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In this work we investigate the phenomena associated with the new thresholds in the spectrum of excitations
arising when different one-dimensional strongly interacting systems are voltage biased and weakly coupled by
tunneling. We develop the perturbation theory with respect to tunneling and derive an asymptotic behavior of
physical quantities close to threshold energies. We reproduce earlier results for the electron relaxation at the edge
of an integer quantum Hall system and for the nonequilibrium Fermi edge singularity phenomenon. In contrast
to previous works, our analysis does not rely on the free-fermionic character of local tunneling; therefore, we are
able to extend our theory to a wider class of systems, without well-defined electron excitations, such as spinless
Luttinger liquids and chiral quantum Hall edge states at fractional filling factors.
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I. INTRODUCTION

Interactions between particles are an important component
for the realistic description of many-body systems. While in
a large class of systems, such as electrons in metals, inter-
actions can either be neglected or considered perturbatively,
in many systems of reduced dimensionality they manifest
themselves in new physical effects and even in new states of
matter. Among them, there are models of particular impor-
tance such as Luttinger liquids (LLs) [1], quantum dots (QDs)
demonstrating the Fermi edge singularity (FES) effect [2],
and other systems[3], which are exactly solvable for arbitrary
interaction strengths. At equilibrium, these systems have a
peculiar behavior. For instance, the tunneling density of states
(TDOS) in LLs has a power-law singularity at the Fermi level.
In the case of the FES a similar dependence is observed for
the transition rate between an impurity and a Fermi sea as a
function of the energy of the impurity level.

It seems to be natural to propose a generalization of
these models by introducing new energy scales and additional
thresholds in the spectrum. For instance, this can be done by
accounting for a nonlinearity of the electron spectrum in the
LL model [4]. Alternatively, one can inject nonequilibrium
electrons into a LL from a metallic reservoir and study their
relaxation to a nontrivial stationary state [5,6]. Yet another
example is the FES effect, where an impurity that hosts
a virtual electronic level couples two electronic reservoirs
with different chemical potentials by means of a cotunneling
process [7].

It turns out that away from equilibrium these phenomena
are deeply related. For instance, the electron relaxation at the
edge of an integer quantum Hall (QH) system [5] at filling
factor ν = 2 and the nonequilibrium FES effect in a QD
embedded in a QH system [8] were solved using the same
approach, which is based on the evaluation of the full counting
statistics (FCS) [9] of electron tunneling. A different method
was used to address the FES problem in Refs. [6,10] and
to find the TDOS in LLs in Ref. [6], where the quantities
of interest are expressed through a nonequilibrium electron

Green’s function, represented as Fredholm determinants over
single-particle degrees of freedom. Notably, all these methods
rely on the free-fermionic character of the injection of electron
excitations.

In this paper we present a different approach, which, on
the one hand, can reproduce the results mentioned above
and, on the other hand, is also applicable to systems without
well-defined electronic excitations. Namely, we consider a
stationary TDOS at the edge of a fractional QH system and
in the bulk of a LL away from equilibrium. In both cases we
study the relaxation of the nonequilibrium state, created by
injecting electrons via a quantum point contact (QPC) from
a reservoir with the chemical potential μ. We assume weak
tunneling coupling at the QPC (with tunneling probability
T � 1) and study tunneling perturbatively. The correction to
the equilibrium TDOS is then measured by tunneling to a QD
at the energy ε.

Let us point out that even though the perturbative character
of the nonequilibrium tunneling is crucial for our analysis,
the obtained results are universal. The quantities of interest
(TDOS, transition rates) are typically studied close to the
threshold energies [5,6,8,10], where they have a universal
power-law behavior |ε − ε0|κ as a function of the energy ε

in the vicinity of the energy thresholds ε0 = 0 and ε0 = ±μ.
High-order tunneling processes at the source QPC smear
out the singularities at energies of the order of T μ at zero
temperature [5,6,8,10]. Our main goal, however, is to find
universal exponents κ in different physical situations, which
justifies our perturbative approach.

The results of our calculations are summarized in Table I
for four different physical situations. We study the relaxation
of a nonequilibrium state at the edge of a QH system at
the filling factor ν = 2. This system has been extensively
studied experimentally [11]. The measured quantity is the
energy-dependent correction to the TDOS. We consider the
nonequilibrium FES phenomenon in a QH-effect-based de-
vice. This system was experimentally studied in Ref. [12].
The quantity of interest is the sequential tunneling rate as a
function of the energy of the QD level. For both of these

2469-9950/2019/99(8)/085430(8) 085430-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.085430&domain=pdf&date_stamp=2019-02-20
https://doi.org/10.1103/PhysRevB.99.085430


ARTEM BORIN AND EUGENE SUKHORUKOV PHYSICAL REVIEW B 99, 085430 (2019)

TABLE I. The results for the exponents κ of an asymptotic
power-law behavior for different quantities considered in the paper
are summarized. In all cases, the physical quantities are weakly
perturbed by injecting nonequilibrium electrons from a metallic
system with the chemical potential μ and detected at relatively large
distances with the help of a QD at energy ε. They show an asymptotic
behavior |ε − ε0|κ in the vicinity of different threshold energies
ε0 = −μ, 0, μ. The following quantities are presented: (i) The first
is the TDOS at the edge of a QH system at a filling factor of 2 as a
function of the dimensionless parameter α that characterizes mixing
of the edge channels due to the Coulomb interaction. In particular,
α = 1/

√
2 in the experimentally relevant case of strong interaction

(see Sec. II). (ii) The second is the FES in the sequential tunneling
rates to (from) a QD embedded in a QH system from (to) the QH
edge channel. New FES exponents κ are expressed as a function of
the equilibrium FES exponent αD and of the fraction ηD of the QD
charge screened by the edge channel (see Sec. III). (iii) The third
is the TDOS in a spinless LL. The exponents κ are expressed as a
function of the LL parameter K . (iv) The last is the TDOS at the edge
of a chiral fractional QH system at the filling factor ν = 1/(2n + 1).

ε0 −μ + 0 0 μ − 0

ν = 2 2(1 + α2) −1 2(1 − α2)
FES �± 2 − αD± 2(1 − ηD ) −1 − αD 2 − αD∓ 2(1 − ηD )
LL 3 K+K−1

2 + 1 K+K−1

2 − 2 K+K−1

2 − 1
ν = 1

2n+1 absent 0 2n

systems, we reproduce previously found results, obtained with
the nonperturbative methods [5,8]. Finally, we evaluate the
TDOS in nonequilibrium LLs and in fractional QH systems
[11,13].

The rest of the paper is organized as follows. In Sec. II
we focus on the physics of electron relaxation at the edge
of an integer QH system. We formulate the problem of
finding the nonequilibrium correction to the TDOS, develop
the tunneling perturbation theory, and find the asymptotic
behavior of the correction at different threshold energies.
In this section we also recall the essential elements of the
bosonization technique [14]. In Sec. III we concentrate on
the nonequilibrium FES and find exponents of singularities
in sequential tunneling rates. Finally, in Sec. IV we apply
our theory to essentially nonfermionic systems: spinless LLs
and chiral fractional QH systems. In the Appendix, we derive
the perturbative correction to TDOS at the integer QH edge
directly from the Fredholm determinant.

II. QH SYSTEM AT FILLING FACTOR ν = 2

A. Formulation of the problem

To study a stationary state of the strongly interacting QH
edge channels at the filling factor ν = 2 let us consider the
system presented in Fig. 1 that was realized experimentally in
[11]. The dynamics in the interacting channels is governed by
the Hamiltonian

H0 = π

∫
dx

∑
i

viρ
2
i (x)

+ 1

2

∫
dxdy

∑
i j

ρi(x)Vi j (x, y)ρ j (y), (1)

FIG. 1. QH edge states at the filling factor ν = 2 are schemat-
ically shown. Due to strong interactions at the edge, two free-
propagating plasmonic modes arise, dipole and charge mode. At the
point x = 0 nonequilibrium electrons are injected from the source
channel biased with the chemical potential μ, and at the point x = L
the TDOS n(ε) is measured at the energy ε. The measurements can
be carried out by attaching a QD with a single level ε and monitoring
a resonant current through it [11].

where ρi(x), i = U, D, are the electron densities in the up-
per and lower edge channel, respectively, and Vi j (x) is the
Coulomb potential, which is assumed to be screened at dis-
tances smaller than the characteristic wavelength of the edge
excitations. Thus, it can be written as Vi j (x) = Vi jδ(x). Below,
this simplification helps us to diagonalize the Hamiltonian (1)
using the bosonization technique, which we recall next.

We introduce two bosonic fields φi(x, t ), i = U, D, corre-
sponding to two edge channels and satisfying the commuta-
tion relations

[∂xφi(x), φ j (y)] = 2π iδi jδ(x − y). (2)

Two important identities relate these bosonic fields to edge
electrons and charge densities:

ψi(x) ∝ eiφi (x), ρi(x) = 1

2π
∂xφi(x), (3)

where the vertex operator ψi(x) annihilates an electron at
point x in channel i = U, D. Despite interactions, the edge
Hamiltonian (1) is quadratic in bosonic fields (quartic in
electron operators). Written in terms of bosons, it has the
following matrix form:

H0 =
∫

dx

8π2

∑
i j

∂xφi(x)Ui j∂xφ j (x), (4)

with

Ui j =
[

2πv1 + V11 V12

V12 2πv2 + V22

]
. (5)

This Hamiltonian can be diagonalized by rotating the basis
as

φc = (αφU + βφD), φd = (βφU − αφD), (6)

where

α = U12√
U 2

12 +
[√

(U11 − U22)2 + 4U 2
12 − (U11 − U22)

]2
/4

,

β =
√

1 − α2.

The new fields describe fast charge and a slow dipole
mode freely propagating at the edge with velocities uc and
ud . It is important to mention that in the experimentally most
relevant regime of strong, long-range interactions, 2πvi � Vi j

and |Vii − V12| � V12, i = 1, 2, the parameters of the rotation
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FIG. 2. On the left, the nonequilibrium TDOS is schematically
shown directly after the injection from the Fermi sea, biased by the
chemical potential μ, to the QH edge at filling factor 2 through a
QPC with transparency T . Because of the effectively-free-fermionic
character of the local tunneling process, the TDOS acquires a well-
known double-step form. At intermediate distances, due to strong
interactions, the double-step TDOS relaxes to a stationary state,
as schematically shown on the right. In the regions close to the
thresholds (shown by dashed lines) the TDOS acquires a singular
power-law behavior, which is the subject of our study.

acquire the universal value α = β = 1/
√

2. In contrast, in
the case of weak interactions these parameters satisfy the
following relation: α � β.

We consider the situation where a nonequilibrium state is
created by tunneling processes at the point x = 0, described
by the Hamiltonian

HT = τψμ(0)†ψU (0) + H.c.,

where ψμ and ψ†
μ are the operators for electrons in the biased

source channel (see Fig. 1), with μ denoting the applied bias.
For our purposes, it is not necessary to introduce a particular
Hamiltonian for electrons in this channel since the only object
we need below is the local correlation function, which we
choose to have the free-fermion form

〈ψ†
μ(0, t )ψμ(0, 0)〉 ∼ eiμt/(it + 0). (7)

This is the case for metallic systems at low energies as well as
for chiral QH edge channels at integer filling factors [15].

At intermediate distances x = L the TDOS n(ε) at the edge
reaches a stationary nonequilibrium form (see Fig. 2) [5]. It
can be measured by attaching a QD to the upper edge channel
and studying the resonant tunneling current [11]. We are
interested in the deviation of the TDOS from its equilibrium
value neq(ε). It can be presented as follows:

δn(ε) ≡ n(ε) − neq(ε) =
∞∫

−∞
dte−iεtδN (L, t ), (8)

δN (L, t ) = 〈ψ†
U (L, t )ψU (L, 0)〉n−eq

−〈ψ†
U (L, t )ψU (L, 0)〉eq, (9)

where the nonequilibrium correlation function is evaluated
with respect to the state excited by the source. The electron
operators (3) can be expressed in terms of bosonic eigenmodes
by solving equations of motion generated by the Hamiltonian
(1),

ψU (x, t ) = exp [iαφc(t − x/uc) + iβφd (t − x/ud )], (10)

where the time dependence reflects the free propagation of
eigenmodes with different velocities. The first important result
that can be easily derived from the bosonic representation is
that the local equilibrium TDOS takes the free-fermion form
[15] in spite of the strong interactions. At zero temperature,
this gives neq(ε) = θ (−ε) and allows one to express δn(ε) in
terms of the FCS of the free-electron transport [9].

In what follows, we rely on several simplifications for
the calculation of the correlation function (9). First, due to
the separation of the spectrum on the charged and dipole
mode, propagating with different speeds, one can neglect their
correlations at distances of ∼L, where the stationary state is
formed. Indeed, at such distances their contributions to the
electron correlation function originate from different tunnel-
ing events at x = 0. Second, we can ignore the correlations
of electrons that are separated by a distance of the order
of L. As a consequence, only tunneling events that happen
at times ∼ − L/ui, i = c, d , at the point x = 0 contribute
to the correlator in Eq. (9). Finally, we concentrate on the
asymptotic forms of the TDOS in order to study its scaling
behavior close to Fermi levels. Even though in Secs. III and IV
we consider different systems, the analysis there can also be
reduced to finding the bosonic correlators in a nonequilibrium
state. In the next section we show how such quantities can be
evaluated.

B. Perturbation theory

In order to expand the correlator (9) in powers of the
tunneling Hamiltonian HT , we rewrite it in the interaction
representation

δN (L, t ) = 〈U †(−∞, t )ψ†
U (L, t )U (t, 0)ψU (L, 0)

× U (−∞, 0)〉eq − 〈ψ†
U (L, t )ψU (L, 0)〉eq, (11)

where U (t1, t2) = T̂ exp[−i
∫ t1

t2
dt ′HT (t ′)] is the time-ordered

evolution operator. Expanding the evolution operators up to
the second order in HT generates 3! = 6 terms. However, the
number of terms can be halved. Indeed, for large L tunneling
at the point x = 0 taking place between times 0 and t cannot
affect the results of the measurement at the point x = L.
Therefore, the evolution operator U (t, 0) can be dropped in
the above expression. On the physics level, this amounts to
neglecting exchange effects in tunneling events at x = 0 and
x = L; that is, terms like 〈ψ†

U (L, t )ψU (0, 0)〉eq are neglected.
Moreover, we can safely extend the time domains of the

remaining evolution operators to infinity without affecting
the correlator (11). Indeed, although by doing so we add
extra tunneling events at point x = 0, they do not affect the
measurements at point x = L since wave packets do not reach
this point. Consequently, Eq. (11) can be rewritten as

δN (L, t ) ≈ 〈U †(−∞,∞)ψ†
U (L, t )ψU (L, 0)U (−∞,∞)〉eq

− 〈ψ†
U (L, t )ψU (L, 0)〉eq. (12)

We note that this approximation is valid only for relatively
large energies μ and ε. The corrections to Eq. (12) scale as
powers of uc/[L min(μ, ε)] with the exponents of the order of
1 (and exactly 1 for free fermions).

After expanding the evolution operator up to the second
order in HT and expressing the tunneling Hamiltonian in terms
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of plasmonic eigenmodes,

HT = τψ†
μ exp [i(αφc + βφd )] + H.c., (13)

we evaluate the average in Eq. (12) with respect to the
equilibrium state. The result can be expressed in terms of the
four-point correlation functions of the following form:

〈e−iξφi (t1 )eiξφi (t2 )e−iλφi (t−L/ui )eiλφi (−L/ui )〉eq

= Kξ 2 (t1, t2)Kλ2 (t, 0)
Kξλ(t1,−L/ui )Kξλ(t2, t − L/ui )

Kξλ(t1, t − L/ui )Kξλ(t2,−L/ui )
,

(14)

where the two-point correlator

Kγ (t1, t2) = 〈e−i
√

γφi (t1 )ei
√

γφi (t2 )〉 ∝ [i(t1 − t2) + 0]−γ (15)

takes the same form for the two eigenmodes i = c, d .
The correlation function (14) has the important property

[16] that it acquires a nontrivial form only at t1 and t2 close
to the flight time of one of the eigenmodes, ∼ − L/ui. There-
fore, one can split the function (12) into two contributions,
δN (L, t ) = δNc(L, t ) + δNd (L, t ) from the charged and dipole
modes. The contribution of the charged mode reads

δNc(L, t ) ∝ K1(t, 0)
∫∫

dt1dt2eiμ(t1−t2 )

×
(

K2(t1,t2)
Kα2 (t1,t )

Kα2 (t1,0)
− c.c.

)(
Kα2 (t2,0)

Kα2 (t2,t )
− c.c.

)
. (16)

The contribution of the dipole mode can be obtained by
replacing α → β.

We have arrived at expression (16) by applying the pertur-
bation expansion directly to the correlation function (9). Al-
ternatively, one can apply an expansion in tunneling amplitude
to the nonperturbative expression for the TDOS in the form
of a Fredholm determinant. This method, presented in the
Appendix, is based on the free-fermion character of the local
tunneling transport. The advantage of the approach presented
in this section is that it can also be used for tunneling to
non-Fermi-liquid states, as discussed in Sec. IV.

C. Asymptotic behavior of TDOS

In this section we evaluate the TDOS (8) asymptotically
close to the threshold energies ε0 = 0 and |ε0| = μ (see
Fig. 2). Starting with μ, ε > 0, the contribution of the charged
mode δnc(ε) = ∫

dte−iεtδNc(L, t ) can be written as

δnc(ε)∝
∫ ∞

−∞
dt−

∫ ∞

0
dt+

∫ ∞

0
dt

e−ε(t+t+ )ei(μ−ε)t−

(it−+t++t )(t−−i0)2

× (−t− + it )α
2
(t− − it+)α

2

(−it+)α2 (it )α2 , (17)

where we changed the variables in the integral (16) to t− =
t2 − t1, t+ = (t1 + t2)/2. For ε � μ, this expression takes the
form

δnc(ε) ∝
∫

dt−
∫ ∞

0
dt

∫ ∞

0
dt+

eiμt−e−ε(t+t+ )

(t− − i0)2(t+ + t )
∝ μ

ε
, (18)

where we dropped a small prefactor of tunneling probability
T � 1 since we are interested in only a power-law scaling.

TABLE II. For electron tunneling to the edge of an integer
QH system at filling factor ν = 2 the correction to the equilibrium
TDOS acquires the general asymptotic form δn(ε) ∝ |ε − ε0|κ . The
exponents κ of this asymptotic behavior in the vicinity of different
thresholds ε0 are shown, where α is an interaction constant.

ε0 −μ + 0 0 μ − 0

κ 2(1 + α2) −1 2(1 − α2)

This results agrees with the findings of Ref. [5]. The dipole
contribution δnd (ε) scales in the same way.

We now concentrate on the behavior close to the second
threshold in the TDOS: μ − ε � ε. We stress that this thresh-
old arises in the weak tunneling limit, to leading order in
tunneling at the source QPC, because the maximum energy
that can be injected with one electron from the source is equal
to μ. Consequently, to leading order in tunneling δn(ε) = 0
for ε > μ. High-order tunneling processes smear out the sin-
gularity. Close to the threshold the charged-mode contribution
reads

δnc(ε) ∝
∫

dt−
∫ ∞

0
dt

∫ ∞

0
dt+

eiμt−e−ε(t+t+ )

i(t− − i0)3−2α2 (it )α2 (−it+)α2

∝
(

μ − ε

μ

)2(1−α2 )

, (19)

and a similar expression is obtained for the dipole mode by re-
placing α → β. In the case of strong, long-range interactions
the charge of the tunneling electron equally splits between
charged and dipole modes, α = β = 1/

√
2, which leads to the

linear dependence: δn(ε) ∝ (μ − ε)/μ.
In the next step we analyze the hole part of the TDOS,

ε < 0. Since the details of the evaluation of the TDOS (8)
are the same, we present the results without the derivation
(see Table II). Finally, we note that for μ < 0 the TDOS is
immediately obtained by exchanging electrons and holes, and
thus, the following identity holds:

δn(−ε)|μ→−μ = −δn(ε), (20)

which can be derived directly from Eq. (16) and is intuitive
from the physics perspective.

III. FERMI EDGE SINGULARITY

In this section we apply the technique developed above to
the problem of nonequilibrium FES. Motivated by the recent
experiment [12], we study this effect in the QH setup, shown
in Fig. 3. In this system, FES appears as a universal energy
dependence of the transition rate between the edge channel
and the QD level. We follow the bosonization approach of [8]
and present the Hamiltonian of the system in the form

H = H0 + Hint + HT + H ′
T , (21)

where H0 is the free-fermion part,

H0 =
∫

dx

4π2

∑
i

vi[∂xφi(x)]2 + ε d†d, (22)

describing excitations in the QH channels and in the QD,
respectively. The summation in the first term runs over four
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FIG. 3. The QH system at integer filling factor with the em-
bedded QD, perturbed by tunneling at the voltage-biased QPC, is
schematically shown (for details, see the experiment [12]). The QD
strongly interacts with surrounding edge channels (shown by ar-
rows), which partially or completely screen an electron added to the
QD energy level ε. In equilibrium, this leads to the well-known FES
phenomenon: sequential tunneling rates (shown by dashed lines) to
and from the energy level ε [shifted by the interactions, see Eq. (26)],
acquire the universal low-energy behavior �±(ε) ∝ 1/|ε|αD , where
the exponent αD depends only on the charges induced in surrounding
channels. Weak tunneling at the upstream QPC, biased with the
chemical potential μ, creates new thresholds and modifies FES
exponents. They are presented in Table III. The tunneling rates �±(ε)
can be found from the measurements of the current in an upper or
lower channel.

channels surrounding the QD, i = U, D, L, R, where φi(x) are
bosonic operators introduced in Sec. II. The QD is tuned to the
resonant tunneling regime via the energy level ε, and operators
d† and d create and annihilate an electron at this level. The
case of a large QD hosting more than one energy level was
considered in Ref. [17].

The key ingredient of the FES is Coulomb interactions
between the charge localized on the QD and the density ac-
cumulated in the channels. It is described by the Hamiltonian

Hint = 1

2π
d†d

∫
dx

∑
i

Ui(x)∂xφi(x), (23)

where Ui(x) are the Coulomb potentials and the sum runs over
the surrounding channels, i = U, D, L, R. While the general
universal solution of the problem can be found in [17], we
replace potentials with Ui(x) = Uiδ(x) for simplicity since we
are interested in the low-energy physics, where the length of
edge excitations is larger than the range of potentials [18].

The upper and lower channels are coupled to the QD
through the tunneling Hamiltonian

HT = d†
∑

i=U,D

τie
iφi (L) + H.c., (24)

where x = L is the point at the edges, where tunneling takes
place. A nonequilibrium state in the lower channel is created
by electron tunneling at point x = 0 from the source channel,
biased with the chemical potential μ. The Hamiltonian that
accounts for this process is given by

H ′
T = τψ†

μ(0)eiφD (0) + H.c., (25)

TABLE III. The exponents κ of the asymptotic behavior �±(ε) ∝
|ε − ε0|κ of the transition rates in the vicinity of different thresholds
ε0 are shown.

ε0 −μ + 0 0 μ − 0

κ 2 − αD ± 2(1 − ηD ) −1 − αD 2 − αD ∓ 2(1 − ηD )

where operators ψμ and ψ†
μ describe electrons in the biased

channel.
According to [8], the bosonization technique allows us to

treat the interaction term Hint exactly. One can perform a
unitary transformation that removes this term at the cost of
the modification of the energy of the QD level ε → ε and of
the transformation of the tunneling Hamiltonian HT → H̃T :

ε = ε +
∑

i

ηiUi, (26)

H̃T = d†
∑

i

τie
iφi (L)−∑

j η jφ j (L) + H.c., (27)

where the dimensionless numbers 0 � ηi � 1 are the charges
accumulated in surrounding channels in response to adding an
electron to the QD. For the QD screened solely by these chan-
nels,

∑
i ηi = 1. Since the microscopic details of the setup

are reduced solely to the set of parameters ηi, the discussed
approach can be naturally generalized beyond the setup in
Fig. 3, i.e., to any number of transport channels with any
strength of the interaction with the QD.

The transition rate from the lower channel to the QD
�+ and the rate for the reversed process �− can be found
perturbatively by applying the Fermi golden rule with respect
to the modified tunneling Hamiltonian H̃T ,

�±(ε) ∝
∫

dte−iεtχD(t,±(1 − ηD))
∏
i �=D

χi(t,∓ηi ), (28)

where the correlation functions

χi(t, λ) = 〈e−iλφi (t )eiλφi (0)〉n−eq (29)

for i = U, D, L, R are evaluated over a nonequilibrium state
created by tunneling from the source channel, described by the
Hamiltonian (25). Since at low energies H ′

T perturbs only the
lower channel [18], for other channels, i �= D, the averaging is
performed over the equilibrium state, which gives χi(t, λ) =
Kλ2 (t, 0) [see Eq. (15)]. For the lower channel, averaging
has to be evaluated over the nonequilibrium state created by
tunneling from the source. We therefore apply the perturbation
theory, introduced in Sec. II.

We skip the details of the calculations, outlined in the
Sec. II, and present the results for the asymptotic behavior of
the transition rates for μ > 0 in Table III. The transition rates
for the negative bias follow from the electron-hole symmetry,
�±(−ε)|μ→−μ = �∓(ε). These results have to be compared
to the well-known FES exponents in equilibrium: �±(ε) ∝
1/|ε|αD , where αD = 2ηD − ∑

i η
2
i . Note that the equilibrium

values of the rates can be immediately obtained from Eq. (28)
by substituting equilibrium correlation functions. Our findings
are consistent with those of Refs. [6,8], where the transition
rates are evaluated for arbitrary tunneling, so that the singular
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FIG. 4. A spinless LL containing left- and right-moving elec-
trons (presented by arrows) with an attached QPC and QD is
schematically shown. Wavy lines indicate interactions between elec-
tron channels. At the point x = 0 nonequilibrium electrons are
injected from a free-fermionic reservoir with the chemical potential
μ. At the point x = L the TDOS n(ε) is measured with the help of a
QD.

behavior at the thresholds acquires the natural cutoff at en-
ergies of the order of μ times the small transparency of the
source QPC.

IV. TUNNELING TO NON-FERMI LIQUIDS

The systems considered in the previous sections can be
investigated using a nonperturbative method, as discussed in
the Appendix, which is based on the free-fermion character
of the local tunneling process. The goal of this section is to
present examples of systems in which the application of the
perturbation theory approach developed in Sec. II B cannot
be avoided. Namely, we investigate tunneling transport and
a stationary nonequilibrium state in a spinless LL and at the
edge of a fractional QH system.

A. Luttinger liquid

The interaction-induced relaxation in spinless LLs was
studied in Ref. [6]. However, the analysis in that paper is
restricted to the case where a LL is coupled to free-fermion
reservoirs away from the interaction region. This allows one to
reduce the problem to the calculation of a Fredholm determi-
nant of a single-particle operator. Although the results of that
paper can be reproduced with our approach, we go beyond this
restriction and consider a LL system, shown in Fig. 4, in which
a nonequilibrium state is created inside a LL and interactions
cannot be neglected. In the case of a LL, the tunneling contacts
introduce the backscattering terms starting from the second
order. These terms are relevant in the renormalization group
sense and can drastically modify the ground state of the LL.
However, in experiment one can always pinch the QPCs off
and bring them into the regime of weak tunneling. In this
section we assume that this is the case and the effect of the
tunneling contacts is perturbative.

As in the Sec. II [see Eqs. (8) and (9)], we consider
the nonequilibrium correction to the TDOS, which can be
measured using resonant tunneling through a QD:

δn(ε) =
∫

dte−iεt 〈ψ†(L, t )ψ (L, 0)〉n−eq − neq(ε), (30)

where ψ† and ψ are the creation and annihilation electron
operators in the LL. Note that in the case of tunneling to a LL
even the TDOS neq(ε) = ∫

dte−iεt 〈ψ†(L, t )ψ (L, 0)〉eq has a
nontrivial energy dependence.

TABLE IV. The exponents κ of the asymptotic behavior δn(ε) ∝
|ε − ε0|κ in the vicinity of different thresholds ε0 for tunneling to a
LL are expressed in terms of the LL interaction parameter K . The
results for different processes are listed, i.e., when a left or right
mover is injected and a left or right mover is detected. The process R
to L gives the same contribution as L to R.

ε0 −μ + 0 0 μ − 0

R to R 3 K+K−1

2 + 1 K+K−1

2 − 2 K+K−1

2 − 1
L to L 3 K+K−1

2 − 1 K+K−1

2 − 2 K+K−1

2 + 1
L to R 3 K+K−1

2
K+K−1

2 − 2 K+K−1

2

In a spinless LL, the fermion creation operator ψ (x, t ) has
two components, ψ (x, t ) = ψR(x, t )eikF x + ψL(x, t )e−ikF x,
that correspond to the right- and left-moving fermions, where
kF denotes the Fermi wave vector. Right and left movers can
be expressed in terms of eigenmodes φR and φL of the LL
Hamiltonian, which describe right- and left-moving bosons,
respectively [14],

ψR ∝ ei(φR cosh θ+φL sinh θ ),

ψL ∝ ei(φR sinh θ+φL cosh θ ),

where the mixing angle θ = 1
2 ln K is determined by the LL

interaction parameter K .
A nonequilibrium state in the LL is created by a voltage-

biased QPC and is described by the tunneling Hamiltonian
HT , acting at the point x = 0:

HT = τψ†
μ(0)ψ (0) + H.c., (31)

where ψμ is an electron operator in the biased channel. In
order to focus our analysis on the nonequilibrium LL effects,
we consider these electrons to be effectively free, with the
local correlation function (7).

Four different terms contribute to the correction (30). One
can inject either a right- or a left-moving electron and collect
either a right or a left mover [19]. The asymptotic behavior of
these contributions is summarized in Table IV for a positive
bias μ > 0 [20]. For negative biases, μ < 0, one can use the
electron-hole symmetry discussed in Sec. II C [see Eq. (20)].

B. Fractional quantum Hall edge states

Another interesting problem that cannot be solved by
evaluating the Fredholm determinant is the problem of the
relaxation of a nonequilibrium stationary state at the edge of a
fractional QH system. It is well known that at filling factors of
the form ν = (2n + 1)−1, n ∈ N, there exists a single channel
of the freely propagating bosonic field φ at the edge [21]. This
field is related to the electron operator by the identity

ψ ∝ ei
√

2n+1φ. (32)

We consider the system shown in Fig. 5, where electrons
tunnel between two fractional QH edges at the point x = 0,
and the relaxed stationary state is studied downstream at the
point x = L. In this case, the tunneling Hamiltonian is given
by

HT = τψ†
μψ + H.c., (33)
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FIG. 5. A QH edge state at the filling factor ν = (2n + 1)−1,
n ∈ N, is schematically shown. Electrons are injected at the point
x = 0 via the voltage-biased QPC and detected at the point x = L at
energies ε with the help of a QD. A measurement setup analogous to
the one for integer QH (see Fig. 1) can be utilized.

where ψμ is the fermion operator in the biased edge channel
and ψ describes electrons in the edge channel, where we
study the correction δn(ε) to the stationary TDOS given by
Eq. (30). Note that for the fractional QH system considered
here the correlator of electron fields in the biased channel
takes the following form: 〈ψ†

μ(t )ψμ(0)〉eq ∝ eiμt/(it + 0)2n+1,
which generalizes Eq. (7).

The TDOS at the point x = L is measured by a resonant
tunneling through a QD level ε. The results for μ > 0 are sum-
marized in Table V. The result for injecting holes, i.e., for μ <

0, can be obtained by using the symmetry δn(−ε)|μ→−μ =
−δn(ε). Note that electronlike excitations μ > 0 do not af-
fect the TDOS at negative energies (ε < 0). Technically, this
follows from the fact that the expression under the integral
in Eq. (17) becomes analytical; that is, instead of integrals
along the branch cuts, one needs to compute residues of the
poles. Another curious result is that at the threshold ε0 = 0
the exponent κ vanishes. This implies that at these energies
the correction may dominate over the background equilibrium
TDOS, which vanishes at this point as |ε|2n (ε < 0).

Finally, we would like to mention that various combina-
tions of the electron and quasiparticle tunneling at the source
and detector, as well as various other filling fractions, can be
experimentally relevant. They will be investigated elsewhere.

V. CONCLUSION

Exactly solvable strongly interacting systems provide an
important platform for studying the interplay between strong
interaction and nonequilibrium physics. This is because it is
possible to extend analytical results even beyond an equilib-
rium regime. With analytical predictions, one can test exper-
imentally the current theoretical understanding both of inter-
action effects and of the nonequilibrium physics. In this paper
we developed a theoretical method that allows one to analyze
strongly interacting systems out of equilibrium by studying
an asymptotic universal behavior of physical quantities in the
vicinity of the thresholds in the spectrum of excitations. Our

TABLE V. The exponents κ of the asymptotic behavior δn(ε) ∝
|ε − ε0|κ in the vicinity of different thresholds ε0 for electron tunnel-
ing to a fractional QH edge at the filling factor ν = (2n + 1)−1, n ∈
N are listed. Note that the correction vanishes at negative energies
ε < 0.

ε0 <0 +0 μ − 0

κ absent 0 2n

approach is based on perturbation theory with respect to a
small parameter, the number of nonequilibrium excitations,
which is controlled by weak tunneling. We extended the
results of previous works that used the Fredholm determinant
technique to a class of systems without well-defined electron
excitations. Namely, in this paper along with conventional
systems we studied the relaxation of nonequilibrium electrons
in spinless LLs and at the edge of chiral fractional QH sys-
tems, where previously introduced methods cannot be applied.
The universal exponents that we found depend only on a
small set of parameters that encode all effects of interaction.
Moreover, a linear combination of these exponents reduces
the result to a number. For instance, a sum of κ at −μ and
μ in the case of integer QH (Table I) is 4 for any interaction
strength. This universality can facilitate an experimental test
of our predictions.
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APPENDIX: PERTURBATIVE DERIVATION OF THE
ELECTRON CORRELATION FUNCTION FROM THE

FREDHOLM DETERMINANT

In this Appendix we derive Eq. (16) from the Fredholm de-
terminant representation of the electron correlation functions
in a case when the local tunneling process is effectively free
fermionic. We use the fact that expression (9) can be reduced
to a determinant of a single-particle operator by means of the
nonequilibrium bosonization technique [5,15]. One of the key
steps in this approach is to relate the bosonic fields at point
x = L to the transferred charge into the edge channel through
the QPC at the point x = 0.

Since the eigenmodes propagate with constant speeds, one
can write [5]

φU (L, t ) = α2φU (0, t − L/uc) + β2φU (0, t − L/ud )

+αβφD(0, t − L/ud ) − αβφD(t − L/uc), (A1)

which allows one to present the electron correlator in terms of
nonequilibrium correlators of bosonic field (29),

〈ψ†
U (L, t )ψU (L, 0)〉n−eq

= χU (t, α2)χU (t, β2)χD(t, αβ )χD(t,−αβ ), (A2)

where we used relations (3) and (6) and the simplification
arising from the fact that dipole and charged wave packets
are well separated in space in the L → ∞ limit. Given the
relation of the bosonic fields to the charge in the channel (3),
one can express χi(t, λ) in terms of the FCS of the charge
Qi(t ), i = U, D, transferred through the junction over time t :

χi(t, λ) = 〈e−2π iλQi (t )e2π iλQi (0)〉n−eq. (A3)

In the case where a local electron tunneling is effectively
free fermionic, the evaluation of the correlator (A3) amounts
to solving the scattering problem at the source QPC and
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expressing the FCS generator in terms of the Fredholm de-
terminant [9] (we use ln det = Tr ln):

ln χU (t, λ) = Tr ln (1 − F + UλF ), (A4)

where F is the diagonal in the energy basis matrix, with
the elements being the Fermi distribution functions in the
incoming scattering channels. The matrix Uλ is obtained from
the scattering matrix (see Ref. [9] for details) and is given by

Uλ =
[

1 0
0 1

]
+ 10,t

(
eiλ − 1

)[ T rt∗
r∗t (1 − T )

]
, (A5)

where r and t are reflection and transmission amplitudes,
respectively, and T = |t |2 is the tunneling probability. The
role of this matrix is to “count” electrons, which end up in
the channel of interest after scattering.

We are interested in the limit of weak tunneling; therefore,
we can expand Eq. (A4) in small T . The zeroth-order term

ln χ
(0)
U (t, λ) represents the equilibrium charge fluctuations.

The linear in T contribution is given by

ln χ
(1)
U (t, λ)∝T

∫ t

0

∫ t

0
dt1dt2

(
t1

t − t1

)λ( t − t2
t2

)λ

× eiμ(t1−t2 )

{
1

(t1 − t2 − i0)2
− e−2π iλ

(t2 − t1 − i0)2

}
. (A6)

There are two contributions in Eq. (A2) that contain this
term: one from the charged mode, χU (t, α2), and another one
from the dipole mode, χU (t, β2). These are exactly the two
contributions that we obtained in Sec. II B. The contribution
of the charge mode to the correction (8) reads

δnc(ε) ∝
∫

dt
e−iεt

it + 0
ln χ

(1)
U (t, α2). (A7)

This is nothing but Eq. (16), written in a different form.
The contribution of the dipole mode δnd (ε) is obtained by
replacing α → β.
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