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We study adiabatic charge pumping through a Majorana bound state tunnel coupled to multiple normal leads.
We show that, for most of the parameters, such a pump does not lead to any net pumped charge between the
various leads unless a multiply connected geometry is implemented. We introduce an Aharonov–Bohm ring
geometry at the junction to implement such a multiply connected geometry. We further show that the Fourier
transform of the pumped charge with respect to the flux inserted through the ring shows a clear distinction
between the case of an Andreev bound state and the Majorana bound state. Hence such a Fourier analysis can
serve as a diagnostic for the detection of Majorana bound states in the proposed geometry.
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I. INTRODUCTION

One of the first steps that is required for the applica-
tion of Majorana modes [1–3] in quantum computation is
its unambiguous identification. This has proved difficult in
experiments [4,5], since the usual diagnostic of Majorana
bound states (MBSs), a zero-bias peak in the conductance,
can have many other origins besides signaling the presence of
a Majorana mode. This fact has led to considerable work [6]
in recent years, encompassing the study of various toy models
[7] and promising physical systems [8,9] and their electrical
transport signatures [10].

However, there has been no definitive experimental con-
firmation so far which has proved the existence of Majorana
modes in any system and hence it is still of interest to
look for different ways to confirm the existence of Majorana
modes. In this context, it is worth exploring the question of
charge pumping through a Majorana mode and examining
whether there are unique signals which can identify it and
differentiate it from pumping through other resonant levels or
Andreev bound states. Charge pumping or the phenomenon of
obtaining current in the absence of bias by local variations of
parameters of the quantum system has been studied in many
contexts, beginning with Thouless [11] who considered the
effect of a traveling periodic potential that could drag the
electrons along. The analysis performed by Thouless was in
the spirit of a closed quantum system.

Later the idea of pumping was extended to open quantum
system in Refs. [12,13], where the pumping of charge is
induced between different electron reservoirs by periodically
varying the independent parameters of the scattering matrix
that describes the scattering of electrons between the different
electron reservoirs. When the variation of the parameters
is much slower than the transport time, then the pumping
is adiabatic and the Brouwer formula [13] can be applied.
Adiabatic charge pumping has attracted a great deal of interest
in the last several years, and different aspects of it have been
studied in great detail [14–37]. There has also been some work

[38–49] on normal-metal–superconductor interfaces includ-
ing Majorana [50–52] mediated charge pumps.

There has also been recent interest in cases when the
pumped charge is quantized, and in particular for topological
reasons [50], so that it is stable to disorder and could be used
for metrological applications. As mentioned above, this was
first studied by Thouless [11] who showed that the quantized
adiabatic charge transport was related to the Chern number
of the band, which also counts the number of monopoles or
equivalently gapless points enclosed by the pumping contour.
In recent work [50], it has been shown that the presence
of a single transmitting channel at the interface between a
normal wire and a superconductor enables quantization of
the pumped charge by tuning the system through topological
phase transitions so that isolated topologically trivial regions
are surrounded by topological regions. Thus pumping paths
can be chosen to make noncontractible loops in the parameter
space which could lead to quantized charge pumping.

In an earlier paper [53], we studied the conductance
through a Majorana bound state (MBS) embedded in an
Aharonov–Bohm ring geometry and showed that the currents
at the two leads tunnel coupled to the Aharonov–Bohm ring
were anticorrelated and the degree of anticorrelation could be
tuned by the Aharonov–Bohm (AB) flux threading the ring. In
this paper, we explore charge pumping through the MBS in the
same geometry and study the role of the AB ring geometry,
which exhibits nontrivial topology. Unlike Ref. [50], where
the pumping of charge required going through topological
phase transitions as one traverses along the pumping contour,
here we show show that it is possible to obtain quantized
pumped charge even when the superconductor hosting the
MBS does not undergo phase transitions.

The ring geometry plays a crucial role here since we
will show that there is no pumped charge when the two
leads are just connected to the MBS (normal-MBS-normal
or simple two-lead geometry without the ring). This is unlike
the earlier study of conductance [53] where the anticorrelation
existed even in the two-lead geometry and the AB geometry
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was required only to provide a tuning parameter for tuning
the degree of anticorrelation. Here, on the contrary, the AB
geometry is crucial to get nonzero pumping. In this geom-
etry, we study the pumped charge at each of the leads by
using a scattering matrix approach, restricting ourselves to
the adiabatic regime, and we compute the pumped charge
by using the analog [39] of the Brouwer [13] formula for
a normal-superconductor junction. Finally, we show that a
Fourier analysis of the pumped charge as a function of the
flux through the ring leads to a single frequency domination
for the MBS, as opposed to many harmonics for an Andreev
bound state (ABS); this can be thought of as a diagnostic for
the MBS.

The paper is organized as follows: In Sec.(II), we study a
two-normal-lead geometry, and show that, at zero energy, no
charge is pumped through a MBS, but nonzero charge can be
pumped through an ABS, both between the leads and from the
leads to the superconductor. In Sec. III, we introduce the AB
geometry. We study pumping across a MBS and for contrast, a
resonant level, and show that the symmetries of the derivatives
of the S matrix with respect to the pumping parameters,
determine whether charge can be pumped. In Sec. IV, we
explicitly study the pumped charge for various representative
contours and look for circumstances under which we can get
quantized pumped charge. Finally, in Sec. V, we show that
the Fourier transform of the pumped charge with respect to
the flux inserted in the ring has a single periodicity for the
MBS case, as opposed to the cases for the resonant level and
for the ABS case. This can serve as a diagnostic for a MBS
and unambiguously distinguish it from other accidental bound
states. We end with a discussion and conclusions in Sec. VI.

II. SIMPLE CONNECTED GEOMETRY WITH TWO LEADS

We start with a simplified minimal model to illustrate the
physics. Here, this is given by the Hamiltonian for two normal
leads which are tunnel coupled to a MBS situated at the end
of a one-dimensional p-wave superconductor [54],

H =
∑

α

Hα + HT , (1)

where the form of the lead Hamiltonian for the two (α = 1, 2)
leads is given by Hα = ∫ ∞

−∞ dxψ†
α (x)(−ivF ∂x )ψα (x) and the

tunneling Hamiltonian is given by

HT = iγ
∑

α

[uαψα (x = 0) + u∗
αψ†

α (x = 0)]. (2)

Here γ represents the Majorana fermion operator and uα

represents the amplitude of the coupling between the lead α

and the MBS, which is a complex number in general. The
scattering matrix describing the scattering of electrons and
holes between the leads via the MBS corresponding to the
situation described by the above tunnel Hamiltonian is found
by applying the Weidenmuller formula [53] as

S(E ) =
(

See(E ) Seh(E )

She(E ) Shh(E )

)
, (3)

where

See(E ) = 12 − 2iπν

d (E )

(|u1|2 u∗
1u2

u∗
2u1 |u2|2

)
,

She(E ) = −2iπν

d (E )

(
u2

1 u1u2

u1u2 u2
2

)
, (4)

with d (E ) = E + 2iπν(|u1|2 + |u2|2). Here the scattering
matrix is written in a basis where the first two rows and
columns correspond to electrons from lead-1 and lead-2 re-
spectively, and the next two rows and columns correspond to
holes from lead-1 and lead-2 respectively, and ν represents the
density of states of the electrons which has been assumed to
be the same in both leads for simplicity.

Using the extension of Brouwer’s formula for the case of
superconducting junction [39], the pumped charge at each
lead is given by

Qα = −e
∫
A

dX1dX2Im[Cαα] (5)

where the matrix

C = 1

π

[
d

dX1
See d

dX2
(See)† − d

dX1
She d

dX2
(She)†

]
. (6)

Here X1 and X2 represent the pumping parameters which are
periodic functions of the time t . They trace out a closed loop
in the X1-X2 plane over one time period such that the area
enclosed by the loop is finite and is given by A. Also note
that the pumped charge in each lead can be decomposed into
a particle-like process which depends on See alone and a
particle-hole conversion process which depends on She alone.

We can choose the uα to be the pumping parameters, i.e.,
we can choose X1 = u1 and X2 = u2. In this case, we find that

Im[C11] = 0 = Im[C22], (7)

i.e., the integrand itself vanishes and there is no pumped
charge. Note that the uα can be taken to be real since their
phase can be gauged away as long as it is not time depen-
dent. Alternatively, if we intend to use the phase of the uα

as a pumping parameter (i.e., make it time dependent), the
implementation of such a pumping protocol requires the order
parameter of the superconducting hosting the MBS to be
varied in time, which in turn calls for a Josephson-junction-
type setup, which is beyond the scope of the present work.

To contrast the case of MBS with a more regularly encoun-
tered bound state in the context of normal-superconducting
hybrid structures, the Andreev bound state (ABS), we show
now that the vanishing of the pumped charge is not true in
general. When we couple an ABS to leads, we see that it leads
to a finite pumped charge even when the ABS is tuned to zero
energy. To evaluate the pumped charge via an ABS, we start
by replacing the tunnel Hamiltonian in Eq. (2) by [53]

HT = a†
∑
α,k

(tαcαk + v∗
αc†

αk ) + H.c., (8)

where now a† denotes the creation operator for the ABS
(which, unlike the MBS, does not have to be real) and the
tunneling amplitudes to the electron and hole states on the
leads are given by tα and v∗

α , respectively. Considering t1 and
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FIG. 1. The charge pumped to the superconductor, given by Q+,
is shown in blue while the charge pumped between the two normal
leads through the ABS, given by Q−, is shown in red (in the absence
of the direct tunneling between the leads), in units of the electronic
charge e. The pumping occurs in the t1-t2 plane and the pumped
charge is shown as a function of a scale R2 which parametrizes
the pumping contour as t2

1 + t2
2 /R2

2 = 1. The parameters v1, v2 are
chosen to be v1 = 1, v2 = i.

t2 to be pumping parameters, and parametrizing the contour
in terms of a scale R2 (t2

1 + t2
2 /R2

2 = 1), we can obtain the
pumped charge.

As the analytic expression for the pumped charge in this
case gets cumbersome, we perform a numerical analysis for
some representative values to obtain it by using Eqs. (5)
and (6). This is presented in Fig. 1. Note that the total charge
pumped from the normal metal leads into the superconductor
is given by Q+ = Q1 + Q2 and the total charge pumped from
lead-1 to lead-2 via the ABS is given by Q− = Q1 − Q2

over a single pumping cycle. We observe that both these
quantities are finite for the chosen pumping contour and
they asymptotically reach a steady value as the amplitude of
pumping parameter R gets larger and larger. Hence, this fact
itself presents a clear distinction between the ABS and MBS
in this geometry.

III. MULTIPLY CONNECTED GEOMETRY AND THE
MAJORANA BOUND STATE

From the above analysis it is clear that a simple setup
involving two leads tunnel coupled to a MBS does not lead
to net charge being pumped either from one lead to another or
from the leads to the superconductor over a pumping cycle.
Next, we explore the possibility of pumping in a multiply
connected geometry where the MBS is embedded in a ring.

MBS embedded in an AB geometry. We now look for a
multiply connected geometry and, once again, we make the
simplest choice, which is to consider a ring geometry where
a magnetic flux is piercing the ring. The ring geometry is
realized by considering a MBS which is tunnel coupled to two
leads that are also directly tunnel coupled to one another as
shown in Fig. 2. The Hamiltonian for the system is the same
as that given in Eq. (1) except that we now have an additional
direct tunneling term given by

Hdirect = τψ
†
1 (x = 0)ψ2(x = 0) + H.c. (9)

Normal Lead Normal Lead
φ

S
up

er
co

nd
uc

to
r

MBS

FIG. 2. Schematic illustration of the AB setup with two nor-
mal leads, which are simultaneously tunnel coupled to the MBS
and to each other. Here the tunnel coupling is represented as a
double-headed arrow and the flux through the ring-type geometry
is represented by φ.

Here τ denotes the amplitude for the direct tunnel coupling of
the two leads to each other. The scattering matrix now involves
the direct coupling term as well and is given by

See(E ) = 1

1 + π2ν2|τ |2
(

1 − π2ν2|τ |2 −2iπντ

−2iπντ ∗ 1 − π2ν2|τ |2
)

− 2iπν

(1 + π2ν2|τ |2)2D(E )

(
u∗

1+u1− u∗
1+u2−

u∗
2+u1− u∗

2+u2−

)
, (10)

and

She(E ) = − 2iπν

(1 + π2ν2|τ |2)2D(E )

(
u1+u1− u1+u2−
u2+u1− u2+u2−

)
,

(11)

with D(E ) = E + 2iπν
(1+π2ν2|τ |2 ) (|u1|2 + |u2|2), u1s = u1 +

siπντ ∗u2, u2s = u2 + siπντu1, and s = +,−. Once again,
the pumped charge for the pumping parameter being u1, u2

can be computed by using the analog of Brouwer’s formula.
Here, we find that the integrand is given by

Im[C11] = 16π2ν3τ0
(
1 + π2ν2τ 2

0

)
cos(φ)E2

(
u2

1 + u2
2

)
[
E2

(
1 + π2ν2τ 2

0

)2 + 4π2ν2
(
u2

1 + u2
2

)2]2

= −Im[C22]. (12)

As before, the uαs are taken to be real, and the direct tunneling
term is taken to be τ = τ0eiφ where φ plays the role of the AB
flux.

Clearly, this expression is zero when the direct tunneling
amplitude is zero and it agrees with the earlier result. Using
this in Eq. (5), we see that the integrand and, consequently, the
pumped charge through each lead is zero even in the presence
of a direct tunneling term, at E = 0.

So, although we have allowed for a finite direct tunneling
amplitude τ0 for the electrons, leading to a multiply connected
geometry, we are still unable to obtain pumped charge at
E = 0. The MBS in many aspects is very similar to a resonant
level (RL). The MBS allows for resonant injection of a pair
of electrons into a superconductor via a resonant Andreev

085435-3



KRASHNA MOHAN TRIPATHI, SUMATHI RAO, AND SOURIN DAS PHYSICAL REVIEW B 99, 085435 (2019)

process and the RL allows for a single electron to resonantly
transmit across it. Thus, to gain insight into the MBS pumping
analysis, our next analysis is to consider pumping of charge
across a RL embedded into an AB geometry.

AB geometry and the resonant level. We can now contrast
the above observed behavior of the MBS to the case where
the MBS is replaced by a RL. The only change in the above
model is that the first line of the tunneling term in Eq. (2) that
represents tunneling through the MBS is now replaced by

HT =
(

d†
∑

α

uαψα (x = 0) + H.c.

)
, (13)

where d† represents the creation operator of the electron on
the resonant level. The direct coupling term between the leads
remains the same. The scattering matrix in this case is given
by

S(E ) =
(

S11(E ) S12(E )

S21(E ) S22(E )

)
,

Si j;i= j (E ) = −1 + 2(E + iπνui j )

d̃ (E )
,

Si j;i �= j (E ) = −2iπν(Eτ0eiφi j + u1u2)

d̃ (E )
,

d̃ (E ) = E
(
1 + π2ν2τ 2

0

) + 2π2ν2τ0 cos (φ)u1u2

+ iπν
(
u2

1 + u2
2

)
, (14)

where u11 = u2
2, u22 = u2

1 and φ12 = φ, φ21 = −φ. Now the
pumped charge can be evaluated from the expressions for
Im[C11] and Im[C22] as given below,

Im[C11] = 8π2ν3

|d (E )|4
(
u2

1 + u2
2

)(
E2τ0 cos (φ)

(
1 + π2ν2τ 2

0

)
+ E

{
u1u2

[
1 + π2ν2τ 2

0 cos (2φ)
]

−πντ0 sin (φ)
(
u2

1 − u2
2

)})
= −Im[C22]. (15)

Note that, unlike the MBS case, where the integrand vanishes
without direct tunneling between the leads, here the integrand
is nonzero even for τ0 = 0. This clearly indicates that, al-
though the direct tunneling term or the ring geometry was
absolutely necessary to even get a nonzero integrand for the
MBS case, that is not the case for the RL case. However, the
pumped charge through each lead continues to be identically
zero in both cases at E = 0 [37].

AB geometry and the role of pumping parameters. We note
above that, for both the MBS and the RL, the pumped charge
is zero at E = 0, while it is finite in general for ABS. Thus it
is natural is ask whether the choice of pumping parameters
can change this fact. For the case of the MBS embedded
in a ring we replace the pumping parameter u2, which is
one of the hopping amplitudes to the MBS, by τ̄0 = πντ0

which is the amplitude for direct tunneling between the leads.
Note that this explicitly breaks the symmetry between the
two leads as far as the pumping contour is concerned. In this
case, we find that even at E = 0 the integrand is finite and is

FIG. 3. The integrands Im(C11 + C22) and Im(C22 − C11) plotted
as a function of the pumping parameters u1 and τ̄0. Here, we have
taken u2 = 1 and the phase of the direct hopping φ = 0. The three
contours a, b, and c (explained in the text) for which we have
computed the pumped charges Q+ and Q− in Fig. (4) are shown in
cyan, blue, and red, respectively.

given by

Im[C11] = 2 cos (φ)u2
[
u2

1 − τ̄ 2
0 u2

2

]
π

(
u2

1 + u2
2

)2(
1 + τ̄ 2

0

)2 ,

Im[C22] = −2 cos (φ)u2
[
u2

2 − τ̄ 2
0 u2

1

]
π

(
u2

1 + u2
2

)2(
1 + τ̄ 2

0

)2 . (16)

In Fig. 3, we show a plot of the integrands Im(C11 + C22) and
Im(C22 − C11) as a function of the two pumping parameters.
The pumped charge at the two leads can now be computed
by choosing various contours. We show below the pumped
charge for a few representative contours and note how asymp-
totically, (almost) quantized charge is pumped either to the
superconductor or between the two leads.

Symmetry arguments in the AB geometry. Note that the
particle-hole symmetry of the Bogoliubov–de Gennes Hamil-
tonian implies that the spectrum is symmetric around E = 0.
The scattering matrix respects this symmetry, i.e., Shh(E ) =
[See(−E )]∗, Seh(E ) = [She(−E )]∗, for both the MBS as well
as the ABS for all cases. However, as explained in detail in
Ref. [53], the E = 0 ABS is not self-conjugate and leads to
differences between the MBS and ABS, even at the conduc-
tance level in an AB geometry. But for charge pumping, it is
not merely the symmetries of the scattering matrix which are
important. Instead, the pumping depends on the convolution
of the symmetries of the S matrix and its derivatives; hence
the choice of pumping parameters are crucial in determining
whether charge can be pumped. Without a ring geometry,
when we try to pump charge via a Majorana bound state,
the probability of pumping an electron through the Majorana
is almost always equal to the probability of pumping a hole
through the Majorana, thus resulting in zero net pumped
charge. But a ring geometry allows for interference effects
between transport across the MBS and the additional direct
transport between the two leads and the total pumped charge
from one lead to the other is clearly equal to the sum of con-
tributions due to tunneling through the Majorana, tunneling
through the direct path and their interference. The presence
of this interference term is actually what is responsible for
the finite pumped charge. The interference term essentially
ensures that Im[C11], Im[C22] (directly proportional to the
pumped charge) remain finite. However, just the presence of
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the interference term is not enough to ensure that the pumped
charge across the ring will be finite at zero energy. To ensure
that the pumped charge is finite at E = 0 we have to obtain a
finite contribution to Im[C11], Im[C22] which is nonvanishing
at E = 0. The choice of the u1, u2 pumping parameters results
in a finite Im[C11], Im[C22] for E �= 0 but it vanishes for E = 0
due to the symmetry of the derivatives of the S matrix under
u1 ↔ u2. This symmetry is broken by choosing τ as one of
the pumping parameters, while u1/2 is chosen as the other
pumping parameter.

IV. PUMPED CHARGE FOR VARIOUS
PUMPING CONTOURS

In this section, we study pumped charge for different
representative pumping contours and see when we get max-
imum pumped charge. As the physically relevant quantities
are Q+ and Q−, we first plot the integrands Im(C11 + C22) and
Im(C22 − C11) as a function of the pumping parameters u1 and
τ̄0 as shown in Fig. 3. Note that the maximum value for Q+
and −Q− are concentrated about the u1 = 0 and τ̄0 = 0 axes,
respectively. Also, note that the sign of Im(C11 + C22) and
Im(C22 − C11) remains the same as we move along the axis
about which the maxima of these functions are mostly dis-
tributed. On the other hand Im(C11 + C22) and Im(C22 − C11)
do change sign along the axis perpendicular to the axis of the
distribution of the maxima. This fact will strongly influence
the asymptotic values of the pumped charge as we go to
larger and larger contour sizes. For obtaining large values of
pumped charge we need to analyze the symmetries of the
distribution of values of Im(C11 + C22) and Im(C22 − C11)
and design pumping contours which will efficiently enclose
a large fraction of the maxima of these functions in the
parameter space. In principle, appropriately chosen contours
can lead to asymptotically quantized value for pumped charge
[17,29,31,36,47]. Keeping this fact in mind we consider el-
liptical shapes of the contours in the plane of the pumping
parameters (u1, τ̄0) given by u2

1/R2
1 + τ̄ 2

0 /R2
2 = 1.

We have produced plots for three different kinds of
contours which are given by (a) R1 = R2 = R where the
asymptotic pumped charge is obtained for R → ∞ limit,
(b) R2/R1 > 1 where the asymptotic pumped charge is ob-
tained for the R2 → ∞ limit, and (c) R1/R2 > 1 where the
asymptotic pumped charge is obtained for the R1 → ∞ limit.
In Fig. 3 we have shown representative contours for the
cases (a), (b), and (c) discussed above in cyan, blue, and red
respectively. The corresponding asymptotic pumped charge is
given in Fig. 4 where the color code of corresponding cases
are kept the same.

Let us first discuss the results corresponding to the (b)-type
contour which is depicted in blue in Figs. 3 and 4. We note that
Q+ → 2, i.e., gets asymptotically quantized while Q− → 0
as R2 → ∞. This fact is consistent with our observation that
the maximum of Im(C11 + C22) is distributed around the u1 =
0 axis and the (b)-type contour maximally encloses the area
around this axis, hence leading to quantization of Q+. On the
other hand, Im(C22 − C11) changes sign as we move along the
u1 = 0 axis and hence Q− shows a nonmonotonic behavior
and finally goes to zero as R2 → ∞.

0.1 25 50
− 2

−1

0

1

2

R̃

Q+

Q−

FIG. 4. Pumped charges to the superconductor (Q+) and between
the leads (Q−) for the MBS in the presence of direct tunneling in
units of electronic charge e for pumping in u1-τ̄0 plane as a function
of the scale of the relative pumping strengths (the elliptic contours)
and the radius for equal pumping strengths (circular contour). More
explicitly, the variable R̃ which labels the x axis denotes R, R1, and
R2 respectively for the contours (a), (b), and (c), respectively. The
parameter u2 is chosen to be u2 = 1.

The same logic can be used to understand the fact that
the (a)-type contour always shows a nonmonotonic behavior
for the pumped charge which always goes to zero in the
asymptotic limit. This is so because the (a)-type contour
always engulfs areas where Im(C11 + C22) and Im(C22 − C11)
both undergo sign changes, hence canceling to zero in the
asymptotic limit. Finally it is clear from the above arguments
that the (c)-type contour will show a behavior which is exactly
complementary to the (b)-type contour since the maximum
values of Im(C11 + C22) and Im(C22 − C11) are distributed
around complementary axis (i.e., the u1 = 0 and τ̄0 = 0 axes,
respectively). Hence we have shown that, by choosing ap-
propriate contours, we are in a position to selectively pump
charge from the leads to the superconductor (Q+ �= 0) while
keeping the relative transfer of charge between the leads to be
zero (Q− = 0) or pump charge between the leads (Q− �= 0)
while keeping the superconductor decoupled [i.e., keeping
(Q+ = 0)].

V. FOURIER ANALYSIS OF PUMPED CHARGE

Finally, in this section, we would like to point out a
crucial difference in the scattering matrix for the MBS in
the multiply connected geometry and the scattering matrix
for other forms of bound states like the ABS or the RL
in the same geometry. The other forms of bound states, in
general, lead to a φ-dependent denominator which appears
due to the Fabry–Pérot-type interference due to the circulating
paths of electrons or holes around the multiply connected
geometry. But due to the fine-tuned symmetry between an
electron and a hole for the MBS, all such phases cancel out
to provide a φ-independent denominator. This can be seen
clearly by comparing the expression for D(E ) in Eq. (11)
with d̃ (E ) in Eq. (14). Also note that the φ dependence for
the MBS appears only in the numerator of the scattering
matrix as a pure cosine. The same difference in dependence
on φ also persists in the expression for the integrand of the
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FIG. 5. Plot of discrete Fourier transform of Q+, |A(ω)|2 =
| 1

N

∑
φ Q[φ]ei2∗π∗ωφ/N |2 as a function of the frequency ω for pumping

in u1-τ̄0 plane for ABS in red and MBS in blue. The contour is chosen
to be circular with R = 25. The number of points N is chosen to be
100 and the other parameters are given by u2 = 1, v1 = 3, v2 = 2.

pumped charge, as can be seen from Eqs. (15) and (16). This
essentially means that the pumped charge for the MBS has
a single periodicity in φ. In other words, the interference in
the case of the MBS can be interpreted as Mach–Zehnder-like
interference while in the other case, the interference is more
akin to a Fabry–Pérot interferometer.

This difference can serve as a diagnostic for the MBS. This
fact can be seen very clearly from the Fourier analysis for the
pumped charge shown in Fig. 5. As expected, the MBS case
show a clear δ-function-like peak which is independent of the
parameters chosen for the analysis due to the fact that only
the first of the harmonics contributes to this case, whereas
for the ABS, there are multiple frequencies signifying the
presence of higher harmonics which can be traced back to the
φ-dependent expression for d̃ (E ).

VI. DISCUSSIONS AND CONCLUSION

We end with some suggestions of possible directions in
which this research could be extended and possible experi-
mental realizations of a charge pump. One direction would be
to study the full low-energy Hamiltonian including the Majo-
rana mode at the other end of the topological superconductor
and take the finite size of the topological superconductor into
account. One could then check whether charge pumping could
be used as a measure of the splitting of the zero mode. Other
possibilities would be to study heat pumping in this geometry.
There has been recent work on heat pumping [55] in the usual
two-lead geometry, where charge cannot be pumped; however,

here it may be interesting to see it in a situation where charge
is also pumped.

We also note that, in this geometry, the possibility of
distinguishing pumping from rectification effects using the
suggestion in Ref. [56] is not feasible. There, it was suggested
that an out-of-plane magnetic field could distinguish between
the two, since rectification is symmetric under the change in
sign of this magnetic field, whereas pumping is not. But in
our geometry, the magnetic-flux dependence of the pumped
charge through the MBS is also symmetric under reversal
of sign of the applied magnetic field (or the magnetic flux),
just like the rectification current. Hence, this symmetry does
not provide a possible way to distinguish between the two.
But we also predict a very specific dependence of the Fourier
transform of the pumped charge with respect to the magnetic
flux and this should be sufficient to distinguish between
rectification effects and quantum charge-pumping effects.

However, regarding experimental verification, the crucial
point here is the possibility of implementing an AB ring
geometry with wires that host Majorana modes. We note
that, besides possible implementation of such a ring geome-
try using semiconductor or carbon nanotube quantum wires,
following recent work on two-dimensional (2D) topological
charge pumps in ultracold bosonic systems [57], it may even
be possible to implement ring geometries in cold atom sys-
tems. However, more realistic feasibility studies are beyond
the scope of this work.

In conclusion, in this paper, we have discussed the im-
portance of a ring geometry to get nonzero pumped charge
through the MBS. We note that, asymptotically, two units of
charge can either be pumped between the leads or from the
leads to the superconductor. We do not get quantized single-
unit charge pumping within our setup, because our pumping
protocol only involves the Majorana bound state at one end of
the topological superconductor. Hence, the fermion parity is
fixed. We then show that the Fourier analysis of the pumped
charge through an AB ring can be used as a diagnostic to
distinguish between MBS from other spurious zero-energy
states. In particular, the charge pumped through the MBS is
different from the charge pumped through either the resonant
level or the ABS in that it has no higher harmonics. This is
true independent of choice of the contour and is consequently
a strong diagnostic.
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