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Magnetoelectric response of quantum structures driven by optical vector beams
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Key advances in the generation and shaping of spatially structured photonic fields in both the near and far fields
render possible the control of the duration, the phase, and the polarization state of the field distributions. For
instance, optical vortices having a structured phase are nowadays routinely generated and exploited for a range
of applications. While the light-matter interaction with optical vortices have been well studied, the distinctive
features of the interaction of quantum matter with vector beams, meaning fields with spatially inhomogeneous
polarization states, have yet to be explored in full detail, which is done here. We analyze the response of
atomic and low-dimensional quantum structures to irradiation with radially or azimuthally polarized cylindrical
vector beams. Striking differences from vortex beams are found: Radially polarized vector beams drive radially
breathing charge-density oscillations via electric-type quantum transitions. Azimuthally polarized vector beams
do not affect the charge at all but trigger, via a magnetic vector potential, a dynamic Aharonov-Bohm effect,
meaning a vector-potential-driven oscillating magnetic moment. In contrast to vortex beams, no unidirectional
currents are generated. Atoms driven by a radially polarized vector beam exhibit angular-momentum-conserving
quadrupole transitions tunable by a static magnetic field, while when excited with an azimuthally polarized beam,
different final-state magnetic sublevels can be accessed.
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I. INTRODUCTION

Spatiotemporally modulated electromagnetic (EM) fields
in general, and laser fields in particular, have been the driving
force for numerous discoveries in science such as in fem-
tochemistry and attosecond physics, both of which rely on
the controlled temporal shaping of laser fields [1,2]. Spa-
tially structured EM fields, which are currently the focus
of research, have also proved instrumental for a wide range
of applications such as particle trapping [3], high-resolution
lithography [4–7], quantum memories [8], optical commu-
nication [9,10], and classical entanglement [11] and as a
magnetic nanoprobe for enhancing the near-field magnetic
component [12].

Prominent examples of structured EM fields are orbital-
angular-momentum- (OAM) carrying vortex beams and vec-
tor beams (VBs). OAM beams possess an inhomogeneous
azimuthal phase distribution and a homogeneous polarization.
For VBs the spatial distributions of both the phase and the
polarization in the plane perpendicular to the propagation
of the EM wave are inhomogeneous. The spatial structur-
ing brings about several advantages. For instance, a radially
polarized VB allows for a sharper focusing. It may also
have a strong centered longitudinal field [5], offering a tool
for investigating new aspects of light-matter interaction, as
detailed below. On the other hand, an azimuthally polar-
ized VB has a smaller spot size than a radially polarized
VB [4] and interacts with quantum matter in fundamentally
different manner, as shown here. Phase-modulated beams
carrying OAM [13] serve further purposes. For instance, such
beams were used to study an otherwise inaccessible angular
momentum state of atoms [14] and to generate unidirec-
tional steady-state charge currents in molecular matter or in

nanostructures [15,16], pointing to qualitatively new routes in
optomagnetism.

Theoretically, key quantities for understanding the funda-
mentals of the interaction of structured fields with matter are
the associated EM vector AAA(rrr, t ) and scalar �(rrr, t ) potentials
that couple, respectively to the sample’s currents and charge
densities. Homogeneous optical EM fields irradiating a quan-
tum object (with a charge localization below the EM field
wavelength) induce mainly electric-dipole transitions in the
sample and, to a much smaller degree, magnetic-dipole transi-
tions. At moderate intensities, the ratio of the magnetic dipole
to the electric dipole absorption rate is proportional to the
ratio of the magnetic to electric field strengths |HHH |2/|EEE |2 [17].
Therefore, tailored laser beams with engineered magnetic to
electric field ratio may boost the magnetic transitions. For
instance, this can be accomplished in the near field of an
object with a small circular aperture [18]. For the nanometer
apertures experimentally feasible so far, the magnetic transi-
tion enhancement is negligibly small, however [18]. In this
context, cylindrical VBs with azimuthal or radial polarization
offer an interesting alternative. For azimuthally polarized VBs
the magnetic to electric field ratio is substantial: one can show
that |HHH |/|EEE | = 1/η0 on the beam axis where η0 is the free-
space impedance [17,19]. The VBs we will be dealing with
can be experimentally realized by the coherent interference
of two TEM01 laser modes which are orthogonally polar-
ized [20]. Other techniques involve interferometry [21], holo-
grams [22], liquid-crystal polarizers [23], spatial light modu-
lators [24], and multielliptical core fibers [25]. Planar fabrica-
tion technologies in connection with flat optics devices could
also produce cylindrical VBs [26–28]. A further approach
relies on the conversion of circularly polarized light into ra-
dially or azimuthally VBs (in the far-infrared [29] and visible
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ranges [30]) by space-variant gratings. A method involving
an inhomogeneous half-wave plate metasurface to generate
VBs was also demonstrated [31,32] where the efficiency was
increased when employing suitable metamaterials [19].

VBs possess a pronounced longitudinal component that
can be employed for Raman spectroscopy [33], material pro-
cessing [34,35], and tweezers for metallic particles [36]. For
OAM-carrying beams, the longitudinal component may serve
for studying subband states in a quantum well [37] and hole
states in quantum dots [38]. The various facets of the inter-
actions of VBs with quantum matter will be addressed in this
work. As a demonstration of the formal theory, we will study
the nature of bound-bound and bound-continuum transitions
caused by VBs when interacting with quantum systems such
as nanostructures and atoms. As demonstrated here not only
is the interaction of such fields fundamentally different from
nonstructured fields, but also radial VBs interact with matter
in a qualitatively different way than azimuthal VBs do, and
the employment of both offers qualitatively new opportunities
for accessing the magnetoelectric response of quantum matter
at moderate intensities.

II. LIGHT-MATTER INTERACTION
WITH CYLINDRICAL VECTOR BEAMS

A cylindrical vector beam may be composed from two
counterrotating circularly polarized optical vortex beams.
The most prominent feature of such a vortex EM beam is
the azimuthal phase structure described by exp(imOAMϕ),
where ϕ is the azimuthal angle in the xy plane [39,40],
transverse to the propagation direction (which sets the z
direction; the radial distance we denote by ρ). The parameter
mOAM is the vortex topological charge that determines the
amount of the carried OAM and can potentially be transferred
to a sample [15,38,41]. The wave vector along z is q‖. Optical
vortices have a phase singularity at ρ = 0 and thus a vanishing
intensity at this point. Generally, the transverse spatial
distribution is characterized by the function fmOAM (ρ), which
can be, for instance, Laguerre-Gaussian type [39] or Bessel
type [42], with the main difference being the radial intensity
localization. For nanoscale objects centered in the vicinity of
the optical axis, the different radial distributions of diffraction-
limited vortex beams have similar influence (due to the vast
difference between electronic and optical wavelengths).
The change in this behavior with increasing OAM can be
inferred from the fact that fmOAM (ρ) ∼ ρ|mOAM| for ρ → 0.
As an example, we concentrate on Bessel beams which are
an exact solution of the Helmholtz equation [42], meaning
that our theoretical considerations are beyond the paraxial
approximation. Bessel beams are nondiffracting beam
solutions with the radial profiles being independent of the
propagation direction z, and the associated electromagnetic
vector potential is a solenoidal vector field: ∇ · AAA(rrr, t ) ≡ 0.
For the electromagnetic field components (rrr = {ρ, ϕ, z} and
Re indicates the real part), such vector potential reads

AAA(rrr, t ) = Re

{
ei(q‖z−ωt )

[
êσ JmOAM (q⊥ρ)eimOAMϕ

− iσ êz
q⊥
q‖

JmOAM+σ (q⊥ρ)ei(mOAM+σ )ϕ

]}
, (1)

where A0 is the vector potential amplitude and ω is the
light frequency. The longitudinal and radial (transverse)
wave vectors satisfy the relation q2

‖ + q2
⊥ = (ω/c)2. The

functions Jn(x) are Bessel functions of nth order, while the
polarization state is characterized by êσ = eiσϕ (êρ + iσ êϕ ),
with σ = ±1. The ratio q⊥/q‖ =: tan α. Consequently, the
angle α characterizes the spatial extent of the intensity profile.
A large transverse wave vector means a tighter focusing.
Since Bessel beams also satisfy the Coulomb gauge, the
electric field reads EEE (rrr, t ) = −∂tAAA(rrr, t ), while the magnetic
field is given by BBB(rrr, t ) = ∇∇∇ × AAA(rrr, t ).

An azimuthally polarized cylindrical VB (which we refer
to as AVB) can be expressed as a linear combination of two
optical vortices with {mOAM = +1, σ = −1} and {mOAM =
−1, σ = +1}, namely,

AAAAVB(rrr, t ) = A0J1(q⊥ρ) sin(q‖z − ωt )êϕ. (2)

A radially polarized cylindrical VB (denoted by RVB) is
expressible as the difference of the two optical vortices,

AAARVB(rrr, t ) = A0

[
−J1(q⊥ρ) cos(q‖z − ωt )êρ

+ q⊥
q‖

J0(q⊥ρ) sin(q‖z − ωt )êz

]
. (3)

A hallmark of AVB and RVB is the vanishing of the
azimuthal-plane component of the field at ρ = 0. Moreover,
AVB and RVB possess a nonvanishing longitudinal compo-
nent: beams with the azimuthal polarization have a magnetic
component at the origin, while the longitudinal component of
the RVB is electric. The explicit electric and magnetic fields
for both vector beam classes can be found in Appendix A.

We find that for both VBs the minimal coupling to matter
is still viable, leading to the general interaction operator Ĥint

with a collection of charge carriers with effective mass m∗
e and

charge −e,

Ĥint,tot =
∑

i

Ĥint,i,

Ĥint,i = − e

2m∗
e

[p̂ppi · AAA(rrri, t ) + AAA(rrri, t ) · p̂ppi] + e�(rrri, t ),
(4)

where p̂ppi is the linear momentum operator of particle i at
position rrri [for moderate intensities we may suppress the term
AAA2(rrri, t )]. It is instructive to exploit the gauge invariance of
observables and go over to the potentials (for brevity index i
is suppressed),

AAA′(rrr, t ) = −rrr ×
∫ 1

0
dλ λBBB(λrrr, t ) (5)

and

�′(rrr, t ) = −rrr ·
∫ 1

0
dλEEE (λrrr, t ). (6)

The choice is referred to as the Poincaré gauge or, gener-
ally, the multipole gauge [43–45]. Note that in this gauge
rrr · AAA′(rrr, t ) ≡ 0, and BBB(rrr, t ) = ∇∇∇ × AAA′(rrr, t ), while EEE (rrr, t ) =
−∂tAAA′(rrr, t ) − ∇∇∇�′(rrr, t ). With Eqs. (5) and (6), the light-
matter interaction can be expressed as the sum of pure electric
and magnetic contributions, Ĥint = Ĥel + Ĥmagn. Field-charge

085425-2



MAGNETOELECTRIC RESPONSE OF QUANTUM … PHYSICAL REVIEW B 99, 085425 (2019)

coupling is captured by

Ĥel(t ) = e�′(rrr, t ) = errr · EEE ′(rrr, t ) (7)

and EEE ′(rrr, t ) = − ∫ 1
0 dλEEE (λrrr, t ). The orbital-Zeeman cou-

pling describes the interaction of the orbital magnetic moment
with the magnetic field of the pulse,

Ĥmagn(t ) = 2BBB′(rrr, t ) · m̂mmB, (8)

with the field BBB′(rrr, t ) = − ∫ 1
0 dλ λBBB(λrrr, t ) and the orbital

magnetic moment operator m̂mmB = (e/2m0) rrr × p̂pp (for more
details, see Appendix B). For a homogeneous field BBB′(rrr, t ) =
− 1

2BBB(t ) we obtain the well-known dipolar magnetic interac-
tion Ĥmagn(t ) = −m̂mmB · BBB(t ). Considering a spin-active system
with a spin-dependent field-free Hamiltonian Ĥ0 such as (with
σ̂σσ being a vector of Pauli matrices)

Ĥ0 = p̂pp2

2m∗
e

+ αR

h̄
[σ̂σσ × p̂pp]z + V (r), (9)

where V (r) is a scalar potential and αR is the (Rashba)
spin-orbital interaction (SOI) strength, we find the following
expression upon applying the external VBs:

Ĥ = Ĥ0 + Ĥint (t ) + ĤSOI(t ) + Ĥz(t ). (10)

The spin-orbital-field interaction ĤSOI(t ) = − eαR
h̄

[σ̂σσ × AAA(rrr, t )]z transforms in the Poincaré gauge to

ĤSOI(t ) = −eαR

h̄
[σ̂σσ × (rrr × BBB′(rrr, t ))]z. (11)

The spin-field-Zeeman coupling reads

Ĥz(t ) = − 1
2μBgs σ̂σσ · BBB(rrr, t ), (12)

where μB is the Bohr magneton and gs is the anomalous
gyromagnetic ratio. In the static limit we recover the usual
Zeeman coupling lifting the spin degeneracy [46–50]. Note
that the vector beams can be designed to vary the ratio
between the magnetic and electric field components. The
Rashba spin-orbital coupling is also tunable, for instance, by
gating. Thus, it is possible to access separately the various
types of excitations in a sample: pure charge excitations,
orbital-magnetic moment excitations, spin-orbital-coupled ex-
citations, and spin-magnetic moment excitations. Below, we
will illustrate this statement for two systems, a mesoscopic
ring with spin-orbital coupling and an atomic target.

III. SPIN-ACTIVE QUANTUM RING STRUCTURES

For numerical demonstrations we consider quantum ring
structures that are widely encountered in nature or syn-
thesized in the laboratory, for example, molecular macro-
cycles and rotaxane structures [51–53]. Here, we in-
spect an appropriately doped quantum ring etched in a
semiconductor-based two-dimensional electron gas. The con-
duction band charge carriers are tightly confined in the di-
rection normal to the ring plane by the potential U (z). In
the ring plane the radially symmetric potential V (ρ) de-
fines the ring. The independent charge carriers are free to
move in the azimuthal direction êϕ . The (spin-degenerate)
single-particle states are represented by the wave functions

�n,m,k (ρ, ϕ, z) = 1√
2π

ρ−1/2Rnm(ρ)eimϕZk (z) with the normal-

ization
∫

dρ Rnm(ρ)Rn′m(ρ) = δn,n′ and
∫

dz Zk (z)Zk′ (z) =
δk,k′ . The particle number and U (z) are chosen such that only
the lowest subband k = 0 is occupied. This can be achieved
in a semiconductor-based structure by an appropriate gating.
Henceforth, we omit therefore the index k = 0 for brevity and
trace out the z dependence. Furthermore, we checked that the
driving field amplitude and its frequency do not cause any
transitions to subbands with k �= 0.

The time-independent single-particle Hamiltonian includ-
ing SOI (9) has been already discussed extensively in several
works [46–50], albeit for homogeneous EM fields. Consid-
ering intraband transition in the lowest radial subband n =
0, the angular-dependent spin-resolved single-particle wave
functions are

�s
m = Nnei(m+1/2)ϕνs(γ , ϕ), (13)

where s and m denote the spin and integer angular quantum
numbers and Nn stands for the normalization. The spinors

νs(γ , ϕ) = (ase−iϕ/2, bseiϕ/2)T (14)

are defined in the local frame with

a↑ = cos(γ /2), b↑ = sin(γ /2) (15)

and

a↓ = − sin(γ /2), b↓ = cos(γ /2). (16)

The angle γ defines the direction of the spin relative to êz

with a value set by SOI strength: tan(γ ) = −ωR/ω0, where
h̄ωR = 2αR/ρ0 and h̄ω0 = h̄2/(m∗

eρ
2
0 ), is the inherent energy

scale of a ring with a radius ρ0. The local spin orientations are
inferred from the relations

S↑(rrr) = h̄

2
[sin(γ ) cos(ϕ)êx + sin(γ ) sin(ϕ)êy + cos(γ )êz]

(17)

for the spin-up states, while the spin-down states are charac-
terized by

S↓(rrr) = h̄

2
[sin(π − γ ) cos(π + ϕ)êx

+ sin(π − γ ) sin(π + ϕ)êy + cos(π − γ )êz].

(18)

The associated eigenenergies are given by

Es
m = h̄ω0

2

[
(m − xs)2 − Q2

R

4

]
, (19)

where xs = −(1 − sw)/2 and w =
√

1 + Q2
R = 1/ cos(γ ).

Furthermore, s = ±1 stand for up and down spin states. We
emphasize that, hereafter, the terms up and down (labeled,
respectively, ↑ and ↓) refer to directions in the local frame
{γ , ϕ} [see Eqs. (17) and (18)]. The two characteristic spin
bands are separated from each other by w, which, in return,
depends on the strength of the spin-orbit coupling αR.
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(a) (b)

FIG. 1. Quantum ring (charge density is marked in blue) ir-
radiated by a cylindrical vector beam (red rings at two different
times). (a) The radially polarized vector beam initiates electric-
type transitions leading to uniform radially breathing charge den-
sity (nondipolar collective charge excitations). (b) The azimuthally
polarized vector beam drives homogeneously oscillating transient
currents (orange arrows), giving rise to an oscillating magnetic dipole
moment (green arrow). The frequency is set by the driving field. In
both cases no unidirectional charge currents are generated.

A. Electric transitions induced by radially
polarized vector beams

The interaction of RVB with quantum rings is illustrated
schematically in Fig. 1(a). The coupling to the electric
charge is dominant, causing photoinduced transitions, mean-
ing that ĤRVB

int (t ) = ĤRVB
elec (t ). Positioning the nanostructure

in the plane z = 0, the interaction with the RVB-associated
magnetic field (see fields in the Appendix A) reads ĤRVB

magn(t ) =
−2iμBB′(rrr, t )(z∂ρ − ρ∂z ). Obviously, this has no influence on
the confined electrons in the xy plane as long as the photon
energy h̄ω is smaller than the level spacing of the subbands
associated with the confinements in the z direction [charac-
terized by U (z)]. We note that in the following treatment
the symmetry axis of the quantum ring coincides with the
optical axis of the vector beam. Hence, RVBs induce electric
transitions between states with the amplitude

MRVB
int (t ) = 〈

�s′
m′

∣∣ĤRVB
el (t )

∣∣�s
m

〉
= eA0ω

q⊥
[J0(q⊥ρ0) − 1] sin(ωt )δm′,mδs′,s.

(20)

Notably, no direct spin-flip transitions are induced by RVBs;
in contrast to OAM-carrying optical vortex, no orbital angular
momentum is transferred to the charge carriers, leading to the
selection rule �m = 0. Thus, in a strictly one-dimensional
(1D) quantum ring angular momentum and spin states are
unaffected.

In a more realistic two-dimensional (2D) quantum ring
n → n′ radial subband transitions are possible, with an am-
plitude (time averaged and to first order in the driving fields)
proportional to the radial integral (under conservation of the
azimuthal quantum number):

RRVB
n′,n =

∫ ∞

0
dρ Rn′m(ρ)[J0(q⊥ρ) − 1]Rnm(ρ), (21)

which occurs in Eq. (20) instead of [J0(q⊥ρ0) − 1]. Here,
Rnm(ρ) characterizes the radial wave function of the electronic
state |�s

nm〉. It follows that the excitation by RVB conserves
the cylindrical symmetry.

FIG. 2. Dynamics from full numerical quantum simulation: (a)
time-dependent averaged value 〈ρ〉(t ) of a quantum ring driven
by RVB with a six-optical-cycle duration, causing a radial dipole
excitation. The oscillation frequency can be identified by (En=1 −
En=0 )/h̄. (b) The time-dependent magnetic moment in the z direction
of a quantum ring driven by AVB. The white curves represent the
normalized electric field amplitude of the incident light pulses with
an intensity I ∼ 104 W/cm2 in the area of the ring, and h̄ω = 8 meV.

This radial electric excitation has a volume character. In
contrast, spatially homogeneous laser fields drive only dipolar
collective charge (plasmons) excitations. For radial vector
beams, even the field frequency is still in the range of collec-
tive charge excitations; nondipolar (bulk-type) excitations are
possible. This can be understood for the ring case as follows:
The evaluated local dipole moment is the same in all radial
directions êρ and oscillates with a frequency characterized by
the energy difference between both levels n and n′. As a result,
the averaged total dipole moment is zero:

ddd (t ) =
∫

drrr ρe(rrr, t ) · rrr = 0, (22)

where ρe(rrr, t ) = ∑
n,m |�n,m(rrr, t )|2 is the (driven) time-

dependent charge density.
For detailed and reliable insight, we performed full-

numerical space-time-grid propagation of the three energeti-
cally lowest electron states in an irradiated 2D quantum ring
including the external fields to all orders. Figure 2(a) displays
the resulting charge dynamics induced by the depicted few-
cycle external RVB pulse. The ring radius is ρ0 = 50 nm,
and the effective width �ρ = 30 nm. The RVB temporal
envelope function �(t ) = sin[πt/Tp]2, where Tp = 2πnp/ω

sets the pulse length in terms of the number of optical cycles
np. We consider a short pulse with np = 6 cycles and a photon
energy h̄ω = 8 meV. The small nanostructure is localized in
the low-intensity beam center and away from the first field
intensity maximum. We found strong multiphoton processes
and the ponderomotive contribution due to AAA2(rrr, t ) to be
negligibly small for the light intensity on the ring, which was
in the range of ∼104 W/cm2. As predicted by the analytical
treatment, we found that all the propagated wave functions
keep the symmetry in the azimuthal direction at all times.
Field-induced effects are caused by transitions to the second
radial subband, leading to charge “breathing” oscillations in
the radial direction (we start from the initial states n = 0, m =
−1, 0, 1). The time-dependent radial expectation value 〈ρ〉(t )
oscillates with a frequency related to (En=1,m − En=0,m)/h̄.
When the pulse is off, the prodded charge dynamics goes on
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due to coherences, meaning that every electron state oscillates
between the lowest two radial levels.

B. Magnetic transitions induced by azimuthally
polarized vector beams

The schematics of an AVB and its action on a quantum ring
are shown in Fig. 1(b). It is straightforward to demonstrate
that the associated electric contribution to the light-matter
Hamiltonian Ĥint (t ) vanishes in the geometry depicted in
Fig. 1(b): the electric field is perfectly azimuthally polarized,
and therefore, rrr · EEE ′(rrr, t ) ≡ 0. Thus, the AVB induces no
electric (dipole) moment.

The light-matter interaction Hamiltonian reduces to
Ĥint (t ) ≡ ĤAVB

magn(t ). Note that the contribution to the magnetic
interaction of the type êz · m̂mmB = −iμB∂ϕ does not affect the
magnetic quantum number; that is, the selection rule �m = 0
is obtained. Generally, the interaction matrix elements have
the explicit form

MAVB
int (t ) = 〈

�s′
m′

∣∣ĤAVB
magn(t )

∣∣�s
m

〉
= −μB

A0

ρ0
J0(q⊥ρ0) sin(ωt )δm′,m

×
[(

m + 1

2
− 1

2
s cos(γ )

)
δs′,s + 1

2
sin(γ )δs′,−s

]
.

(23)

Importantly, in contrast to the RVB, spin flip can be triggered
by AVB [recall that the eigenstates of Ĥ0 are not eigenstates of
σz or L̂z; thus, for instance, ∂ϕ�s

m(ϕ) = i(m + 1/2)�s
m(ϕ) −

is
2
√

2π
ei(m+1/2)ϕνs(−γ , ϕ)]. Further, the spin-flip transitions

are proportional to the Rashba coefficient sin(γ ) ∝ αR (cf.
Refs. [41,50] for EM homogeneous or OAM pulses).

For insight into how the azimuthally polarized beam affects
the charge carriers, we study the extreme case of vanish-
ing spin-orbit coupling, i.e., for γ → 0. We start from an
initial state characterized by equipopulated clockwise and
counterclockwise angular momentum quantum numbers m =
−M,−M + 1, . . . , M − 1, M (such as the ground state). For
a 2D quantum ring without SOI, in the case of a small
perturbation the time-dependent state wave functions read
�nm(rrr, t ) = �nm(rrr)e−iωnmt + δ�nm(rrr, t ), where, according to
Eq. (23),

δ�nm(rrr, t ) = +im
μBA0

h̄
eimϕ

∑
n′ �=n

RAVB
n′n e−iωn′mtEn′n(t ). (24)

Here, RAVB
n′n = ∫ ∞

0 dρ Rn′m(ρ)J1(q⊥ρ)Rnm(ρ)/ρ is the ra-
dial integral, while we assume a laser pulse of length
Tp characterized by a temporal envelope function mod-
eled as cosine squared, i.e., �(t ) = cos2(πt/Tp) for t ∈
[−Tp/2, Tp/2]. Hence, the temporal function En′n(t ) =∫ t
−∞ dτ sin(ωτ )�(τ )ei(ωn′m−ωnm )τ dictates energy selection

rules. Note that for a continuous wave (cw) we converge
against Fermi’s golden rule, i.e., En′n(t ) ∝ δ(ωn′m−ωnm−ω).

The corresponding induced (ring) current density reads

jϕ (rrr, t ) = jcharge(rrr, t ) + jA(rrr, t )

= e

m0

occ∑
n

M∑
m=−M

{
h̄

r
Im{�∗

nm(rrr, t )∂ϕ�nm(rrr, t )}

− eAAAAVB(rrr, t )|�nm(rrr, t )|2
}
. (25)

Due to the conservation of the angular quantum number, the
±M state pair delivers the same (in magnitude and at any time
t) but counterdirected current densities, and hence, jcharge(rrr, t )
vanishes. The final (ring) current density is given by

jϕ (rrr, t ) = jA(rrr, t ) = e2A0

m0

[
ρ0

e (r) + δρe(r, t )
]

× J1(q⊥ρ)�(t ) sin(ωt )êϕ, (26)

where ρ0
e (r) = ∑

n

∑M
m=−M |�nm(rrr, t )|2 is the initial

(time-independent) charge density and the perturbative
density is δρe(r, t ) = ∑

n

∑M
m=−M m2(μ2

BA2
0/h̄2)

| ∑n′ RAVB
n′n e−iωn′mtEn′n(t )|2. We have to remark that the

mixing terms between �nm(rrr, t ) and δ�nm(rrr, t ) vanish
upon summation over the whole set of angular quantum
numbers m = −M, . . . , M. Thus, the (ring) current density
in the ϕ direction is solely set by the vector-beam-driven
charge density ρe(r, t ) = ρ0

e (r) + δρe(r, t ) driven by the
vector potential AAAAVB(rrr, t ). It follows that the charge density
oscillates with the frequency of the driving field, which means
that, beyond transient effects, no directional time-averaged
current is induced in the ϕ direction. Since the setup can be
tuned to low frequencies, the effect should be observable.
Note that for the AVB the coupling to the electric field
component of the light-matter interaction vanishes since
rrr · EEEAVB = 0 and no electrically induced transitions happen.
In the (more general) 2D case radial currents are possible
and depend on the strength of radial subband transitions
n → n′ characterized by RAVB

n′n . Physically, they are due to
inhomogeneities of the magnetic field (in the absence of the
electric coupling) and are negligibly small in comparison
to the subband transition driven by an RVB, i.e., smaller
by a factor of μB/(ecρ0). Hence, a 1D ring where radial
subbands are absent (and δ�nm vanish) is entirely sufficient
for demonstrating the effects. Here, we find that for all times
∇∇∇ · jjj(rrr, t ) ≡ 0. It follows from the continuity equation that
the incident light field does not change the electronic density,
i.e., ∂tρe(rrr, t ) = 0. Therefore, our system remains locally
and at all times neutral, and the resulting oscillating current
is caused solely by the time-dependent magnetic vector
potential AAAAVB(rrr, t ) and falls thus in the class of a dynamic
Aharonov-Bohm effect.

Experimentally, we may sense the action of the AVB by
measuring the associated oscillating magnetic dipole moment

mmm(t ) = 1

2

∫
drrr rrr × jjj(rrr, t )

= e2A0

2m0
M(t ) sin(ωt )êz, (27)
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FIG. 3. Quadrupole transitions initiated by a vector laser pulse with a radial polarization. A comparison between the longitudinal and the
transverse field contributions is shown. The inset in (a) illustrates the angle β between the optical axis of the incident vector beam (blue) and the
quantization (z) axis of the atom (red sphere) as set by an external static magnetic field. Top row: The ratio between the quadrupole excitation
probability, labeled by Q⊥ and Q‖, for the p-p and p- f transitions. Bottom row: Explicit quadrupole excitation probabilities for the p-p and
p- f transitions. The field has a peak intensity of 3.51 × 1016 W/cm2. The atom is on the optical axis and experiences a much lower intensity.
The photon energy is tuned to h̄ω = 4.37 eV (for p-p transitions) or h̄ω = 5.31 eV (p- f transitions); all fields have a duration corresponding
to 30 optical cycles. The static magnetic field is set to 10 T.

where M(t ) = ∫ ∞
0 ρdρ ρ[ρ0

e (r, t ) + δρe(r, t )]. To confirm
the insight obtained from first-order perturbation theory, we
show the results of the numerical simulation of a quantum
ring with same geometrical parameter as in the case for the
RVB. Figure 2(b) shows the time-dependent magnetic mo-
ment in the z direction which is gathered from a full numerical
quantum dynamic simulation. For the irradiated quantum ring
we used the same parameters as for the RVB case. In line
with the analytical predictions [Eq. (27)], the buildup and
decay times are locked to the applied external field, pointing
to a vanishing contribution ± jcharge(rrr, t ) to the whole current
density [see Eq. (25)]. The transient mmm(t ) vanishes once the
pulse is off, but one may also induce an interference-driven
quasistatic component by a combination of two AVBs with
frequencies ω and 2ω (not shown here).

The spin-orbit coupling ĤSOI(t ) [see Eq. (11)] is mainly
determined by the longitudinal component of the magnetic
field of the AVB. The corresponding matrix elements take on
the explicit form

MAVB
SOI (t ) = 〈

�s′
m′

∣∣Ĥ AVB
SOI (t )

∣∣�s
m

〉
= eαA0

h̄
J1(q⊥ρ0)[s sin(γ )δs′,s + cos(γ )δs′,−s]

× sin(ωt )δm′,m.

(28)

Thus, effectively, the AVB results in spin-flip transitions, even
to first order in the light-matter interaction. The strength of
these transitions is linear in SOI strength αR. The matrix
element indicates that even in the presence of SOI the AVB
does not cause a change in the angular momentum state. This
fact allows us to study pure spin dynamics while the orbital
angular momentum is frozen. We conclude that a ubiquitous
feature of the most common vector beam types (RVB and

AVB) is that the orbital angular momentum of the electronic
states is unaffected.

The further spin-dependent contribution to the AVB-matter
interaction is given by Ĥz(t ). It describes the direct interaction
of the spin state with the magnetic field component of the
vector beam. Generally, it is much weaker than the spin-
orbit interaction, which follows from comparing the prefactors
(eα/h̄ > μBq). Nonetheless, for completeness we provide an
expression for the matrix elements of this light-matter inter-
action contribution. Notice that the magnetic field of the AVB
also has a transverse component which couples to σr , leading
again to spin-flip transitions. In addition to that, the strong
longitudinal field [characterized by J0(q⊥ρ)] gives rise to a
dynamical Zeeman effect. The matrix elements can be found
analytically and read explicitly

MAVB
z (t ) = 〈

�s′
m′

∣∣HAVB
z

∣∣�s
m

〉
= 1

2 gsμBA0{q‖J1(q⊥ρ0)[s sin(γ )δs′,s

+ cos(γ )δs′,−s] cos(ωt )+q⊥J0(q⊥ρ0)[s cos(γ)δs′,s

− sin(γ )δs′,−s] sin(ωt )}δm′,m. (29)

In practice, both spin-orbit coupling contributions bring about
dynamical spin-flip processes, while the individual charge
currents (associated with the orbital motion) sum to zero.

IV. ATOMS DRIVEN BY VECTOR BEAMS

Let us consider as a further case an atomic system in a
strong magnetic field such that SOI is subsidiary to μBBz(L̂z +
gsŜz ) (Paschen-Back effect). The electron states with the usual
notation |i〉 = |ni�imisi〉 are appropriate. Further, the atomic
system is assumed to be located (trapped) on the optical
axis of an incident vector beam, as already demonstrated
experimentally for a 40Ca+ ion by means of an OAM vortex
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FIG. 4. Dipole transitions initiated by an azimuthally polarized vector laser pulse. The population of different magnetic sublevels dependent
on the rotation angle β between the beam optical axis and the direction of an external static magnetic field. Two initial states, 4pmi=0 and 4pmi=1,
are shown. Inset: The ratio between the dipole transition probabilities originating from the longitudinal and the transverse field contributions,
labeled by D⊥ and D‖. Field parameters similar to those in Fig. 3 were used.

field [14]. The magnetic field sets the quantization axis (z
axis), while the optical axis of the incident VB makes an
angle β = �(êz, q‖) with the z axis (shown in the inset in
Fig. 3). We inspect Rydberg states |i〉 characterized by the
principal, orbital, and magnetic quantum numbers ni, �i, and
mi. For photoexcitation of higher Rydberg states the laser
photon energy is such that the wave vector q = ω/c � 1, and
thus, we expand the oscillating functions in Eqs. (3) and (2) in
a Taylor series up to terms of the first order: J1(x) = (1/2)x +
O(x3), J0 = 1 + O(x2), and exp(ix) = 1 + ix + O(x2). In the
local frame {ρ ′, ϕ′, z′} rotated by β relative to the z axis, we
employ the rotating-wave approximation and obtain for the
first-order term of the field of the RVB:

AAARVB(rrr′, t ) ≈ −A0

[
1

2
q⊥ρ ′êρ ′ + i

q⊥
q‖

(1 + iq‖z′)êz′

]
e−iωt .

(30)

Interestingly, the quadrupole terms, originating from the lon-
gitudinal and transverse field distributions, have the same
prefactors.

Figure 3 shows the results for the photoexcitation process
of a trapped Ca+ ion starting from the initial 4pmi=0 Rydberg
state by a cw RVB. The nature of the matter interaction
with a radially polarized vector beam is dominantly elec-
tric and is characterized by a strong dipole term stemming
from the (electric) longitudinal component. However, one can
discriminate between these dipolar and higher-order electron
transitions by adjusting appropriately the photon energy to
h̄ω = ε5p − ε4p or h̄ω = ε4 f − ε4p. The peak amplitude A0

of the vector beam was chosen to yield a peak intensity of
3.51 × 1016 W/cm2. We have to remark that despite the large
peak intensity the expected transition probabilities are rather
small since the electric field amplitude modulates with ρ ′
near the optical axis where the ion is trapped (further, the
prefactor for the transverse electric field is A0ωq⊥, and for
the longitudinal field it is A0ω tan α with α = 1◦). The left
panels in Fig. 3 show the quadrupole transition probabilities
Q⊥ and Q‖, resolved for the longitudinal and transverse field
components, depending on the rotation angle β for the initial-
final-state transition 4pmi=0 → 5pm f =0. To be more precise,
Q⊥ refers to the quadrupole transition probability initiated by
the transverse field component of the RVB vector potential,
A⊥ = −(1/2)A0q⊥ρ ′êρ ′ . Analogously, Q‖ is the transition
probability as a result of the action of the longitudinal field

component A‖ = −A0q⊥z′êz′ . The variations in β of both
quadrupole transition probabilities Q‖ and Q⊥ are evaluated
numerically. We recall that β is an external parameter that
can be varied experimentally, for instance, by changing the
direction of the external static magnetic field. In this way Q‖
and Q⊥ can be discriminated, as evidenced by Fig. 3

Interestingly, for the orbital-momentum-conserving
quadrupole transition with �� = �m = 0 the ratio Q⊥/Q‖
can be steered by rotating the incident vector field relative
to the applied magnetic field (which sets the quantization
axis). Parallel to the magnetic field, the ratio Q⊥/Q‖ = 1/9
reveals the dominating longitudinal component, while
at an angle of β = 90◦ (the RVB and magnetic field
are perpendicularly polarized) the transverse component
dominates the photoexcitation process since Q⊥/Q‖ = 4.
Therefore, in contrast to a conventional Gaussian mode
we can find angular-momentum-conserving quadrupole
transitions for all possible light field setups due to the special
spatially inhomogeneous character of the vector beam.

The situation changes when exploring the 4pmi=0 →
4 fm f =0 quadrupole transition, which is characterized by
�� = 2. Here, it is not possible to change the ratio between
the longitudinal and transverse field contributions since
Q⊥/Q‖ = 1/4 for all rotation angles β. Interestingly, we
find rotating angles where the quadrupole transitions (from
either the longitudinal or transverse field) vanish completely.
For such a setup the whole photoexcitation probability of
4pmi=0 → 4 fm f =0 collapses.

For the azimuthal polarization the interaction is fully mag-
netic since rrr · ê′

ϕ = 0, and therefore, we have no coupling
to the electron (note that rrr · ê′

ϕ vanishes for every rotation
angle β). With the same approximations as for the RVB the
strong longitudinal field is given (up to first order in r) by
B‖(rrr′, t ) = iA0q⊥(1 + iq‖z′)e−iωt ê′

z, while the transverse field
B⊥(rrr′, t ) = 1

2 A0q⊥q‖ρ ′e−iωt e′
ρ . The homogeneous term in the

longitudinal component provides no contribution to the pho-
toinduced electron transition since it characterizes a monopole
interaction. Consequently, as for the electric-type transitions
in the case of the RVB, the effective contributions of the
longitudinal and transverse field components are on equal
footing, but the associated light-matter interaction is dipolar.

In Fig. 4 we show the dipole transitions initiated by the
spatially inhomogeneous magnetic field of the AVB for two
different initial states, 4pmi=0 and 4pm f =1. As expected, for
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β = 0◦ no photoexcitation processes can be observed since
the magnetic field does not act on the electron states with
zero angular velocity (mi = 0). However, as inferred from
Fig. 4(a), for finite rotating angles one can populate final
magnetic substates with m f �= 0. Prominent setups are given
by β = ±45◦, where states with m f = ±1 and m f = ±2 are
equally excited, while for β = ±90◦ the final states are fully
characterized by m f = ±2. Note that due to the presence of
the external magnetic field, which sets the quantization axis
and shifts the energy of the individual magnetic substates
(Zeeman effect), the photon energy of the incident AVB has
to be adjusted to the specific transitions, i.e., h̄ω = εn f � f m f −
εni�imi .

In Fig. 4(b) the dipolar photoexcitation transitions are
depicted for the initial state 4pmi=1. As expected for β = 0◦,
the only state which can be excited is characterized by m f = 1
since in this case the interaction between the electron and
the light field is angular momentum conserving, i.e., �m = 0.
Interestingly, at β = ±90◦ the photoexcitation probability of
m f = ±1 is the same, while at β = ±45◦ the dominating final
state is characterized by the magnetic quantum number m f =
2. Another striking feature, in contrast to the RVB, is the
ratio between transverse and longitudinal field contributions,
which is always given by D⊥/D‖ = 0.25 and thus cannot be
manipulated by the rotation angle β.

V. SUMMARY AND OUTLOOK

We explored the nature of the interaction of atomic and
low-dimensional quantum systems (rings) with EM fields with
spatially inhomogeneous polarization states, called vector
beams. In particular, we focused on cylindrical beams with
radial or azimuthal polarization. Although these beams share
some common features with vortex beams carrying orbital
angular momentum, like the intensity profile, their effect on
charge carriers is fundamentally different. For the investigated
systems, radially polarized vector beams trigger, via electric
transitions, radial charge oscillations. Azimuthally polarized
vector beams generate, via a magnetic interaction, oscillating
magnetic moments. Despite the presence of the electric field
in the AVB, it subsumes in a way that it does not affect the
charge. The interaction with the AVB is solely due to the mag-
netic vector potential and can thus be interpreted as a dynamic
Aharonov-Bohm effect. In contrast to OAM-carrying fields,
no unidirectional, time-averaged currents are generated by
AVB or by RVB. Atomic targets subject to radially polarized
light fields show angular-momentum-conserving quadrupole
transitions which can be manipulated in magnitude by rotating
the field relative to the quantization axis set by an external
static magnetic field. When photoexciting with an azimuthally
polarized field, the special field structure makes it possible
to select different magnetic sublevels (in the final state) by
rotating the laser field relative to the quantization axis of the
atomic target.
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APPENDIX A

The electric field of a radially polarized vector beam (RVB)
is given by

ERVB
r (rrr, t ) = A0ωxJ1(q⊥ρ) sin(q‖z − ωxt ), (A1a)

ERVB
ϕ (rrr, t ) = 0, (A1b)

ERVB
z (rrr, t ) = A0ωx

q⊥
q‖

J0(q⊥ρ) cos(q‖z − ωxt ), (A1c)

while the associated magnetic field reads

BRVB
r (rrr, t ) = 0, (A2a)

BRVB
ϕ (rrr, t ) = A0

q2
⊥ + q2

‖
q‖

J1(q⊥ρ) sin(q‖z − ωxt ), (A2b)

BRVB
z (rrr, t ) = 0. (A2c)

In the same vein, the electromagnetic fields of the azimuthally
polarized vector beam (AVB) as the sum of two antiparallel
Bessel beams read

EAVB
r (rrr, t ) = 0, (A3a)

EAVB
ϕ (rrr, t ) = −A0ωxJ1(q⊥ρ) cos(q‖z − ωxt ), (A3b)

EAVB
z (rrr, t ) = 0, (A3c)

and

BAVB
r (rrr, t ) = A0q‖J1(q⊥ρ) cos(q‖z − ωxt ), (A4a)

BRVB
ϕ (rrr, t ) = 0, (A4b)

BAVB
z (rrr, t ) = −A0q⊥J0(q⊥ρ) sin(q‖z − ωxt ). (A4c)

APPENDIX B

Using the vector potential in the Poincaré gauge, i.e.,
AAA′(rrr, t ) = −rrr × ∫ 1

0 dλ λBBB(λrrr, t ), where the vector field satis-
fies rrr · AAA′(rrr, t ) ≡ 0, we derive the expression for the magnetic
contribution to the interaction Hamiltonian Ĥint (t ) from the
minimal coupling scheme:

Hmagn(t ) = − e

2m0
[ppp · AAA′(rrr, t ) + AAA′(rrr, t ) · ppp]. (B1)

Inserting AAA′(rrr, t ) and applying the fundamental identities ppp ·
(rrr × BBB) = (ppp × rrr) · BBB and (rrr × BBB) · ppp = BBB · (ppp × rrr), we find

Hmagn(t ) = e

2m0
(ppp × rrr) ·

∫ 1

0
dλ λBBB(λrrr, t )

+ e

2m0

∫ 1

0
dλ λBBB(λrrr, t ) · (ppp × rrr). (B2)

From elementary quantum-mechanical algebra we know that

(ppp × rrr) · BBB = BBB · (ppp × rrr) − [BBB, (ppp × rrr)]−. (B3)
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Using ppp × rrr = −rrr × ppp, we can find the commutator

[BBB, (ppp × rrr)]− = [(rrr × ppp),BBB]−
= εi jk[x j pk, Bi]−
= εi jkx j[pk, Bi]− + εi jk [x j, Bi]−︸ ︷︷ ︸

=0

pk

= rrr · (ppp × BBB).

(B4)

By now using the Ampère-Maxwell law [54] the commutator
can be reformulated further:

[BBB, (ppp × rrr)]− = rrr · (ppp × BBB)

= −ih̄rrr · [∇∇∇ × BBB(rrr, t )]

= − ih̄

c2
rrr · ∂EEE (rrr, t )

∂t
. (B5)

Furthermore, by assuming a harmonic wave we
find that ∂tEEE (rrr, t ) ∼ −ωxEEE (rrr, t ) and obtain the
final expression for the Hamiltonian containing the

commutator:

H comm.
magn = −

∫ 1

0
dλ λ

e

2m
[BBB, (ppp × rrr)]−

= ie

2

h̄ωx

m0c2

∫ 1

0
dλ λrrr · EEE (rrr, t ), (B6)

which can be safely neglected by noticing that the prefactor
h̄ωx/m0c2 < 10−4 even for photon energies in the (X)UV
regime. Furthermore, in the case of an AVB rrr · EEE (rrr, t ) ≡ 0
(azimuthal polarization). As a consequence, the magnetic part
of the interaction Hamiltonian is

Hmagn(t ) = e

m0

[
−

∫ 1

0
dλ λBBB(λrrr, t )

]
· (rrr × p̂pp)

= 2BBB′(rrr, t ) · m̂mmB,

(B7)

where BBB′(rrr, t ) = − ∫ 1
0 dλ λBBB(λrrr, t ) and the magnetic moment

operator is m̂mmB = (e/2m) rrr × p̂pp.
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