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Higher harmonic generation by massive carriers in buckled
two-dimensional hexagonal nanostructures
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Generation of high harmonics in novel two-dimensional (2D) nanostructures such as silicene, germanene,
and stanene initiated by strong coherent electromagnetic radiation of arbitrary polarization, taking into account
the spin-orbit coupling and the buckling of two Bravais lattices, is investigated. The buckled hexagonal lattice
system is described by the four-band second-nearest-neighbor tight-binding model. The developed theory of the
interaction of massive (nonzero effective mass) carriers with a strong driving wave field covers the full Brillouin
zone of a 2D hexagonal nanostructure. The wave-matter interaction is taken in the length gauge that provides
proper inclusion of inter- and intraband transitions with nonzero Berry curvatures. The closed set of differential
equations for the single-particle density matrix of massive carriers is solved numerically. The obtained results
show that novel 2D nanostructures can serve as an effective medium for the generation of even and odd high
harmonics of arbitrary polarization. Moreover, for the nanostructures under consideration, the role of the band
topology is significant at harmonic generation.
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I. INTRODUCTION

The synthesis of graphene [1,2] stimulated the search for
new nanomaterials with similar properties. The successes of
the last decade in the field of nanotechnology have allowed
synthesizing graphenelike nanostructures with a very high
carrier mobility and, consequently, with a very small scat-
tering of electrons. Among such nanostructures are silicene
[3–5], germanene [6,7], and stanene [8]. These nanostruc-
tures, being synthesized after graphene, are exceptional ex-
amples of graphenelike nanostructures and have rich physics
[9–16]. In particular, they consist of honeycomb lattices of
atoms with buckled sublattices made of A and B sites. The
low-energy dynamics in the K+ and K− valleys is described
by the Dirac theory as in graphene. However, in these nanos-
tructures, Dirac electrons are massive (have nonzero effective
mass) compared to graphene ones due to a relatively large
spin-orbit coupling (∼65 meV in stanene) [10]. It is notable
that the quasiparticles’ mass can be controlled by applying
the electric field perpendicular to the nanostructures sheet [9].
Wherein the topology of the bands is modified. In particular,
the bands acquire Berry curvature [17]. These properties
suggest that in these nanostructures one can expect novel
nonlinear optical effects which are absent in graphene.

Recently, there has been growing interest in extending high
harmonic generation (HHG) and related processes to bulk
crystals [18–24] and two-dimensional (2D) nanostructures,
such as graphene [25–38], hexagonal boron nitride [39], and
monolayer transition-metal dichalcogenides [40]. There are
several experiments that validated the main theoretical predic-
tions. In particular, HHG in the XUV domain was generated
in bulk crystals [18,19]. Note that the experiment [37] with
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the generation of the ninth harmonic in graphene and the
generation of harmonics extending to the 13th order in the
2D semiconductor [40] opened new avenue towards high
harmonic generation in 2D nanostructures. HHG in atoms
[41] is well described within a semiclassical three-step model
including ionization, acceleration, and recollision of electrons
with the original nucleus. The physics of HHG in solids
is more complicated, and its description requires a compre-
hensive quantum-kinetic modeling of carriers’ interband and
intraband dynamics. The relative contribution of interband
and intraband dynamics in the HHG process depends on the
bands’ structure and pump wave-pulse parameters. From this
point of view, silicene, germanene, and stanene are of interest
due to their rich physics of bands [10]. Up to now, to our
knowledge, there has been no study of the HHG process in
these materials. Hence, it is of actual interest to study the
mentioned graphenelike nanostructures physics in the pres-
ence of intense optical fields that can lead to the effective
generation of harmonics. Our interest is also motivated by
the fact that these nanostructures have nontrivial topology of
bands, which can be controlled by the electromagnetic fields
[9–16].

In the present work, we develop a microscopic theory of a
buckled 2D hexagonal lattice nonlinear interaction with strong
electromagnetic radiation of arbitrary polarization beyond the
Dirac cone approximation and applicable to the full Brillouin
zone. The buckled hexagonal lattice system is described by
the four-band second-nearest-neighbor tight-binding model,
taking into account spin-orbit coupling. We solve quantum-
kinetic equations for massive carriers. The light-matter inter-
action is taken in the length gauge that provides proper in-
clusion of inter- and intraband transitions with nonzero Berry
curvatures. We investigate the generation of even and odd high
harmonics of arbitrary polarization in these nanostructures by
a midinfrared pump wave. We also consider the role of the
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topology of bands in the nonlinear optical response of buckled
hexagonal lattice.

This paper is organized as follows. In Sec. II the Hamil-
tonian within the tight-binding approximation is presented,
and the set of equations for a single-particle density ma-
trix is formulated. In Sec. III, we consider the high har-
monic generation process. Finally, conclusions are given in
Sec. IV.

II. EVOLUTIONARY EQUATION FOR THE
SINGLE-PARTICLE DENSITY MATRIX

Along with graphene all considered nanostructures consist
of a honeycomb lattice. However, in contrast to graphene
these periodic honeycomb lattice structures become unstable
in a planar structure. They stabilize at the nonzero buckling
of two Bravais lattices; that is, every alternate atom in the
nanostructure is buckled in the direction perpendicular to the
lattice plane. The buckled hexagonal lattice with the chosen
geometry is shown in Fig. 1. The vectors which connect
nearest-neighbor atoms are
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FIG. 1. (a) Buckled hexagonal lattice: The atoms labeled A are
all in the xy plane (zA = 0), and all the B atoms are located behind
the plane at zB = −�. Hence, the sheet is composed of two atomic
planes: one of A atoms and another of B atoms. The vectors δ1, δ2,
and δ3 connect nearest-neighbor atoms. The dashed circle shows
second-nearest-neighbor atoms of the same type. The vectors a1 =
δ1 − δ3 and a2 = δ1 − δ2 are the two-dimensional basis vectors, and
the shaded area is the unit cell with two atoms. (b) Reciprocal lattice
of the triangular lattice. Its basis vectors are b1 and b2. The reciprocal
lattice unit cell is shown as a shaded rhombic area, with inequivalent
K+ and K− points. The � point of the Brillouin zone and the M point
are also shown.
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The reciprocal lattice unit cell is a rhombus formed by two
vectors:
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The modules of the basis vectors yield the lattice spacings:
a and kb = 4π/

√
3a in conventional and reciprocal space,

respectively. The important crystallographic points, which are
crucial for electronic properties of the nanostructure, are also
shown. High-energy excitations are situated in the vicinity of
the � point. Low-energy excitations are centered around the
two points K+ and K−, represented by the vectors

K+ = kb√
3

ŷ, K− = 2kb√
3

ŷ. (5)

Finally, the M point (M =√
3kb̂y/2) is shown. The buckled

hexagonal lattice system will be described by the four-band
second-nearest-neighbor tight-binding model [10],

H = −γ0

∑
〈i, j〉α

c†
iαc jα + i

λSO

3
√

3

∑
〈〈i, j〉〉αβ

νi jc
†
iασ z

αβc jβ

− �

2

∑
iα

μiEzc
†
iαciα, (6)

where c†
iα creates an electron with spin polarization α at site

i and 〈i, j〉 and 〈〈i, j〉〉 run over all the nearest- and second-
nearest-neighbor hopping sites, respectively. The first term in
Eq. (6) represents the usual nearest-neighbor hopping with
the transfer energy γ0. The second term [42] represents the
effective spin-orbit coupling, where σ = (σx, σy, σz ) is the
Pauli matrix of the spin, with νi j = +1 if the next-nearest-
neighboring hopping is counterclockwise and νi j = −1 if it
is clockwise with respect to the positive z axis. In order to
control the mass term we assume the electric field Ez applied
perpendicular to the nanostructure sheet which generates a
staggered sublattice potential ∝ �Ez between atoms at A sites
and B sites. Here μi = ±1 for the A and B sites, respectively.
Note that the first and second Rashba spin-orbit couplings are
neglected because they are small compared with the spin-orbit
coupling λSO between next-nearest-neighbor atoms.

By performing Fourier transformations and choosing the
basis {|A〉, |B〉} ⊗ {| ↑〉, | ↓〉}, from Eq. (6) we obtain the
Hamiltonian

Ĥ =
[

1
2σzg(k) − �

2 Ez −γ0 f (k).

−γ0 f ∗(k) − 1
2σzg(k) + �

2 Ez

]
, (7)
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where

g(k) = 4
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Note that near the two Dirac points g±(k) = ±2λSOC, and
γ0 f (k) = h̄(ivF kx ∓ vF ky), where vF = √

3aγ0/2h̄ is the
Fermi velocity. Thus, one obtains a low-energy Hamiltonian
which describes a quantum spin Hall insulator [11]. There
is a topological phase transition to a band insulator as |Ez|
increases and crosses the critical field Ecr = 2λSO/� [16].

The spin sz = ±1 is a good quantum number. For the issue
considered, there are no spin-flip transitions, and the spin
index sz can be considered a parameter in Hamiltonian (7).
Otherwise, one can formally introduce bispinors and provide
the orthogonality of eigenstates for different spins. Thus, there
are four bands in the energy spectrum of the Hamiltonian (7).
The eigenstates of the Hamiltonian (7) are

ψsz,λ,k(r) = 1√
A

|sz, λ, k〉eikr, (10)

with

|sz, λ, k〉 = 1√
2Esz,λ(k)

[
Esz,λ(k) − sz (k)

]
×

[ −γ0 f (k)

Esz,λ(k) − sz (k)

]
, (11)

corresponding to energies

Esz,λ(k) = λ

√
2

sz
(k) + γ 2

0 | f (k)|2. (12)

Here the band index λ = ±1 [for conduction (λ = 1) and
valence (λ = −1) bands], A is the quantization area, and

sz (k) = 1

2
szg(k) − �

2
Ez. (13)

Thus, the band gap depends on k, sz, and Ez and is given by
2|sz (k)|.

Let the 2D nanostructure interact with the plane’s quasi-
monochromatic electromagnetic radiation. We consider the
interaction when the wave propagates in a direction perpen-
dicular to the nanostructure (XY ). In this case the effect of
the wave’s magnetic field is excluded since in the z direction
we have strong binding of the electrons. Thus, this traveling
wave becomes a homogeneous quasiperiodic electric field
with carrier frequency ω0 and a slowly varying envelope. In
general we assume an elliptically polarized wave:

E(t ) = f (t )(̂xE0x cos ω0t + ŷE0y sin ω0t ). (14)

The wave envelope is described by the Gaussian function

f (t ) = exp[−2 ln 2(t − 2Tp)2/T 2
p ], (15)

where Tp characterizes the pulse duration full width at half
maximum. The latter is taken to be ten wave cycles: Tp =
10T , where T = 2π/ω0.

We will work in the second quantization formalism, ex-
panding the fermionic field operators on the basis of states

given in (10), that is,

�̂(r) =
∑

sz,λ,k

êsz,λ,kψsz,λ,k(r), (16)

where êsz,λ,k (̂e†
sz,λ,k) is the annihilation (creation) operator for

an electron with momentum k, band λ, and spin sz. The light-
matter interaction part is taken in the length gauge, which is
given in terms of the gauge-independent field E(t ):

Ĥint = e
∫

dr �̂†(r)rE(t )�̂(r), (17)

where e is the elementary charge. Taking into account expan-
sion (16), the total Hamiltonian can be represented as follows:

Ĥ =
∑

sz,λ,k

Esz,λ(k )̂e†
sz,λ,k̂esz,λ,k + Ĥint, (18)

where the interaction part is given as follows:

Ĥint = ie
∑

sz,λ,k,k′
δk′k∂k′E(t )̂e+

sz,λ,k̂esz,λ,k′

+ e
∑

sz,λ,k

E(t )Dm(sz, λ, k )̂e+
sz,λ,k̂esz,λ,k

+ e
∑

sz,λ,k

E(t )Dtr (sz, λ, k )̂e+
sz,λ,k̂esz,−λ,k. (19)

Here

Dtr (sz, λ, k) = 〈sz, λ, k|i∂k|sz,−λ, k〉 (20)

is the transition dipole moment (when multiplied by the
electron charge) and

Dm(sz, λ, k) = 〈sz, λ, k|i∂k|sz, λ, k〉 (21)

is the Berry connection or mean dipole moment. These
three terms in the light-matter interaction part provide the
proper inclusion of inter- and intraband transitions [27,31].
The expressions for the transition dipole moment and Berry
connection can be calculated using the spinor part of the wave
function (11) and are given in the Appendix.

In order to develop a microscopic theory of the multiphoton
interaction of a nanostructure with a strong radiation field we
need to solve the master equation for the density matrix,

ρα,β (sz, k, t ) = 〈̂
e+

sz,β,k(t )̂esz,α,k(t )
〉
, (22)

where êsz,α,k(t ) obeys the Heisenberg equation

ih̄
∂ êsz,α,k(t )

∂t
= [̂

esz,α,k(t ), Ĥ
]
. (23)

Note that, due to the homogeneity of the problem, we need
only the k-diagonal elements of the density matrix. Taking
into account Eqs. (22) and (23), the evolutionary equation
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will be

ih̄
∂ρα,β (sz, k, t )

∂t
− ieE(t )

∂ρα,β (sz, k, t )

∂k
= [

Esz,α (k) − Esz,β (k)
]
ρα,β (sz, k, t )

+ eE(t )[Dm(sz, α, k) − Dm(sz, β, k)]ρα,β (sz, k, t )

+ eE(t )[Dtr (sz, α, k)ρ−α,β (sz, k, t ) − Dtr (sz,−β, k)ρα,−β (sz, k, t )]. (24)

The diagonal elements represent particle distribution functions for conduction bands, Nc(sz, k, t ) = ρ1,1(sz, k, t ), and for valence
bands, Nv (sz, k, t ) = ρ−1,−1(sz, k, t ), and interband polarization ρ1,−1(sz, k, t ) = P(sz, k, t ). We just need equations for these
quantities. We will also incorporate decay processes only into the equation for interband polarization by the damping term since
homogeneous relaxation processes associated with each band population relaxing back to the initial distributions are on the
picosecond timescale [43] and slow compared with the inhomogeneous one, which is expected to be in the 10–100 fs timescale
as in graphene [44]. Thus, we have

ih̄
∂Nc(sz, k, t )

∂t
− ieE(t )

∂Nc(sz, k, t )

∂k
= e[E(t )Dtr (sz, c, k)P∗(sz, k, t ) − E(t )D∗

tr (sz, c, k)P(sz, k, t )], (25)

ih̄
∂Nv (sz, k, t )

∂t
− ieE(t )

∂Nv (sz, k, t )

∂k
= −e[E(t )Dtr (sz, c, k)P∗(sz, k, t ) − E(t )D∗

tr (sz, c, k)P(sz, k, t )], (26)

ih̄
∂P(sz, k, t )

∂t
− ieE(t )

∂P(sz, k, t )

∂k
= {

2Esz,1(k) + eE(t )[Dm(sz, 1, k) − Dm(sz,−1, k)] − ih̄�
}
P(sz, k, t ) (27)

+ eE(t )Dtr (sz, c, k)[Nv (sz, k, t ) − Nc(sz, k, t )],

where � is the relaxation rate.
The obtained equations are a closed set of differential

equations which should be solved with the proper initial
conditions. We will solve the set of Eqs. (25), (26), and (27)
with the initial conditions

P(sz, k, 0) = 0, Nc(sz, k, 0) = 1

1 + eEsz ,1(k)/T
, Nv (sz, k, 0)

= 1

1 + e−Esz ,1(k)/T
, (28)

where T is the temperature in energy units.
The optical excitation via a coherent radiation pulse in-

duces transitions in the Fermi-Dirac sea which results in the
surface current. The latter can be calculated by the following
formula:

j(t ) = −e
∑

sz,k,λ,λ′
ρλ,λ′ (sz, k, t )〈sz, λ

′, k|V̂sz (k)|sz, λ, k〉.

(29)

Here

V̂sz (k) = h̄−1∂kĤ = h̄−1

[
1
2 sz∂kg(k) −γ0∂k f (k)

−γ0∂k f ∗(k) − 1
2 sz∂kg(k)

]
(30)

is the velocity operator. The surface current can be represented
as follows:

j(t ) = −e
∑

sz,k,λ

ρλ,λ(sz, k, t )〈sz, λ, k|V̂sz (k)|sz, λ, k〉

− e
∑

sz,k,λ

ρ−λ,λ(sz, k, t )〈sz, λ, k|V̂sz (k)|sz,−λ, k〉.

(31)

The diagonal part can be written as

〈sz, λ, k|V̂sz (k)|sz, λ, k〉 = ∂kEsz,λ(k), (32)

and the nondiagonal part can be calculated via transition
dipole moments,

〈sz, λ, k|V̂sz (k)|sz,−λ, k〉 = 2i

h̄
Esz,λ(k)Dtr (sz, λ, k). (33)

Taking into account Eqs. (32), (33), and the relation
Esz,−1(k) = −Esz,1(k), the surface current (31) can be written
via distribution functions and interband polarization:

j(t ) = − e

h̄

1

(2π )2

∑
sz

∫
BZ

dk
{
∂kEsz,1(k)[Nc(sz, k, t )

− Nv (sz, k, t )] + 2iEsz,1(k)[Dtr (sz, 1, k)P∗(sz, k, t )

− D∗
tr (sz, 1, k)P(sz, k, t )]

}
. (34)

As is seen from Eq. (34), the surface current provides two
sources for the generation of harmonic radiation. The first
term is the intraband current. Under the action of the pump
field, electrons are excited to the conduction band, leaving
holes in the valence band. Then, the electron-hole pairs are
accelerated by the field (14). This is evident when one makes
a change in the variables and transforms the partial differential
equations (25), (26), and (27) into ordinary ones. The new
variables are t and k̃ = k − kE , where

kE (t ) = − e

h̄

∫ t

0
E

(
t ′)dt ′ (35)

is the classical momentum given by the wave field. One should
also make this transformation in the surface current (34).
Intraband high harmonics are generated as a result of the
independent motion of carriers in their respective bands. The
second term in Eq. (34), which is defined via polarization,
describes the interband current. Interband high harmonics are
generated as a result of pump-field-induced recombination of
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accelerated electron-hole pairs. Note that the relative contri-
bution of intraband and interband high harmonics strongly
depends on material and pump field parameters. In particular,
when the energy gap is small compared with the driving
wave frequency, the contributions of both mechanisms are
essential.

III. GENERATION OF HIGH HARMONICS

We further examine the nonlinear response of a buck-
led hexagonal nanostructure considering the generation of
harmonics at the multiphoton excitation. The wave-particle
interaction will be characterized by the dimensionless param-
eters χ0x, χ0y, and χ0:

χ0x,y = eE0x,ya

h̄ω0
, χ0 =

√
χ2

0x + χ2
0y,

which represent the work of the wave electric field E0x,y on
a lattice spacing in units of photon energy h̄ω. The average
intensity of the pump wave expressed by χ0x and χ0y can be
estimated as

I0 = χ2
0 × [h̄ω0/eV]2 × [A/a]2 × 1.33 × 1013 W cm−2.

(36)

Nonlinear effects take place when χ0 becomes comparable to
or larger than 1. In the scope of the two-band model we will
consider moderately strong pump waves χ0 ∼ 1 since at χ0 
1 one should definitely take into account higher bands. For
the photon energy we take h̄ω0 = 0.3 eV, and the intensity
is taken to be 1011 W/cm2. The pulse duration will be Tp =
10T = 138 fs. For the relaxation rate, we take � = 0.5T −1.
For calculations, we assume room temperature.

The integration of Eqs. (25), (26), and (27) after the
transformation from (t, k) to (t, k − kE ) is performed on the
full reciprocal lattice unit cell with a grid of 104 points. The
time integration is performed with the standard fourth-order
Runge-Kutta algorithm. Thus, having solutions of Eqs. (25),
(26), and (27) and then making an integration in equation (34),
one can calculate the harmonic radiation spectrum with the
help of a Fourier transform j(ω) of the function j(t ). Note that
for a sufficiently large 2D sample the generated field will be

E(g)(t ) = −4π

c
j(t ). (37)

Hence, we will characterize the emission strength of the sth
harmonic by the dimensionless parameters

ηx,y(s) = 4π

c

| jx,y(sω0)|√
E2

0x + E2
0y

. (38)

The typical nonlinear excitation of the Fermi sea is
shown in Fig. 2 for silicene (a = 3.86 × 10−8 cm, γ0 =
1.087 eV, and λSOC = 3.95 meV) and germanene (a =
4.02 × 10−8 cm, γ0 = 0.864 eV, and λSOC = 46.5 meV). The
particle distribution function N (k, t f ) (in arbitrary units) after
the interaction t f = 40T is plotted. In Figs. 2(a) and 2(c)
the wave is assumed to be polarized along the y axis, that
is, along the K−-�-K+ direction in reciprocal space. Thus,
the electric field is perpendicular to the mirror plane of the
considered nanostructures. In Figs. 2(b) and 2(d) the wave is

FIG. 2. Particle distribution function Nc(k, t f ) (in arbitrary units)
after the interaction as a function of scaled dimensionless momentum
components (kx/kb, ky/kb) for (a) and (b) silicene and (c) and (d)
germanene. The wave is assumed to be linearly polarized with an
intensity of 1011W/cm2. In (a) and (c) the wave is assumed to be
polarized along the y axis, while in (b) and (d) the wave is polarized
along the x axis. Multiphoton excitation with the trigonal warping
effect for the photon energy h̄ω0 = 0.3 eV is shown.

polarized along the x axis (in the mirror plane). Multipho-
ton and strongly anisotropic excitation away from the Dirac
points is clearly seen. In particular the excitation spots are
prolonged along the wave polarization, which indicates that
created particle-hole pairs are accelerated in the wave field.
For the harmonic generation process, first, we consider the
case when Ez = 0. The emission rates at high harmonics via
the normalized field strength ηy(s) for silicene, germanene,
and stanene (a = 4.7 × 10−8 cm, γ0 = 0.784 eV, and λSOC =
64.5 meV) are shown in Figs. 3 and 4. The wave is assumed to
be linearly polarized along the y axis. The emission rate in the
perpendicular direction is zero, ηx(s) = 0. High harmonics up
to 13th order are obtained. In this case only odd harmonics are
generated, reflecting the centrosymmetric nature preserved in
the crystal lattices. To show the difference between crystals in

-8

-7

-6

-5

-4

-3

-2

1 2 3 4 5 6 7 8 9  10  11  12  13  14

lg
(η

y(
s)

)

Harmonic order

silicene
germanene

stanene

FIG. 3. The radiation spectrum via the logarithm of the normal-
ized field strength ηy(s) (in arbitrary units) for silicene, germanene,
and stanene. The wave is assumed to be linearly polarized along the
y axis, and χ0y = 1.12.
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4 5 6 7 8 9  10  11  12  13  14

10
5 ·η

y(
s)

Harmonic order

silicene
germanene

stanene

FIG. 4. The emission rate at high harmonics via the normalized
field strength ηy(s) for silicene (χ0y = 1.12), germanene (χ0y =
1.16), and stanene (χ0y = 1.36). The wave is assumed to be linearly
polarized along the y axis. The emission rate in the perpendicular
direction is zero, ηx (s) = 0.

Fig. 4 we plot only high harmonics in the basic scale. As can
be seen, there is a qualitative difference for various crystals,
and stanene shows more pronounced nonlinear properties.
The emission rate at high harmonics for silicene for linearly
polarized waves along the x and y axes is shown in Fig. 5.
As can be seen, orienting the linearly polarized pump wave
along these axes results in different harmonics spectra. The
difference is essential for higher-order harmonics. This is
because we have strongly anisotropic excitation away from
the Dirac points (see Fig. 2).

The evolution of the high harmonic spectrum as a function
of time is extracted from a windowed Fourier transform
of the induced normalized field strength ηy(t ), where an
exp (−10πx4) window is scanned across 20 optical cycles. As
is seen from Fig. 6, the emission of high harmonics takes place
two times per wave cycle, corresponding to two maxima of the
classical momentum |kE (t )| given by the wave field (35). The
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FIG. 5. The emission rate at high harmonics for silicene for
linearly polarized waves along the x and y axes.
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FIG. 6. The spectrogram of the high harmonic generation pro-
cess via the windowed Fourier transform of the normalized field
strength ηy(t ) for germanene. The wave is assumed to be linearly
polarized along the y axis. The color bar represents the emission rate
(arbitrary units) multiplied by 106.

harmonic bursts are phase shifted from the pump wave. Thus,
we have interplay between intra- and interband emission.
For the taken parameters we have do not have a dominant
interband mechanism compared with the one considered in
Ref. [21] .

Now we consider the case when Ez �= 0. For the sublattice
potential we take �Ez = 0.2 eV. In this case the topology of
the bands is changed. In Fig. 7 the radiation spectra via the
logarithm of the normalized field strengths ηx(s) and ηy(s) for
germanene are shown in the x and y directions. The wave is
assumed to be linearly polarized along the y axis. As is seen
in the perpendicular to pump wave polarization direction, we
have radiation of even harmonics. Note that this takes place
only for the wave polarized along the K−-� -K+ direction.
The appearance of even harmonics strongly correlated to

the topology of the bands. For the considered crystals the
Berry curvature is nonzero (see the Appendix). However, at
Ez = 0 when inversion symmetry is recovered by summing
up on the spin index, the total Berry curvature becomes
zero. For Ez �= 0 the total Berry curvature is nonzero, which
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FIG. 7. The radiation spectrum via the logarithm of the normal-
ized field strengths ηx (s) and ηy(s) for germanene at �Ez = 0.2 eV.

The wave is assumed to be linearly polarized along the y axis.
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FIG. 8. The even-harmonic emission rate for the normalized field
strength ηx (s) for silicene, germanene, and stanene. The wave is
assumed to be linearly polarized along the y axis.

is equivalent to an anomalous current which generates only
even harmonics [40]. The even harmonics emission rates for
silicene, germanene, and stanene are shown in Fig. 8. As can
be seen, the germanene and stanene nanostructures show more
pronounced nonlinear properties. Thus, the mechanism of
generation of high harmonics in the considered nanostructures
is different from the known atomic three-step model [41], and
one can use this fact for the generation of high harmonics by a
circularly polarized pump wave. In the atomic gas the HHG
is impossible via a single circularly polarized laser pulse,
and this is not conditioned by the global symmetry of the
issue but the mechanism of HHG. So the novel graphenelike
nanomaterials provide us with such an opportunity in the
problem of HHG. To illustrate this in Figs. 9 and 10 we show
the high harmonic radiation rates in germanene driven by a
circularly polarized laser with the same intensity, and up to the
13th harmonic can be observed. As is seen for Ez �= 0, even
harmonics are also present. In both cases we have a selection
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FIG. 9. The emission rate for harmonics polarized in both direc-
tions for germanene. The wave is assumed to be circularly polarized,
and Ez = 0.
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FIG. 10. The emission rate for harmonics polarized in both direc-
tions for germanene. The wave is assumed to be circularly polarized,
and �Ez = 0.2 eV.

rule: every third harmonic is missing. This selection rule is
a consequence of the threefold rotational symmetry of the
considered crystals. In addition, as is seen from Figs. 9 and 10,
the generated harmonics are almost circularly polarized. Thus,
these materials can serve as an active medium of nanoscale
size for the generation of circularly polarized even and odd
high harmonics.

Let us estimate the intensity of the harmonics. For the
perturbative regime, one can calculate the intensity of har-
monics via high-order susceptibilities [45]. For the considered
case, note that Eq. (37) at L  λ, where λ is the pump field
wavelength and L is the characteristic size of the 2D sample,
corresponds to the solution of Maxwell’s wave equation with
the given 2D source j(t ) [34]. If we assume that the spec-
trum is measured at a fixed observation point in the forward
(backward) propagation direction for the intensity of the sth

harmonic, we will have Is = I0

√
η2

x + η2
y /4. For the setup of

Figs. 3–10 with the chosen pump intensity I0 = 1011 W/cm2

the average intensities of the harmonics are estimated to
be I2−11 � 103–1W/cm2. Note that this is the output from
an atomically thin single-layer hexagonal nanostructure. It
is clear that for the experimental realization one needs a
multilayer 2D nanostructure [46]. We consider experimentally
achievable values NL ∼ 50 monolayers [47] with a film thick-
ness of ∼20 nm. Since the film thickness is much smaller than
the considered wavelengths, the harmonics’ signals from all
layers will be summed up constructively and enhanced by the
N2

L factor.

IV. CONCLUSION

We have presented a nonlinear microscopic theory of a
buckled hexagonal lattice interaction with strong electro-
magnetic radiation. The buckled hexagonal lattice system
has been described by the four-band second-nearest-neighbor
tight-binding model. The developed theory covers the full
Brillouin zone of the hexagonal tight-binding nanostructure.
For concreteness we have considered nonlinear excitation of
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silicene, germanene, and stanene by midinfrared pump wave
towards the high harmonic generation. The calculated spectra
show high harmonics extending to the UV spectral region.
It has also been shown that the role of the bands’ topology
in the nonlinear optical response of the buckled hexagonal
lattice is quite considerable. In particular, when the total
Berry curvature is nonzero, one can generate even harmon-
ics perpendicularly polarized to the pump wave polarization
direction. In addition, it has been shown that in the considered
systems one can reach the efficient generation of circularly
polarized high harmonics with a single circularly polarized
pump wave of moderate intensity.
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APPENDIX: DIPOLE AND VELOCITY
MATRIX ELEMENTS

The transition dipole matrix elements Dtr (sz, λ, k) and
Berry connections Dm(sz, λ, k), used in the main text, are
obtained by direct calculation with the help of Eqs. (11),
(20), and (21). The transition dipole moments are explicitly
given by

Re D(x)
tr (sz, 1, k) = − aγ0

2
√

3Esz,1(k)| f (k)|

[
cos

(√
3

2
akx

)
cos

(
aky

2

)
− cos(aky)

]
, (A1)

Re D(y)
tr (sz, 1, k) = − aγ0

2Esz,1(k)| f (k)| sin

(√
3

2
akx

)
sin

(
aky

2

)
,

Im D(x)
tr (sz, 1, k) = −

√
3aγ0sz (k)

2E2
sz,1

(k)| f (k)| sin

(√
3

2
akx

)
cos

(
aky

2

)
(A2)

+ γ0a| f (k)|λSOC

3E2
sz,1

(k)
sz sin

(√
3

2
akx

)
sin

(
aky

2

)
,

Im D(y)
tr (sz, 1, k) = − aγ0sz (k)

2E2
sz,1

(k)| f (k)|

[
cos

(√
3

2
akx

)
sin

(
aky

2

)
+ sin(aky)

]
(A3)

−γ0a| f (k)|szλSOC

3
√

3E2
sz,1

(k)

[
cos

(√
3

2
akx

)
cos

aky

2
− cos aky

]
, (A4)

Dtr (sz,−1, k) = D∗
tr (sz, 1, k). (A5)

The Berry connection is a real quantity and is given by

D(x)
m (sz, λ, k) = − a

2| f (k)|2√3

[
cos

(√
3

2
akx

)
cos

(
aky

2

)
− cos

(
aky

)](
1 + sz (k)

Esz,λ(k)

)
, (A6)

D(y)
m (sz, λ, k) = − a

2| f (k)|2 sin

(√
3

2
akx

)
sin

(
aky

2

)(
1 + sz (k)

Esz,λ(k)

)
. (A7)

In the equation of motion for the density matrix we need the difference Dm(sz, k) = Dm(sz, 1, k) − Dm(sz,−1, k):

D(x)
m (sz, k) = − sz (k)a

Esz,1(k)| f (k)|2√3

[
cos

(√
3

2
akx

)
cos

(
aky

2

)
− cos(aky)

]
, (A8)

Dy
m(sz, k) = − sz (k)a

Esz,1(k)| f (k)|2 sin

(√
3

2
akx

)
sin

(
aky

2

)
. (A9)

As is seen from Eqs. (A8) and (A9) at sz (k) = 0 we have vanishing Dm(sz, k). With the help of the Berry connection one
can also calculate the Berry curvature,

Bλ(sz, k) = ∂k × Dm(sz, λ, k), (A10)

085432-8



HIGHER HARMONIC GENERATION BY MASSIVE … PHYSICAL REVIEW B 99, 085432 (2019)

which is given by

B(z)
λ

(sz, k) = a2γ 2sz (k)

4
√

3E3
sz,λ

(k)

[
2 cos

(√
3

2
akx

)
sin

(
aky

2

)
− sin(aky)

]

+ a2γ 2

E3
sz,λ

(k)

szλSOC

9

⎧⎨⎩
[

cos

(√
3

2
akx

)
cos

(
aky

2

)
− cos(aky)

]2

+ 3 sin2

(√
3

2
akx

)
sin2

(
aky

2

)⎫⎬⎭. (A11)

As is seen from Eq. (A11) B1(sz, k) + B−1(sz, k) = 0, in accordance with the definition [17]; at λSOC = 0 when inversion
symmetry is broken, Bλ(sz, k) = −Bλ(sz,−k), and at Ez = 0, when inversion symmetry is recovered, summing up on the spin
index, the total Berry curvature becomes zero: Bλ(1, k) + Bλ(−1, k) = 0.

The velocity is given by

V (x)(sz, k) = h̄−1∂kxEsz,1(k) = − aγ 2
0

√
3

h̄Esz,1(k)
sin

(√
3

2
akx

)
cos

(
aky

2

)
− 2aszsz (k)λSOC

3h̄Esz,1(k)
sin

(√
3

2
akx

)
sin

(
aky

2

)
, (A12)

V (y)(sz, k) = h̄−1∂kyEsz,1(k) = − aγ 2
0

h̄Esz,1(k)

[
cos

(√
3

2
akx

)
sin

(
aky

2

)
+ sin(aky)

]

+ 2aszsz (k)λSOC

3
√

3h̄Esz,1(k)

[
cos

(√
3

2
akx

)
cos

(
aky

2

)
− cos(aky)

]
. (A13)
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