductor in conjunction with an external magnetic field results
in the formation Majorana fermions close to the boundaries
of the superconductor electrodes [4,5]. As an experimen-
tal signature for the existence of these states a differential
conductance peak at zero bias was observed [6–8]. With
respect to spin-orbit coupling, usually only the Rashba effect
is considered [9]. Here, the macroscopic electric field at the
surface or at an interface leads to a spin splitting of the energy
dispersion. By employing a gate electrode this macroscopic
electric field can be controlled and by that the strength of the
Rashba effect. This property is not only important to tune the
helical gap in a semiconductor nanowire [10] but it is also
essential for the functionality of spin electronic devices [11].

In addition to the Rashba effect, in zinc blende III-V semi-
conductors one also finds spin-orbit coupling originating from
bulk inversion asymmetry, the so-called Dresselhaus contri-
bution [12]. Depending on the specific material its strength
can even be comparable to the Rashba coupling. In contrast to
the Rashba effect, the bulk inversion asymmetry contribution
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results in a variation of spin-orbit coupling for electrons
propagating along different crystal directions [13,14]. In fact,
by carefully tuning the strength of the Rashba and Dresselhaus
contributions, both can fully compensate each other for certain
crystallographic directions, resulting in the formation of a per-
sistent spin helix [15–17]. Generally, for transport in confined
systems, such as wire structures, both spin-orbit coupling
contributions have to be taken into account to describe the
experimental results consistently [18,19]. The question arises
as to whether the Dresselhaus contribution will support or
even generate spin splitting in systems of reduced dimension.
As shown in a recent theoretical study [20], in nanowires the
effect of the Dresselhaus contribution depends on the growth
direction. In most cases, zinc blende-type III-V nanowires,
e.g., InAs and InSb nanowires, grow epitaxially along the
crystallographic [111] direction. In this geometry the elec-
tronic bulk states transform according to the double group
representation �4 of C3v [13,21] and there is no spin splitting
for momentum �k along the growth direction (�k ‖ [111]) [22].
However, the contribution is not generally negligible [23].
In fact, by comparing weak antilocalization measurements of
InAs nanowires grown in the [111] direction with theoretical
calculations it was shown that spin-orbit coupling due to bulk
inversion asymmetry has to be included explicitly [24,25]. In
addition, the level splitting due to spin-orbit coupling does not
only affect interference effects such as weak antilocalization,
it also has a large impact on the g factor in nanowires [26].

We will address the question of what impact Dresselhaus
spin-orbit coupling has on the electronic states in InAs and
InSb nanowires grown along the [111] direction. Here, we will
focus on Dresselhaus spin-orbit coupling only. The inclusion
of Rashba spin-orbit coupling is straightforward. Assuming
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FIG. 1. Conduction band profile of an InAs nanowire along the
radial direction with a rectangular 200-meV deep quantum well at the
outer boundary. The radius of the nanowire is assumed to be 50 nm
while the quantum well width is 5 nm. Also shown are the energy
levels εn,l for n = 0–3 and the squared amplitude for the states:
n = 0, 1 for l = 0 without including the Dresselhaus contribution.
The inset shows a zinc blende crystal lattice, with the [111] growth
direction and the threefold rotation symmetry (red bonds) indicated.

a cylindrical quantum well system with electrons confined
close to the nanowire surface, the energy spectra and the
corresponding level splittings due to the Dresselhaus contri-
bution are calculated by means of a perturbation approach.
Moreover, we analyze how the threefold rotation symmetry
of the Dresselhaus Hamiltonian affects the spin texture of the
electronic states. Finally, we discuss the effect of an external
magnetic field on the energy momentum dispersion and on the
spin density.

II. SEMICONDUCTOR NANOWIRE: MODEL SYSTEM

The dynamics of electrons in cylindrical wires has been
discussed already in a previous publication [27]. There, the
confining potential has been calculated self-consistently tak-
ing doping effects into account. Here, the Dresselhaus con-
tribution to the energy spectrum and to the wave functions
is determined using a perturbation approach. In order to
calculate the corresponding matrix elements with acceptable
numerical effort and precision, we use a simplified fixed
potential profile V (r) with cylindrical symmetry to model the
nanowire conduction band. The nanowire radius r0 was set to
50 nm, which is a typical value for epitaxially grown InAs
and InSb nanowires. As illustrated in Fig. 1, we assumed
a 5-nm wide and 200-meV deep rectangular quantum well
for the InAs nanowire to mimic the surface accumulation
layer due to Fermi level pinning [28,29]. At the surface we
assumed a barrier of infinite height. For the InSb nanowire
a shallower quantum well with a depth of 100 meV and a
width of 12.5 nm was taken, reflecting the weaker Fermi level
pinning at the surface. Electrons confined in the nanowire
propagate along the [111] direction, denoted as the c axis,
with a linear momentum h̄k (k real) and around the axis with

an orbital angular momentum h̄l (integer l). The simplified
potential profile provides an analytical representation of the
wave function ψ ,

ψ = eikceilϕ fn,l (r), (1)

with c the spatial coordinate along the nanowire axis, ϕ

the azimuthal angle around the axis, and fn,l (r) the radial
distribution function. It solves a radial Schrödinger equation

H0 fn,l (r) = εn,l fn,l (r), (2)

with

H0 = h̄2

2m∗

[
−∂2

r − 1

r
∂r + l2

r2

]
+ V (r). (3)

Here, ∂r is the derivative with respect to the radial coordinate
r. The quantum number n = 0, 1, 2, . . . counts the nodes
of the f functions, which are smoothly connected Bessel
functions for the model potential. The energy,

εk,n,l = h̄2

2m∗ k2 + εn,l , (4)

consists of the kinetic (∝ k2), the rotational (∝ l2), and the
lateral energy υn,l due to the potential,

εn,l = h̄2

2m∗r̄2
l2 + υn,l . (5)

The proportionality factors are determined by an effective
mass m∗, i.e., 0.026 me for InAs and 0.014 me for InSb, with
me the free electron mass. r̄ is an average radius determined
by the radial distribution function. For electrons in the accu-
mulation layer r̄ is close to r0. In Fig. 1 the energy levels εn,l

for InAs are shown for n = 0–3 and successively increasing
|l|. States with n = 0 and orbital angular momentum up to
l = ±5 are energetically located inside the quantum well.
Also shown are the squared amplitudes of the radial part of
the wave function r| fn,l |2 of the lowest levels for n = 0, 1
at l = 0. At this point the Dresselhaus contribution has not
yet been included. We find that only the levels with n = 0 are
located close to the surface, while all other states are spread
in the whole nanowire volume.

In addition to the orbital angular momentum, we also
include the electron spin s = ± 1

2 . Without the Dresselhaus
contribution the total angular momentum j = l + s is con-
served. The basis functions of the Hilbert space are given by
the spinors:

χ
↑
n, j = eikceilϕ fn,l (r)

(
1
0

)
, (6)

χ
↓
n, j = eikcei(l+1)ϕ fn,l+1(r)

(
0
1

)
. (7)

The energy eigenvalues scale with the square of the angular
momentum quantum number l . Hence, these two states are
not degenerate.

III. DRESSELHAUS SPIN-ORBIT INTERACTION

The wave functions given in Eqs. (6) and (7) are used as
a basis to determine the Dresselhaus contribution by a per-
turbation approach. As a first task, the Cartesian Dresselhaus
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Hamiltonian has to be transformed to a polar coordinate sys-
tem with an axis along the [111] crystal direction to account
for the epitaxial orientation of the nanowire [cf. Fig. 1(a)].
The Dresselhaus operator for the zinc blende crystal structure
is given in [100] orientation by [12]

HD = γD
[
σxkx

(
k2

y − k2
z

) + σyky
(
k2

z − k2
x

) + σzkz
(
k2

x − k2
y

)]
,

(8)

expressed in terms of the Pauli matrices σx,y,z, and the re-
duced momentum operators kx = −i∂x = −i∂/∂x, and cor-
respondingly for y and z. The Dresselhaus coupling pa-
rameter γD = b6c6c

41 amounts to 27.18 eVÅ3 and 760.1 eVÅ3

for InAs and InSb, respectively [13,30]. However, recent
experimental studies showed that γD could also be smaller
than the theoretical values determined from k · p theory
[16,31–33]. In order to account for the growth along the
crystallographic [111] direction, we transform a vector �w
represented by

�w = xêx + yêy + zêz, (9)

corresponding to [100] orientation, to a representation in a
rotated basis,

�w = aêa + bêb + cêc, (10)

with

êa = 1√
6

⎛
⎝ 1

1
−2

⎞
⎠, êb = 1√

2

⎛
⎝−1

1
0

⎞
⎠, êc = 1√

3

⎛
⎝1

1
1

⎞
⎠,

(11)

so that êc points along the space diagonal [111] of the original
unit cell. Hence, the Hamiltonian given by Eq. (8) takes the
following form:

HD = γD

{
1

2
√

3
(kaσb − kbσa)

(
k2

a + k2
b − 4 k2

c

)

− 1√
6

[
σakc · 2kakb + σbkc

(
k2

a − k2
b

)]

− 1√
6

σckb
(
k2

b − 3k2
a

)}
. (12)

The rotated spin operators σa, σb, and σc may be transformed
into the Pauli matrices by a unitary transformation in spin
space. A useful representation of the spin operators is

σ+ = (σa + iσb)/2,

σ− = (σa − iσb)/2 = σ
†
+, (13)

raising and lowering operators with the properties,

σ+ χ↓ = χ↑, σ+ χ↑ = 0,

σ− χ↑ = χ↓, σ− χ↓ = 0. (14)

With the momenta expressed in cylindrical coordinates r =√
a2 + b2, cos ϕ = a/r, sin ϕ = b/r, c :

ika = ∂a = cos ϕ ∂r − sin ϕ ∂ϕ/r,

ikb = ∂b = sin ϕ ∂r + cos ϕ ∂ϕ/r, (15)

HD takes the form (cf. Appendix A),

HD = γD

{
1

2
√

3

[
e−iϕσ+

(
∂r − i

r
∂ϕ

)
− eiϕσ−

(
∂r + i

r
∂ϕ

)][∇2 − 5∂2
c

]

− i√
6

[
e2iϕσ+

(
∂2

r − 1

r
∂r − 1

r2
∂2
ϕ + ∂r

2i

r
∂ϕ

)
− e−2iϕσ−

(
∂2

r − 1

r
∂r − 1

r2
∂2
ϕ − ∂r

2i

r
∂ϕ

)]
1

i
∂c

+ i√
6

σc

[
sin (3ϕ)

(
∂3

r − 3

r
∂2

r + 3

r2
∂r − 3

r2
∂2
ϕ

(
∂r − 2

r

))
+ cos (3ϕ)

(
3

r
∂2

r ∂ϕ − 9

r2
∂r∂ϕ + 8

r3
∂ϕ − 1

r3
∂3
ϕ

)]}
. (16)

The first part of the Hamiltonian in Eqs. (12) and (16) con-
serves the total angular momentum j, whereas the second
and third parts change the total angular momentum by three
(see Appendix A for more details). The threefold rotation
symmetry of the third part is evident in Eq. (16), where only
the orbital angular momentum is affected, while the second
term changes l by ±2 and the spin s by ±1. This part of HD

also has threefold rotation symmetry. Rotation of σ+ by an
angle α about the c axis transforms it into

exp

(
i
α

2
σc

)
σ+ exp

(
−i

α

2
σc

)
= (cos α + i sin α)σ+, (17)

a consequence of the properties of the spin operators:

σ 2
c = 1, σcσ+ = σ+, σ+σc = −σ+. (18)

Thus, together with the factor e2iα for the transformation
of the orbital angular momentum, e2iϕσ+ transforms into

e3iαe2iϕσ+. Similarly, the adjoint operator e−2iϕσ− transforms
into e−3iαe−2iϕσ−. This finally means that a rotation by α =
2π/3 leaves the second line of Eq. (16) unchanged. The first
line is fully rotational invariant.

IV. ENERGY DISPERSION

Without the presence of Dresselhaus spin-orbit coupling
and at zero magnetic field the states of the nanowire are
eightfold degenerate apart from l = 0. The energies εk,n,l of
Eq. (4) depend only on |k| and |l| and are independent of
the spin of the electron. Accounting for HD, the eightfold
degeneracy is lifted. Orbital momentum and spin cannot be
changed independently, but the matrix elements of HD are
independent of the sign of j = l + s. It remains a degeneracy
with respect to |k| and | j|. Each pair of basis states χ

↓,↑
j is
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FIG. 2. (a) Energy vs k dispersion for InAs for an orbital angular momentum l from 0 to ±2. Note that l refers to the dominant contribution
to the wave function. The momentum is normalized to the nanowire radius r0. The inset shows a detail of the upper levels for l = ±2 with
j = ± 3

2 and ± 5
2 in a higher energetic resolution. (b) Energy vs k dispersion for InSb nanowires. The inset shows the energy vs k dispersion

for states with j = ± 3
2 , l = ±1 including the kinetic energy for InSb nanowires.

linked exclusively to χ
↓,↑
j±3. Due to the threefold symmetry

three separated classes of states exist:

class “−1/2”:
{
χ

↓,↑
n, j : j = . . . ,− 7

2 ,− 1
2 , 5

2 , . . .
}
,

class “1/2”:
{
χ

↓,↑
n, j : j = . . . ,− 5

2 , 1
2 , 7

2 , . . .
}
,

class “3/2”:
{
χ

↓,↑
n, j : j = . . . ,− 9

2 ,− 3
2 , 3

2 , 9
2 , . . .

}
.

Each state in class “1/2” gets multiplied by eiπ/3 when
rotated around the c-axis by an angle 2π/3, while for the
class “−1/2” containing states with reversed sign of j the
multiplication factor under rotation is e−iπ/3. In the third class
“3/2” the states change sign under rotation. HD generates
stationary states in each class by superposition:

� =
∑
n, j,σ

�σ
n, j χ

σ
n, j, σ =↑,↓ . (19)

The coefficients �σ
n, j obey recursion relations (cf. Ap-

pendix B), which may be solved by “back-folding”.
Each j generates a pair of k bands with main component

l = j ± 1/2. The bands start at the energies εn,l of Eq. (4)
with a small negative shift due to the k-independent con-
tributions of the first and the third part of Eq. (16). The
second part, linear in k, is purely imaginary. This leads to
matrices in the recursion relations complex conjugate to each
other, when the sign of k is changed. The solutions are also
complex conjugates—�l (k)∗ = �l (−k)—with equal energy.
HD is time-reversal invariant. Solutions of class “1/2” and
class “−1/2” starting from the same |l| at k = 0 are time-
reversed states. Their energies are equal at k and −k. The
energy bands of these classes are identical.

The class “3/2” contains states with reversed sign of j.
There is an interaction between them. At k = 0 the energies of
�

↑
l and �

↓
−l are equal because of time-reversal invariance, but

for finite k there are two energetically different solutions. The
two bands cross at k = 0. Analysis of the recursion relations
yield for the coefficients �σ

n, j, �̃σ
n, j of time-reversed states �

and �̃:

�̃
↓
n, j = (�↑

n, j )
∗, �̃

↑
n, j = −(�↓

n, j )
∗. (20)

The corresponding energy-momentum dispersions are given
in Figs. 2(a) and 2(b) for InAs and InSb, respectively. The
momentum was normalized by the nanowire radius r0. Fur-
thermore, the contribution from the kinetic energy was omit-
ted. Obviously, the modulation of the dispersion in the range
up to kr0 = 10, as shown in Fig. 2, is weak. For the degenerate
j = ± 1

2 states with l = 0 the energy decreases by less than
4 μeV and by about 230 μeV for InAs and InSb, respectively.
The larger value for InSb is due to the much larger Dres-
selhaus coupling parameter. In Fig. 2(a) (inset), a detail of
the upper levels corresponding to l = ±2 is shown. Owing
to the effect of the Dresselhaus contribution, the degeneracy
for j = ±3/2 and ±5/2 is lifted at k = 0. At about kr0 = 2
the levels cross without any hybridization, since the states
are from different classes and thus do not couple. A rather
large dispersion of the energy is generated by HD for the
states of class “3/2” with main component l = ±1. In this
case the degenerate components l = ±1 are coupled directly
by the second term of Eq. (16) which depends linearly on
k. This leads to two spin-compensated states for k 	= 0. The
energy splitting increases linearly up to 0.10 meV for InAs
and 0.92 meV for InSb at kr0 = 5 before the quadratic term of

085437-4



DRESSELHAUS SPIN-ORBIT COUPLING IN … PHYSICAL REVIEW B 99, 085437 (2019)

0 2 4 6 8 10 12

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.6

-0.4

-0.2

0.0

InAs

±

±

± 7/2

j =   7/2

± 5/2

j =  5/2

l = ±3

E
-E

0,
±3

(µ
eV

)

kr0

hy
br

id
iz

at
io

n

l=−3

10µT

(b)

InAs

l=+3

E
-E

0,
±3

(µ
eV

)

(a)

Bc=0

0 2 4 6 8 10 12

-0.2

-0.1

0.0(c)
ΔE

(μ
eV

)

kr0

FIG. 3. (a) Energy vs k dispersion for InAs for the states with
j = ±5/2 and ±7/2 originating from states with orbital angular
momentum l = ±3. The line color indicates the assignment to | j|.
Around kr0 = 3 and 11 the states hybridize, which results in an
avoided crossing (gray shaded areas). (b) Energy vs k dispersion
of the bands starting with j = +7/2, i.e., l = +3 and s = +1/2,
at Bc = 0 (gray curve) and at 10 μT (yellow curve). The ranges
of state hybridization are indicated by the gray shaded areas. (c)
Energy difference �E = E (Bc = 10 μT) − E (Bc = 0). The dashed
line corresponds to the energy difference for the corresponding state
for s = +1/2 starting with l = −3 at k = 0.

Eq. (16) changes the linear shape of the dispersion. The energy
splitting depends linearly on γD. Therefore, for smaller values
of γD, as sometimes experimentally observed [16,31–33], the
energy splitting is reduced accordingly. The energy splittings
are in the same order of magnitude as the Rashba energy
separations observed for nanowires with cylindrical geometry,
i.e., for a Rashba coefficient αR between 10−12 and 10−11 eVm
for InAs we estimated an energy splitting in the range between
0.07 meV and 0.7 meV for l = ±1 at kr0 = 5 [27]. However,
one should keep in mind that in the presence of Rashba spin
splitting all states are doubly degenerate in contrast to the
j = ±3/2 states discussed here, which are nondegenerate. As
shown for InSb in Fig. 2(b) (inset), the minima of the energy
bands (including the kinetic energy) are shifted away from
kr0 = 0. For InSb this shift amounts to ±0.043, while for InAs
we find a value of ±0.008.

Let us return to states of the first two classes. Here, an
interesting effect occurs for the two states of class “1/2” with
total angular momenta j = 7

2 and j = − 5
2 , which originate

from the initially degenerate states with l = ±3. As can be
seen in Fig. 3(a), this degeneracy at kr0 = 0 is removed by the
Dresselhaus interaction. Even more, around kr0 = 3 the two
components hybridize strongly. An avoided crossing occurs
in conjunction with a rapid change of the angular momentum
from j = 7

2 to − 5
2 and vice versa. Another hybridization is

found at about kr0 = 11, where the angular momentum is
switched back to the initial value at zero momentum. The
very same behavior is found for the corresponding states
of the “−1/2” class with j = − 7

2 and 5
2 , so that a twofold

degeneracy is found, as indicated by the labels in Fig. 3(a).
Since the orbital momentum l is reversed whereas the spin is

(a)

(b)

FIG. 4. Spin precession and nutation for j = ± 3
2 , l = ±1, and

kr0 = 1 for an InAs nanowire. In (a) and (b) the vector of the spin
density of the upper and lower nondegenerate branches (cf. Fig. 2)
are depicted, respectively. The reference point of the spins follows ϕ

along the nanowire surface, as illustrated by the black circle. The
vector components have been scaled with a factor of 0.25. Black
vectors represent the projection on the ab plane.

preserved while passing the hybridization range, the param-
agnetic energy shifts are also affected upon application of a
magnetic field, as discussed in detail below.

V. SPIN TEXTURE

We find that for the “3/2” class the energetically lowest
pair of nondegenerate modes is governed by a superposi-
tion of the j = ± 3

2 , l = ±1 states with equal weight. As a
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FIG. 5. Spin precession and nutation for j = ± 3
2 , l = ±1 for the lower branch for an InAs nanowire. From (a) to (f) the normalized

momentum kr0 was successively increased from 0.01 to 8. The components of the vectors have been scaled with a factor of 0.25. Black vectors
represent the projection on the ab plane.

consequence, the spin expectation value along the nanowire
axis is zero. However, this does not imply that the local
spin density vanishes as well. The three components of the
spin density sa,b,c follow from the spinor wave function �:
sa,b,c = (�†σa,b,c�)/2. The standard representation of � is
�↑ = f ; �↓ = g + ih with real functions of space f , g, and
h. With these the components of the spin density are

sa = f g, sb = f h, sc = ( f 2 − g2 − h2)/2. (21)

In fact, as illustrated in Fig. 4, we find that the spin density
is strongly modulated. By integrating the spin density, one
obtains that the spin expectation values in all three spatial
directions vanish. Interestingly, by comparing the spin density
for the upper and lower nondegenerate branches, as shown in
Figs. 4(a) and 4(b), respectively, one finds that the spin density
pattern is rotated by an angle of π/3. Thus, an equal superpo-
sition of these states would result in a complete cancellation
of the spin. The spin texture changes with increasing linear
momentum h̄k, as can be seen in Fig. 5 for the lower branch.
Up to kr0 = 5 the amplitude of the spin modulation decreases.
Above kr0 = 5 it increases again with reversed sign of the c
component of the spin.

While the states of the class “3/2” are characterized by
the compensation of all spin components, the states of the
classes “1/2” and “−1/2” have spin expectation values close
to ± 1

2 along the c direction. As can be seen in Fig. 6, the spin
density is modulated in the ab plane for the lowest energy state
( j = 1

2 , l = 0). The classically analog situation is a gyroscope
under the influence of an external force. The characteristic

motions are “precession”—rotation of the gyroscope axis
around the symmetry axis—and “nutation”—periodic change
of inclination of the gyroscope axis against the symmetry
axis. The local spin direction rotates, i.e., precedes, around the
cylinder axis and changes its c component, i.e., nutates. This is
illustrated in Fig. 6(a) for increasing values of the normalized
axial momentum kr0. At kr0 = 0 the spin component in the
ab plane points in the radial direction with a constant length,
thus no nutation takes place. For nonzero values of kr0, the
spin component in the ab plane is modulated in magnitude
and deviates from a purely radial orientation, i.e., a nutation
occurs in addition to the precession. The local spin period-
ically changes its orientation with respect to the precession
axis. For kr0 � 4 one even finds that the spin density winds
around the precession axis. Compared to the kr0 < 4 case, it
changes the direction of rotation from a onefold turnaround
counterclockwise to a twofold turnaround clockwise, i.e., the
winding number is changed from +1 to −2. Around kr0 = 18
the winding number once again changes from −2 to +1 when
increasing the axial momentum. This can be seen in the series
of spin projections shown in Figs. 6(b)–6(d). Compared to the
case at zero momentum the spin orientation basically has an
opposite phase.

VI. MAGNETIC FIELD EFFECTS

The most eminent action of HD is the compensation of
angular momentum of the j = ± 3

2 states. It should be visible
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FIG. 6. (a) Spin texture of the a and b components for j = 1
2 , l = 0 for kr0 ranging from 0 to 10. The c components have been omitted

for clarity, since they dominate the spin direction. The vectors are scaled with a factor of 8. The spin performs a nutation and precession,
which become more pronounced with increasing axial momentum. (b)–(d) Corresponding projection of spin texture for kr0 = 13, 18, and 22,
respectively. Here, a lower scaling factor of 2 was used.

in their magnetic response. An axial magnetic field Bc can
be incorporated in the present calculation by including the
diamagnetic and paramagnetic energy contributions to the
Hamiltonian H0 [cf. Eq. (3)] of the model system:

H = H0 + e2

2m∗ r2B2
c + μBBc(l + gsc). (22)

Here, e is the electron charge, μB the Bohr magneton, and
g the gyromagnetic factor (−14.92 in InAs and −51.56 in
InSb [13]). The extra terms may be easily incorporated into
the perturbation procedure.

At zero magnetic field the expectation values of the angular
momenta 〈 jc〉 and 〈sc〉 are zero for “ j = ± 3

2 ” states except
at k = 0, where the two states are degenerate. A magnetic
field removes this degeneracy via a Zeeman energy and results
in a spin splitting, as shown in Fig. 7(a). Since the coupling

via the Dresselhaus interaction increases linearly with k, the
spin expectation value 〈sc〉 at a fixed Bc eventually goes down
to zero. Likewise, the magnetic contribution to the energy
diminishes. Close to k = 0 the states behave like Zeeman
levels before the Dresselhaus interaction dominates, as shown
in Fig. 7(b).

Combining the dispersion given in Fig. 7(b) with the
kinetic energy contribution, one would in principle obtain the
same shape of dispersion that results when combining the
Rashba effect with an external magnetic field [3]. However,
in the latter case, the Rashba effect leads to helical states.
By covering the nanowire with a superconducting electrode
the proximity effect results in the formation of Majorana
zero modes [4,5]. In our case the situation is different. At
zero magnetic field we have no net spin polarization. Upon
applying a magnetic field, the spins are aligned either parallel
or antiparallel to the magnetic field. Thus, these states are

085437-7



A. BRINGER, S. HEEDT, AND TH. SCHÄPERS PHYSICAL REVIEW B 99, 085437 (2019)

-40 -20 0 20 40

-0.6

-0.4

-0.2

0.0

0.2

0.4

15mT
10mT
5mT
0

E
(m

eV
)

kr0

InAs

-40 -20 0 20 40
-1.0

-0.5

0.0

0.5

1.0

15mT
10mT

5mT
0

(b)

<
s c

>

kr0

(a)

FIG. 7. (a) Spin density 〈sc〉 of InAs for j = ±3/2, l = ±1 at
various axial magnetic fields: B = 0, 5, 10, 15 mT. (b) Correspond-
ing energy vs k dispersion.

nonhelical. Consequently, it is not expected that Majorana
zero modes can be formed.

The states of the classes “1/2” and “−1/2” are degenerate
and show in general normal magnetic behavior. Nevertheless,
as illustrated in Fig. 3(a), there are hybridization effects for
states in these classes starting from a common |l| = | jc ± sc|,
e.g., l = −3 = −5/2 − 1/2 and l = 3 = 7/2 − 1/2 of class
“−1/2” or l = 3 = 5/2 + 1/2 and l = −3 = −7/2 + 1/2 of
class “1/2”. In both cases there is an interaction between
the two states, as shown for InAs in Fig. 3(a). In order to
discuss the effect of a magnetic field we restrict ourself to
the state j = +7/2 (l = +3, s = +1/2) which is transferred
to the state j = −5/2 (l = −3, s = +1/2) after passing the
hybridization region. As illustrated in Fig. 3(b), the effect of
reversing the orbital angular momentum from +3 to −3 be-
comes visible in the paramagnetic shift when a small magnetic
field is applied.

Upon applying a field of 10 μT a general downwards
energy shift occurs owing to the dominating contribution of
the spin originating from the paramagnetic term in Eq. (22)
in connection with the large negative g factor. However, for
l = +3 at small values of kr0 this downwards shift is reduced,
while for l = −3 beyond kr0 ≈ 3 it is enhanced. The corre-
sponding total energy shift �E = E (Bc = 10 μT) − E (Bc =
0) is plotted in Fig. 3(c), solid line. The dashed line shows

the energy shift for the initial state j = −5/2 (l = −3, s =
+1/2). Once again, owing to the dominant contribution of
the spin, the energy shift is downwards, however, the para-
magnetic shift caused by the orbital angular momentum is
opposite compared to the previous case. The effects discussed
here disappear for magnetic fields much stronger than the
Dresselhaus interaction. This interplay of spin-orbit interac-
tion and magnetic field is well known in atomic physics as the
“Paschen-Back” effect, i.e., at low fields the level splitting is
determined by the total angular momentum whereas at high
fields by the spin alone.

VII. CONCLUSION

In conclusion, the Dresselhaus contribution for InAs and
InSb nanowires to the energy spectrum as well as the corre-
sponding spin distribution was calculated. We found that in
contrast to bulk systems the geometrical confinement results
in a weak but noticeable effect on the energy vs momentum
dispersion for �k ‖ [111]. However, for a subset of states
belonging to a certain symmetry class even a relatively large
energy splitting was found. For InSb a splitting in the order of
meV is predicted for moderate values of the linear momentum
k. Since these states originate from states with opposite spins,
the net spin polarization is zero, although the spin density is
modulated around the cylinder axis. For all other states the
spin is mainly polarized along the nanowire axis. Neverthe-
less, a small modulation of the spin density is present in the
cross-sectional plane. Generally, the spin modulation depends
on the linear momentum.

Applying an axially oriented magnetic field has two effects.
First, for the strongly coupled states of class “3/2” with l =
±1, the contribution of the Zeeman effect lifts the degeneracy
at k = 0, i.e., resulting in an energy splitting. Furthermore, the
initially unpolarized spin states get polarized. Interestingly,
this polarization is weaker at larger k values because the
Dresselhaus contribution becomes dominant. Second, for the
higher lying hybridizing levels the switching of the angular
momentum results in a paramagnetic energy shift upon apply-
ing a magnetic field.

Compared to the Rashba effect the Dresselhaus contribu-
tion is rather small. It might therefore be neglected when
it comes to the formation of a helical gap in conjunction
with Zeeman splitting [3,10]. This is in particular true for the
lowest states with j = ±1/2 and l = 0, since these states are
the basis for creating Majorana fermions. However, if higher
levels have to be taken into account the relatively strong
splitting of the j = ± 3

2 states can be relevant. Nevertheless,
we found that for an axial magnetic field no helical states are
formed for j = ± 3

2 , thus it is not expected that Majorana zero
modes are formed. In this respect, it would be interesting to
analyze the case with a magnetic field applied perpendicular
to the nanowire axis.
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APPENDIX A: DRESSELHAUS HAMILTONIAN
IN CYLINDRICAL COORDINATES

The Dresselhaus Hamiltonian Eq. (12) has three parts,
HD,1, HD,2, and HD,3 acting differently on the states of the
electrons. With the representations of spin and momentum
operators given in Eq. (15) one finds for HD,1 [first line of
Eq. (12)]:

kaσb =
(

cos ϕ
1

i
∂r − sin ϕ

1

ri
∂ϕ

)
σ+ − σ−

i
,

kbσa =
(

sin ϕ
1

i
∂r + cos ϕ

1

ri
∂ϕ

)
(σ+ + σ−),

kaσb − kbσa = −σ+ e−iϕ

(
∂r + ∂ϕ

ri

)
+ σ− eiϕ

(
∂r − ∂ϕ

ri

)
,

k2
a + k2

b + k2
c = −∇2 = −

(
∂2

r + 1

r
∂r + 1

r2
∂2
ϕ + ∂2

c

)
,

HD,1 = γD

2
√

3
[−σ+ e−iϕ D1 + σ− eiϕ D2].

The differential operators,

D1,2 =
(

∂r ± 1

ri
∂ϕ

)(∇2 − 5∂2
c

)
,

are of third order and act on the radial part of the wave
function only. Linear and angular momenta and spin remain
unchanged by D1,2. HD,1 turns the spin, but does not affect
the total angular momentum j because of the compensa-
tion effects between σ+ and e−iϕ and between σ− and eiϕ ,
respectively.

For HD,2 [second line of Eq. (12)] it follows from

2kakbkc = − sin(2ϕ) D3 − cos(2ϕ) D4,(
k2

a − k2
b

)
kc = − cos(2ϕ) D3 + sin(2ϕ) D4,

D3 =
(

∂2
r − 1

r
∂r − 1

r2
∂2
ϕ

)
1

i
∂c,

D4 = ∂r
2

r
∂ϕ

1

i
∂c,

that the second part of the Hamiltonian can be written as

HD,2 = iγD√
6

[e2iϕσ+(D3 + iD4) − e−2iϕσ−(D3 − iD4)].

It turns the spin and changes the total angular momentum
j to j ± 3 because of the e2iϕσ+ and e−2iϕσ− operators,
respectively.

The operator in the third line of Eq. (12) is

σc kb
(
k2

b − 3k2
a

) = σc i Im(kb − i ka)3.

The third power of kb − i ka is evaluated in polar coordinates,(
−eiϕ∂r − i

r
eiϕ∂ϕ

)3

= −e3iϕ

(
∂3

r − ∂r
1

r
∂r − 2

r
∂2

r + 2

r2
∂r

)

−i e3iϕ∂ϕ

(
∂2

r

1

r
+ ∂r

1

r
∂r + 1

r
∂2

r

)

+ i e3iϕ∂ϕ

(
∂r

1

r2
+ 2

r
∂r

1

r
+ 3

r2
∂r − 2

r3

)

+ e3iϕ∂2
ϕ

(
∂r

1

r2
+ 1

r
∂r

1

r
+ 1

r2
∂r − 3

r3

)
+ i e3iϕ (∂ϕ/r)3.

After carrying out the differentiations with respect to r one
gets

HD,3 = − iγD√
6

σc[sin(3ϕ)D5 + cos(3ϕ)D6],

with the differential operators given by

D5 = ∂3
r − 3

r
∂2

r + 3

r2
∂r −

(
3

r2
∂r − 6

r3

)
∂2
ϕ,

D6 =
(

3

r
∂2

r − 9

r2
∂r + 8

r3

)
∂ϕ −

(
∂ϕ

r

)3

.

HD,3 changes j to j ± 3 and conserves the spin.

APPENDIX B: RECURSION RELATION

In total, HD connects only states χσ
n, j [cf. Eqs. (6) and (7)],

with j differing by ±3 (σ =↑,↓). An expansion of stationary
states � with respect to χσ

n, j ,

� =
∑
n, j,σ

�σ
n, j χ

σ
n, j

leads to a recursive system of equations for the coefficients �:

0 = (
εk,n,l − E

)
�

↑
n, j +

∑
n′

[〈χ↑
n, j |HD,1|χ↓

n′, j〉�
↓
n′, j

+〈χ↑
n, j |HD,2|χ↓

n,′ j−3〉�
↓
n′, j−3 + 〈χ↑

n, j |HD,3|χ↑
n′, j−3〉�

↑
n′, j−3

+〈χ↑
n, j |HD,3|χ↑

n′, j+3〉�
↑
n′, j+3

]
,

with l = j − 1/2, and with l = j + 1/2,

0 = (
εk,n,l − E

)
�

↓
n, j +

∑
n′

[〈χ↓
n, j |HD,1|χ↑

n′, j〉�
↑
n′, j

+〈χ↓
n, j |HD,2|χ↑

n,′ j+3〉�
↑
n′, j−3 + 〈χ↓

n, j |HD,3|χ↓
n′, j−3〉�

↓
n′, j−3

+〈χ↓
n, j |HD,3|χ↓

n′, j+3〉�
↓
n′, j+3

]
.

This system can be solved by back-folding from large to small
values of | j| and leads to a convergent series for �. It is
sufficient to take the basis states with n and n′ equal to 0 and
1 into account.
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