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We present the theory of many-body corrections to cyclotron transition energies in graphene in strong magnetic
field due to Coulomb interaction, considered in terms of the renormalized Fermi velocity. A particular emphasis
is made on the recent experiments where detailed dependencies of this velocity on the Landau level filling factor
for individual transitions were measured. Taking into account the many-body exchange, excitonic corrections
and interaction screening in the static random-phase approximation, we successfully explained the main features
of the experimental data, in particular that the Fermi velocities have plateaus when the 0th Landau level is
partially filled and rapidly decrease at higher carrier densities due to enhancement of the screening. We also
explained the features of the nonmonotonous filling-factor dependence of the Fermi velocity observed in the
earlier cyclotron resonance experiment with disordered graphene by taking into account the disorder-induced
Landau level broadening.
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I. INTRODUCTION

Massless Dirac electrons in single-layer graphene offer
an opportunity to study condensed-matter counterparts of
relativistic effects and to achieve new regimes in quantum
many-body systems [1–3]. Low-energy electronic excitations
in this material obey the Dirac equation and move with the
constant Fermi velocity vF ≈ 106 m/s. In a strong perpen-
dicular magnetic field B, quantization of an electron kinetic
energy in graphene results in the relativistic Landau levels [4]

En = sgn(n) vF

√
2|n|Beh̄/c, n = 0,±1,±2, . . . (1)

Unlike usual Landau levels for massive electrons, the rela-
tivistic ones are not equidistant En ∝ √|n|, scale as a square
root of magnetic field En ∝ √

B, and obey the electron-hole
symmetry En = −E−n. Relativistic nature of graphene Lan-
dau levels was first confirmed by the half-integer quantum
Hall effect [2], and direct observations of these levels using
the scanning tunneling spectroscopy had followed (see the
review of experiments in [5]).

Another way to study Landau levels in graphene is to
induce electron interlevel transitions by an electromagnetic
radiation, typically in the infrared range. The selection rules
for photon absorption [6] require �|n| = ±1, implying the
intraband −n − 1 → −n, n → n + 1, and interband −n −
1 → n (which will be referred to as T −

n+1) and −n → n + 1
(referred to as T +

n+1) transitions. The interband transitions
T ±

n+1, which are more widely studied, have the energies

En+1 − E−n = vF

√
2Beh̄/c(

√
n + √

n + 1) (2)
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in the ideal picture of massless Dirac electrons (1) in the
absence of interaction and disorder.

In a series of cyclotron resonance measurements, mainly
on epitaxial graphene, transition energies in very good agree-
ment with Eq. (2) were reported (see [7,8] and references
therein). However, the other experiments [9–12] demonstrated
deviations from Eq. (2) due to many-body effects and, possi-
bly, disorder. Similar deviations were discovered in magneto-
Raman scattering for both cyclotron T ±

n+1 [13] and symmetric
interband −n → n [14–16] transitions. Indeed, the Kohn’s
theorem [17], which protects cyclotron resonance energies of
usual massive electrons against many-body renormalizations,
is not applicable to graphene [18–29]. The observed energies
of T ±

n+1 can be described by the counterpart of Eq. (2)

�±
n+1 = v∗

F

√
2Beh̄/c(

√
n + √

n + 1), (3)

with the bare Fermi velocity vF replaced by the renormalized
velocity v∗

F. While the former one vF should be close to 0.85 ×
106 m/s, as indicated by fitting theoretical calculations to
various experimental data on graphene (see, e.g., [29–32]), the
latter one v∗

F range from 106 to 1.4 × 106 m/s depending on
carrier density, magnetic field, and substrate material [9–16].
The existing theory describes renormalization of Fermi ve-
locity in magnetic field with reasonable accuracy in the
Hartree-Fock [15,22–24] and static random-phase [26,29,33]
approximations.

In two very recent experiments [12,13], the energies of
the T ±

n+1 transitions were measured with high accuracy as
functions of the Landau level filling factor ν, which may pro-
vide an especially deep insight into the many-body physics of
graphene in magnetic field. Unlike graphene without magnetic
field, where v∗

F diverges logarithmically upon approach to the
charge neutrality point [3,31,34], here it saturates to a finite
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value at ν → 0, and, in the most cases, has even a broad
plateau in the range −2 < ν < 2.

In this article we calculate the energies of the T ±
n+1 tran-

sitions as functions of the filling factor ν with taking into
account many-body effects. Our approach, which is described
in Sec. II and Appendixes A, B, and C, takes into account
the screening of the Coulomb interaction as one of the key
points that contrasts with the most calculations on this subject
[15,18–25,28] based on the Hartree-Fock approximation with
unscreened interaction. The screening allowed us to describe
experimental data on both Landau levels [35] and interlevel
transition energies [29] earlier, and provides improved under-
standing to the filling-factor dependence of the observed v∗

F in
this work as well.

In Sec. III we analyze the electron-hole asymmetry of tran-
sition energies and the presence of plateaus at −2 < ν < 2,
following from the properties of interaction matrix elements.
In Sec. IV we present the results of numerical calculations,
which reproduce the main features of the experimental the
vF(ν) dependencies from Refs. [12,13]: (a) the plateaus in v∗

F
at −2 < ν < 2 when the 0th Landau level is partially filled,
(b) the rapid decrease of v∗

F at |ν| > 2 with increasing carrier
density, and (c) the decrease of v∗

F at ν = const at increasing
magnetic field. We have found good agreement between the
experiments and the theory using the bare Fermi velocity vF =
0.85 × 106 m/s and realistic values of the dielectric constant
ε. The intraband transitions n → n + 1 and −n − 1 → n were
also analyzed, and we predict the V-shaped dependence of
their energies on ν.

Additionally, we have considered the nonmonotonous de-
pendence v∗

F(ν) for the T ±
1 transition observed in [11] with

the maximum at ν = 0 and minima at ν = ±2. Taking into
account a disorder-induced broadening of Landau levels, we
have explained this dependence with good accuracy in Sec. V.
Our conclusions are presented in Sec. VI.

II. THEORETICAL APPROACH

Dynamical conductivity of graphene can be calculated
using the Kubo formula [36]

σαβ (q, ω) = 1

h̄ωS

∫ ∞

0
dt ei(ω+iδ)t 〈[ jα (q, t ), jβ (−q, 0)]〉,

(4)

where jα (q, t ) is the α-axis projection of the Fourier
component of the current density operator jα (q) =
evF

∫
dr �+(r)σα�(r)e−iqr evolving in time in the

Heisenberg representation, �(r) is the two-component
field operator for Dirac electrons, S is the system area, and
δ → +0.

Diagrammatic representation of the conductivity, shown in
Fig. 1(a), allows its calculation in terms of the current vertex
matrix �β , which would be equal to σβ in the absence of
interaction and disorder. To find it, we use the mean-field
approximation, where the excitonic ladder [Fig. 1(b)] for the
vertex �β and the one-loop self-energy corrections [Fig. 1(c)]
for the single-particle Green functions G are taken into ac-
count. Using the interaction, which is statically screened in the
random-phase approximation [Fig. 1(d)], greatly simplifies

(a) σαβ =

(b) = +

(c) = ++

(d) = +

FIG. 1. (a) Diagrammatic relationship (C2) between the current
Green function and the vertex. (b) and (c) Equations for, respectively,
the vertex function and the electron Green function in the mean-field
approximation. (d) Coulomb interaction screening in the random-
phase approximation.

the calculations. If we additionally neglect the mixing of
different pairs of electron and hole Landau levels, appearing
in the excitonic ladder (which was shown to be weak under
typical conditions with using the screened interaction [29]),
the optical conductivity σαβ (ω) ≡ σαβ (0, ω) is (see the details
of calculations in Appendix C)

σαβ (ω) = ie2v2
F

ω

∑
n1n2

fn2 − fn1

h̄ω − �n1n2 + iδ

× Tr
[

n1n2 (0)σα

]
Tr

[

+

n1n2
(0)σβ

]
. (5)

Here fn is the occupation number (0 � fn � 1) of the nth Lan-
dau level, and the matrix 
n1n2 (0), which is defined by (C5)
and (A2), determines the selection rules |n1| = |n2| ± 1 for
each n2 → n1 transition. The resonant transition energy �n1n2 ,
where σαβ has a pole, consists of the difference between the
bare Landau level energies En1 − En2 , the difference between
electron self-energies �n1 − �n2 , and the excitonic correction
�E (exc)

n1,n2
(see the similar formula in [25]):

�n1n2 = En1 − En2 + �n1 − �n2 + �E (exc)
n1n2

. (6)

In the mean-field approximation, the self-energy

�n = −
∑

n′
fn′ 〈nn′|V |n′n〉, (7)

as shown in Appendix B, is a sum of the exchange matrix
elements

〈nn′|V |n′n〉 = 2δn0+δn′0−2 l2
H

2π

∫
dq V (q)

× |snsn′φ|n|−1,|n′ |−1(aq) + φ|n||n′|(aq)|2 (8)

of the screened Coulomb interaction V (q) between the nth and
all filled n′th Landau levels [15,18,19], where the functions
φnk are defined in (A2), and aq ≡ −l2

H [ez × q].
The excitonic correction

�E (exc)
n1n2

= −(
fn2 − fn1

)〈n1n2|V |n1n2〉 (9)
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is the direct interaction matrix element

〈n1n2|V |n1n2〉 = 2δn10+δn20−2 l2
H

2π

∫
dq V (q)

×{φ∗
|n1|−1,|n1|−1(aq) + φ∗

|n1||n1|(aq)}
× {φ|n2|−1,|n2|−1(aq) + φ|n2||n2|(aq)}, (10)

with the minus sign, weighted with the difference of occupa-
tion numbers of the final and initial levels.

The dynamically screened interaction in the random-phase
approximation is [see Fig. 1(d)]

V (q, iω) = vq

1 − vq�(q, iω)
, (11)

where vq = 2πe2/εq is the bare Coulomb interaction weak-
ened by the surrounding medium with the dielectric constant
ε, and

�(q, iω) = g
∑
nn′

Fnn′ (q)
fn − fn′

iω + En − En′
(12)

is the polarizability (or density response function) of nonin-
teracting Dirac electrons [4,37–41]. Here

Fnn′ (q) = 2δn0+δn′0−2|snsn′φ|n|−1,|n′|−1(aq) + φ|n||n′|(aq)|2 (13)

is the form factor of Landau level wave functions and g = 4
is the degeneracy of electron states by valleys and spin. The
statically screened interaction V (q) is obtained from (11) and
(12) by taking iω = 0.

In our model there are three mechanisms leading to de-
pendence of �n1n2 on the filling factor ν via the occupation
numbers

fn =
⎧⎨
⎩

0, if ν � 4n − 2,

(ν − 4n + 2)/4, if 4n − 2 < ν < 4n + 2,

1, if ν � 4n + 2,

(14)

i.e., through exchange energies (7), excitonic corrections (9),
and polarizability (12).

Note that the sum (7) over the filled Landau levels n′ in the
valence band diverges at n′ → −∞, so we impose the cutoff
n′ � −nc to obtain finite results. The physical reason of thus
cutoff is a finite actual number of Landau levels in the valence
band, which can be found from the total electron density: nc =
2π h̄c/

√
3a2eH ≈ 39600/B [T], where a ≈ 2.46 Å [29,35].

III. ELECTRON-HOLE ASYMMETRY
AND PLATEAUS AT −2 < ν < 2

The selection rule |n1| = |n2| ± 1 for the interband n2 →
n1 transitions implies n1, n2 = n + 1,−n (the T +

n+1 transition)
or n1, n2 = n,−n − 1 (the T −

n+1 transition). In the idealized
Dirac model without interactions, the energies of these transi-
tions (2) are equal. However, this is no longer the case when
exchange self-energies are taken into account. Any nonzero
doping ν �= 0 introduces an asymmetry between �+

n+1 and
�−

n+1, at least, in the mean-field approximation. Looking at
(6) and taking into account that 〈n + 1,−n|V |n + 1,−n〉 =
〈−n − 1, n|V | − n − 1, n〉, we have

�+
n+1 − �−

n+1 = �n+1 + �−n−1 − �n − �−n

+ ( fn + fn+1 − f−n − f−n−1)

×〈n + 1,−n|V |n + 1,−n〉. (15)

FIG. 2. Renormalized Fermi velocities v∗
F for (a) the T ±

1 and
(b) the T ±

2 transitions calculated with the screened interaction at vF =
0.85 × 106 m/s, ε = 3.27, B = 8 T. Solid lines show the velocities
found from the weighted transition energies (20).

The electron-hole asymmetry in graphene, which is induced
by the exchange interaction in the absence of magnetic field
and is similar in scale to our case, was found in [42].

The first line of (15) is a contribution of exchange self-
energies to the asymmetry. Let us separate the occupation
numbers fn′ = f (0)

n′ + � fn′ on those of undoped graphene
f (0)
n′ and the doping-induced part � fn′ , and define �(0)

n =
−∑

n′ f (0)
n′ 〈nn′|V |n′n〉. Using (8) and (A6), and neglecting

a difference of small matrix elements at n′ ≈ −nc, we get
�

(0)
n+1 + �

(0)
−n−1 − �(0)

n − �
(0)
−n = 0. Thus the exchange energy

contribution to (15) arises only at nonzero doping ν �= 0.
The second line of (15) corresponding to excitonic ef-

fects is nonzero only when either ±nth or ±(n + 1)th level
is partially filled, i.e., at 4n − 2 < |ν| < 4n + 6. Since the
polarizability (12) and hence the screened interaction V (q)
are even functions of ν, both parts of (15) change sign at
ν → −ν, so

�+
n+1(ν) = �−

n+1(−ν). (16)

This is illustrated in Fig. 2, where the typical calculated v∗
F are

shown as functions of ν.
The case of n = 0 is the special one. The explicit structure

of the wave functions (A2) imply the following relationships
connecting the matrix elements of direct and exchange inter-
action (valid even for non-Coulomb potentials):

〈±1, 0|V | ± 1, 0〉 + 〈±1, 0|V |0,±1〉 = 〈00|V |00〉. (17)

The result, doping-induced changes of exchange and excitonic
parts of (6) due to f0 cancel each other at −2 < ν < 2, when
the 0th level is partially filled. Additionally, the polarizability
(12) and hence V (q) are also unchanged in this range of ν,
thus we expect plateaus in both �±

1 :

�+
1 (ν) = �−

1 (−ν) = const at − 2 < ν < 2, (18)

as seen in Fig. 2(a). For n �= 0 this is no longer the case,
although variations of �±

n+1(ν) at −2 < ν < 2 are typically
very small [see Fig. 2(b)].

In experiments, �+
n+1 and �−

n+1 can be separated by ob-
serving cyclotron resonant absorption of light with opposite
circular polarizations. Using linear polarization, one can ob-
serve a mixture of these transitions with relative intensities
I+
n+1 = f−n− fn+1 and I−

n+1 = fn− f−n−1, equal to occupation
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number differences in final and initial states. Assuming that
experimental apparatus does not resolve the individual lines
�+

n+1 and �−
n+1, we will calculate the weighted transition

energy

〈�n+1〉 = �+
n+1I+

n+1 + �−
n+1I−

n+1

I+
n+1 + I−

n+1

(19)

and compare it with the experiments in the next section. From
the particle-hole symmetry relationship fn(−ν) = 1 − fn(ν)
we see that 〈�n+1〉 is an even function of ν. At −2 < ν < 2,
〈�n+1〉 is a linear (via f0) and at the same time even function
of ν, so

〈�n+1〉 = const at − 2 < ν < 2, (20)

as seen in Figs. 2(a) and 2(b). Thus our model predicts
plateaus in all weighted transition energies 〈�n+1〉 at −2 <

ν < 2. Similar conclusions about the existence of the electron-
hole asymmetry (15) and the conjugation property (16) were
made in the recent theoretical work [25], which considers
transition energies in the Hartree-Fock approximation.

IV. CALCULATION RESULTS

First we compare our calculations of the renormalized
Fermi velocities

v∗
F = 〈�n+1〉√

2Beh̄/c(
√

n + √
n + 1)

, (21)

with the data of Ref. [12] where �1 · · · �6 as functions of ν

were measured at three magnetic fields B = 5, 8, and 11 T. We
fit the experimental points in three approximations:

(1) Hartree-Fock approximation, where the unscreened
Coulomb potential vq is used in all calculations.

(2) Static random-phase approximation, where the poten-
tial V (q) is screened (11) with using the polarizability of
noninteracting electron gas in magnetic field.

(3) Self-consistent screening approximation, where the po-
larizability is multiplied by vF/v

∗
F to take into account weak-

ening of the screening caused by many-body increase of the
energy differences En′ − En in denominators of (12). Similarly
to our previous works [29,35], this semiphenomenological
model is aimed to achieve a self-consistency between many-
body renormalizations of transition energies and screening.
Using the iterative procedure, we take v∗

F, obtained on each
step, to renormalize the screening when calculating new v∗

F
on the next step. About 5–6 iterations are usually sufficient to
achieve a convergence.

Calculations in our approach depend only on two param-
eters: the bare Fermi velocity vF and the dielectric constant
of a surrounding medium ε. In principle, both vF and ε can
be treated as fitting parameters. However variation of vF in
the range (0.8–0.95) × 106 m/s allows us to achieve almost
equally good agreement with the experimental data at slightly
different ε, so a simultaneous fitting of both parameters does
not provide reliable results. Therefore, we choose a specific
value vF = 0.85 × 106 m/s, which was concluded to be the
most suitable one based on theoretical fits of several experi-
mental data on graphene both in presence [29,30] and absence
[31,32] of magnetic field. After that, the optimal dielectric
constant of the surrounding medium ε is the only adjustable

TABLE I. Dielectric constants of surrounding medium ε, which
provide the best least-square fittings of the experimental data from
Refs. [12,13] at vF = 0.85 × 106 m/s in the three approximations
for the interaction listed in Sec. IV.

Unscreened Screened Self-consistent
Experiment interaction interaction screening

Russell et al. [12] 7.72 3.27 4.36
Sonntag et al. [13] 5.50 1.05 2.55

parameter in our model, and we find it by performing the
least square fitting of the experimental points for all n and B
simultaneously. Nevertheless, it should be kept in mind that
our fitting results can slightly change quantitatively with a
different choice of vF (although qualitative conclusions will
be the same), and it could be promising to implement a
renormalization-group scheme for the Landau level data on
graphene where all unobservable variables like vF can be
excluded from the model.

The first line of Table I shows the optimal ε used to
fit the cyclotron resonance data of Ref. [12] where high-
mobility graphene samples were encapsulated from both sides
in hexagonal boron nitride monolayers and placed on an
oxidized silicon. Figure 3 shows the experimental points
together with our calculations at these ε in the three ap-
proximations described above. The calculation with the un-
screened Coulomb interaction (Hartree-Fock approximation)
demonstrates two significant drawbacks. First, the dielectric
constant ε ≈ 7.72 is unrealistically high, because in this ap-
proximation it should imitate the interaction screening by
Dirac electrons in graphene in addition to the screening
by an external medium. Second, the falloff of v∗

F at |ν| >

2 turns out to be insufficient, because the increase of the
screening strength (and, consequently, suppression of the up-
ward renormalization of the Fermi velocity) following the
carrier density, is absent here. For the T1 transitions, the
calculated v∗

F even increases at |ν| > 2, in contradiction with
the experiment, because the excitonic correction (9), which
normally decrease v∗

F, become suppressed due to partial filling
of 1st or −1st Landau level. The similar drawbacks of the
Hartree-Fock approximations were mentioned in our previous
works [29,35].

The screening allows us to achieve much better agreement
with the experimental points at more realistic ε ≈ 3.27, and
the falloff of v∗

F at |ν| > 2 is reproduced very well. The iter-
ative calculations with the self-consistent screening provide
almost the same curves, but at somewhat higher ε ≈ 4.36.
This distinction arises because the higher ε is needed to
compensate the screening weakening caused by an upward
renormalization of energy denominators in (12).

Our calculations with taking into account the screening
are thus able to fit the data of Ref. [12] at three different B
and for six resonances Tn+1 simultaneously with the single
adjustable parameter ε. We can explain both the decrease of
v∗

F at ν = 0 as B gets higher, the plateaus at |ν| < 2, and the
rapid falloff of v∗

F at |ν| > 2, n � 1 due to increase of the
screening strength. The exceptions are some inconsistencies
of v∗

F at specific resonances (T2 and T6 at B = 5 T, T5 and T6 at
B = 8 T) and the local maxima at ν = 0 for the T1 transitions.
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FIG. 3. Renormalized Fermi velocities v∗
F at (a) B = 5, (b) 8, and (c) 11 T for the set of the Tn+1 transitions (−n → n + 1/ − n − 1 → n),

taken from the experiment [12] (crosses), and calculated theoretically in the Hartree-Fock approximation (dashed lines), with taking into
account the interaction screening (solid lines) and with the self-consistent screening (dotted lines). The dielectric constants ε, used in each
calculation, are listed in the first line of Table I. Root mean square deviations (22) between the calculated and experimental v∗

F are also shown
(d) as functions of ε in the three approximations.

Moreover, the local minima of v∗
F for T2 at ν = ±4, when the

1st or −1st Landau level is half-filled, which occur only at
B = 8 T and are absent in other fields, are not predicted by
our approach.

To characterize an accuracy of our fitting, we present in
Fig. 3(d) the root mean square deviation

� =
√√√√ N∑

i=1

[
(v∗

F)calc
i − (v∗

F)expt
i

]2

N
(22)

of calculated renormalized Fermi velocities (v∗
F)calc

i from N
experimental values (v∗

F)expt
i (here it means for all fields and

all resonances at once, 260 points in total). As functions of the
fitting parameter ε, � reach rather sharp minima at optimal
ε in each approximation. The minimal � about 0.015 ×
106 m/s are comparable to the experimental uncertainties of
(v∗

F)expt
i [12], so the fitting can be considered to be sufficiently

accurate.
For completeness of the analysis, we can also consider the

intraband transitions n → n + 1 and −n − 1 → −n. Several
examples calculated in the conditions of the experiment [12]
are presented in Fig. 4. Each n → n + 1 (−n − 1 → −n) tran-
sition exists in the range 4n − 2 < ν < 4n + 6 (−4n − 6 <

ν < −4n + 2) of the filling factors, and the transition energies
are minimal at ν = 4n + 2 (ν = −4n − 2). These minima are
caused by the excitonic correction (9), which is maximal when
the initial Landau level is completely filled, and the final level
is completely empty. We can also note that v∗

F again decreases

with increasing the doping level due to enhancement of the
screening, while the Hartree-Fock approximation misses this
effect and greatly overestimates the variations of v∗

F vs ν. The
electron-hole asymmetry for these transitions is negligible.

Another experiment we analyze is Ref. [13] where
graphene is suspended 160 nm above oxidized silicon, and
the filling-factor dependence of the T2 transition energy was
measured at B = 3 T by observing its avoided crossing with
the phonon energy in Raman spectrum. In Fig. 5 we plot the
results of our calculations for this transition in the three ap-
proximations at optimal ε listed in the second line of Table I.
We observe the same regularities as in the previous case. The
Hartree-Fock approximations requires overestimated ε and
cannot explain the rapid falloff of v∗

F at |ν| > 2. At |ν| > 6
we see even slight increase of v∗

F due to suppression of the
excitonic correction when the 2nd or −2nd Landau level start
to be partially filled. In contrast, with taking into account the
screening we obtain the realistic ε for graphene suspended
above the oxidized silicon, and the falloff is well repro-
duced. Nevertheless, the experimental points demonstrate an
additional maximum at ν = 0. This is not described by our
approach, which predicts plateaus at |ν| < 2, as discussed in
Sec. III.

The root mean square deviations (22), calculated for 31
experimental points, are shown in the inset to Fig. 5 and
demonstrate pronounced minima at the optimal ε. The min-
imal � about 0.015 × 106 m/s, achieved with the screened
interaction, are comparable to the experimental uncertainties
(0.01–0.05) × 106 m/s [13].
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FIG. 4. Renormalized Fermi velocities v∗
F for the intraband n → n + 1 and −n − 1 → −n transitions calculated at B = 8 T in the Hartree-

Fock approximation (dashed lines) and with taking into account the interaction screening (solid lines). The self-consistent iterative calculations
are not shown because their results are close to those with the non-self-consistent screening. The dielectric constants ε are taken from the first
line of Table I.

V. LANDAU LEVEL BROADENING

One more experiment where the filling-factor dependent
transition energy was measured is Ref. [11]. In this earlier
work, the graphene layer laid directly on an oxidized sil-
icon substrate and carrier mobility was one–two orders of
magnitude lower than in the aforementioned works [12,13]
due to charged impurities in the substrate. The T1 cyclotron
resonance was studied at B = 18 T and the unusual W-shaped
form of the transition energy vs ν was found with the local
maximum at ν = 0 and two minima at integer Landau level
fillings ν = ±2.

To explain these results, we need to take into account dis-
order, because at mobilities of several thousands of cm2/V s,
reported in [11], the disorder-induced Landau level widths

FIG. 5. Renormalized Fermi velocity v∗
F for the T2 transition

(−1 → 2/ − 2 → 1) at B = 3 T, taken from the experiment [13]
(squares) and calculated theoretically in the Hartree-Fock approx-
imation (dashed lines), with taking into account the interaction
screening (solid lines) and with the self-consistent screening (dotted
lines). The dielectric constants ε, used in each approximation, are
listed in the second line of Table I. Inset shows root mean square de-
viations (22) between the calculated and experimental v∗

F as functions
of ε in the three approximations.

∼20 meV become comparable with the energy scale e2/εlH of
Coulomb interaction effects. The main mechanism of disorder
effect on the transition energies is the following. Assume
that Landau levels are broadened giving rise to Gaussian
minibands in the density of states, as shown in Fig. 6. At
partial filling of each level, its miniband is partially filled,
so the average energy of the filled (empty) electron states is
lower (higher) than the band center where the unperturbed
Landau level energy would be located. As a result, the average
transition energy increases due to Landau level broadening
in addition to interaction effects when either initial or final
level is partially filled (ν �= ±2 in our case). The similar
effect was discussed in [43] for a two-dimensional gas of
massive electrons in the framework of self-consistent Born
approximation.

To describe this effect, we assume the Gaussian spectral
density ρn(E ) = (

√
2π�n)−1 exp[−(E − En)2/2�2

n] for each
nth partially filled broadened level. Integrating it up to the
Fermi level μ and assuming low temperature, we find the
occupation number fn, and, using (14), we get the relationship
between ν and μ: ν = 4n + 2
([μ − En]/

√
2�n), where 


is the error function. The disorder-induced correction 〈��n〉
to the transition energy is a difference between the average
energies (relative to the band centers) of empty states on a
final Landau level and filled states on an initial level. It should
be additionally weighted according to (20), when −2 < ν < 2

FIG. 6. Broadened Landau levels n = 0, ±1 (not to scale) and
cyclotron transitions between them when these levels are partially
filled.
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and thus both transitions T ±
1 are present, resulting in

〈��n〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

π

�−1e
− (μ−E−1 )2

2�2−1

3 + ν/2
, if −6 < ν < −2,√

2

π
�0e

− (μ−E0 )2

2�2
0 , if −2 < ν < 2,

√
2

π

�1e
− (μ−E1 )2

2�2
1

3 − ν/2
, if 2 < ν < 6.

(23)

This dependence has a maximum at ν = 0 and minima at ν =
±2 in accordance with the experiment [11].

Another effect of the disorder is the presence of interlevel
transitions when any nth Landau level is partially filled, which
provide an extra contribution to the screening. In the simplest
approximation, they lead to the polarizability of the Thomas-
Fermi kind

�TF
n (q) = −gFnn(q)ρn(μ), (24)

which was used in [44] to study Landau level broadening in
graphene.

We use the self-consistent Born approximation for a po-
larizability in magnetic field, which was originally developed
in [45,46] for a two-dimensional electron gas with short-
range impurities. In our work we assume the disorder to be
long ranged, because the main origin of disorder in graphene
on a SiO2 substrate are long-range charged impurities [47].
Introducing the mean square 〈U 2〉 of the slowly varying
disorder potential U (r), we get the following polarizability
of disordered graphene (see the similar formulas in [45,46]
obtained by summing an impurity ladder in a polarization
loop):

�D(q, iω) = g
∑
nn′

Fnn′ (q)

× T
∑

ε

GD
n′ (iε + iω)GD

n (iε)

1 − 〈U 2〉GD
n′ (iε + iω)GD

n (iε)
, (25)

where GD
n (iε) = ∫

dE ρn(E )/(iω − E + μ) is the Green
function of electron on the nth Landau level in the presence
of disorder. Instead of a half-elliptic spectral density [44],
which is known to be an artifact of the self-consistent Born
approximation [48], we use, as above, the Gaussian function
ρn(E ).

Taking the static limit iω → 0 and switching in (25) from
the frequency summation to an integration along the branch
cut at Im(iε) = 0, we get in the limit T → 0:

�D(q, 0) = − g

π

∑
nn′

Fnn′ (q)

×
∫ 0

−∞
Im

GD
n′ (z + iδ)GD

n (z + iδ)

1 − 〈U 2〉GD
n′ (z + iδ)GD

n (z + iδ)
.

(26)

This polarizability consists of two physically distinct parts.
The first one is the contribution of interlevel transitions with
n �= n′. It does not differ too much from than in a clean
system (12) if the widths of Landau levels �n are much
smaller than interlevel separations. The second one is the

FIG. 7. Dimensionless static polarizability of graphene in mag-
netic field �̃(q, 0) = −(2πvFlH/g)�(q, 0), where lH = √

h̄c/eH ,
calculated (a) when the 0th Landau level is half-filled, ν = 0,
(b) when the 1st or −1st level is half-filled, ν = ±4. Solid lines:
Clean graphene (12), dashed lines: disordered graphene (27), and
dotted lines: the Thomas-Fermi approximation (24). Calculation pa-
rameters are vF = 0.85 × 106 m/s, B = 18 T, �0 = �±1 = 20 meV.

contribution of intralayer transitions n = n′ arising when the
nth layer is partially filled. Taking the disorder strength to be
equal to the Landau level width

√
〈U 2〉 = �n, as follows from

calculations of GD with the long-range disorder, we get the
static polarizability of disordered graphene:

�D(q, 0) ≈ �(q, 0) − gFnn(q)
∫ 0

−∞
Im

[
GD

n (z + iδ)
]2

1 − �2
n

[
GD

n (z + iδ)
]2

(27)

and use it in the following calculations.
Figure 7 shows the examples of static polarizabilities cal-

culated at half-fillings of 0th and ±1st Landau levels. In
a clean graphene, �(q, 0) ∝ q2 at q → 0 since the system
becomes insulating in magnetic field, and the only source
of the screening are gapped interlevel transitions. Disorder
makes �D(q, 0) nonzero at q → 0 due to intralevel tran-
sitions. The Thomas-Fermi approximation, by taking into
account only the latter, provides a wrong short-wavelength
asymptotic of the polarizability �TF

n (q), which should tend to
the polarizability of undoped graphene �(q, 0) = −gq/16h̄vF

[1].
We calculated the renormalized Fermi velocity, corre-

sponding to the weighted energy (20) of the T1 transition with
taking into account the correction (23) and the screening (27)
in the disordered system. For comparison, we carried out the
same calculations for the clean system, as did in the previous
section. The results of the fitting of experimental points from
Ref. [11] are shown in Fig. 8, and the calculation parameters
are listed in Table II.

For the values of ε we observe the same regularities as
noted in the previous section. These values are close to those
obtained in our earlier analysis [29] of cyclotron resonance
data for graphene on SiO2. However, the most drastic effects
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FIG. 8. Renormalized Fermi velocity v∗
F for the T1 transition

(0 → 1/ − 1 → 0) at B = 18 T, taken from the experiment [11]
(squares) and calculated theoretically for (a) clean and (b) disordered
graphene. The calculations are carried out in the Hartree-Fock ap-
proximation (dashed lines), with taking into account the interaction
screening (solid lines) and with the self-consistent screening (dotted
lines). The dielectric constants ε used in each calculation are listed
in Table II.

come from inclusion of disorder: while in the clean system
v∗

F has the plateau at |ν| < 2 and remain the same (or slightly
increases due to suppression of the excitonic correction) at
|ν| > 2, in the disordered system it has the paraboliclike
maximum at ν = 0 and the sharp minima at ν = ±2, just as
the experiment shows. The values of Landau level widths �n

obtained via the fitting procedure (15–25 meV) look realistic,
since they are close to typical widths of spectral lines observed
in the same experiment [11] and in other works on graphene
on a SiO2 substrate [49]. The minimal value of the root mean
square deviation (22) is about 0.009 × 106 m/s in this case.

VI. CONCLUSIONS

We present detailed calculations of the inter-Landau level
cyclotron transition energies in graphene in strong magnetic

TABLE II. First two lines: dielectric constants of surrounding
medium ε, which provide the best least-square fittings of the ex-
perimental data from Ref. [11] at vF = 0.85 × 106 m/s in the three
approximations for the interaction listed in Sec. IV for clean or
disordered system. For disordered system, the widths of 0th and ±1st
Landau levels are also specified in the last two lines.

Unscreened Screened Self-consistent
System interaction interaction screening

Clean 7.26 2.82 3.85
Disordered 9.24 4.95 5.74
�0 (meV) 22 25 23
�±1 (meV) 12 19 17

fields taking into account Coulomb interaction between mass-
less Dirac electrons. Calculating the optical conductivity and
solving the vertex equation in the static random-phase ap-
proximation with the excitonic ladder, we found the many-
body corrections to the transition energies coming from the
self-energy and excitonic effects. We show that the cyclotron
transition lines can be split in doped graphene for opposite
circular polarizations because of the electron-hole asymmetry
of exchange self-energies, although this splitting may be
unobservable if these lines are sufficiently wide or either
a linearly polarized or unpolarized light is used. By this
reason, we calculate the weighted transition energy for both
polarizations at once and convert it to the renormalized Fermi
velocity v∗

F for each transition.
The dependence of v∗

F on the Landau level filling factor
ν is analyzed. In the mean-field approximation, v∗

F(ν) has a
plateau at −2 < ν < 2 due to a partial cancellation of the self-
energy and excitonic effects and rapidly decreases at |ν| > 2
due to enhancement of the screening. Our calculations, carried
out with the bare Fermi velocity vF = 0.85 × 106 m/s and
with the dielectric constant of surroundings ε, treated as an
adjustable parameter, showed good agreement with two re-
cent experiments [12,13] on high-mobility graphene samples,
when the screening by graphene electrons is taken into ac-
count. The obtained phenomenological ε describe the external
dielectric screening not only by an underlaying substrate, but
also by adjacent hexagonal boron nitride layers. The Hartree-
Fock approximation, which neglects the density-dependent
screening by graphene electrons, fails to explain the observed
rapid decrease of v∗

F at |ν| > 2.
Our calculations for the intraband transitions n → n + 1

and −n − 1 → −n predict the V-like dependence v∗
F(ν) with

the minima at, respectively, ν = 4n + 2 and ν = −4n − 2
caused by the excitonic effects. Existence of these minima can
be verified experimentally, although an accurate detection of
the interband transition lines can be challenging (but possible
[6]) due to their much lower energies: even for the the highest
magnetic fields 20–30 T these energies are below 100 meV.

We also describe the data of the earlier cyclotron resonance
experiment [11] with graphene sample on SiO2, where carrier
mobility is much lower. In this case we take into account
long-range disorder, which broadens Landau levels and thus
shifts the resonant energy upward when initial or final level is
partially filled, and induces the interlevel transitions contribut-
ing to the screening. Assuming the Gaussian spectral density
for the 0th and ±1st broadened Landau levels, we achieved
good agreement with the experiment and explained the main
features of the v∗

F(ν) dependence: the paraboliclike maximum
at ν = 0 and the sharp minima at ν = ±2.

As shown, the combined action of exchange interaction,
excitonic effects, interaction screening, and disorder should
be taken into account when considering graphene in strong
magnetic field. Our approach takes into consideration these
factors and thus allowed us to explain main features of the
filling-factor dependent experimental data [11–13], which
would be hardly possible within the Hartree-Fock approxi-
mation [15,18–25,28] where the screening and Landau level
broadening are neglected. However, some issues remain to
be clarified. In particular, the mean-field approach does not
describe the �-shaped maxima of v∗

F at ν = 0 observed in
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[12,13] for T1 transitions, the minima at ν = ±4 observed
for T2 at B = 8 T in [12], and a possible splitting of the T1

transition line observed in [12]. All these features go beyond
the mean-field theory for massless Dirac electrons and can
be attributed to some unaccounted role of disorder, finite
size effects, Moire superlattice potential from adjacent boron
nitride layers [50], Landau level splitting [4,51], or electron
dynamics on a partially filled level [52]. Note that assumption
of a substrate-induced band gap allowed us to explain some
features of the experimental data of [12] in a recent work [25],
so a further analysis in this direction with considering possible
symmetry breakings and gap formation in a system of Dirac
electrons together with the interaction, screening, and disorder
seems to be promising.
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APPENDIX A: ELECTRON WAVE FUNCTIONS

Similarly to [4,38–40], we describe single-particle states
of massless electrons in magnetic field H using the symmetric
gauge A = 1

2 [H × r]. In the absence of a valley splitting or
intervalley transitions, it is sufficient to consider the electrons
only in the K valley, where the Dirac Hamiltonian is

H = vF

(
p − e

c
A

)
· σ = h̄vF

√
2

lH

(
0 a

a+ 0

)
. (A1)

Here lH = √
h̄c/|e|H is the magnetic length (we assume e <

0 in this section), a = lH p−/h̄ − ir−/2lH and a+ = lH p+/h̄ +
ir+/2lH are, respectively, lowering and raising operators
obeying the commutation relation [a, a+] = 1, and p± =
(px ± ipy)/

√
2, r± = (x ± iy)/

√
2.

Introducing the complementary set of ladder operators
[4] b = lH p+/h̄ − ir+/2lH , b+ = lH p−/h̄ + ir−/2lH , which
obey [b, b+] = 1 and commute with a, a+, we can con-
struct the states of a two-dimensional oscillator |φnk〉 =
(a+)n(b+)k|φ00〉/

√
n!k! with the wave functions in polar co-

ordinates:

φnk (r, ϕ) = i|n−k|
√

2π lH

√
min(n, k)!

max(n, k)!
e−r2/4l2

H

(
r√
2lH

)|n−k|

× ei(n−k)ϕL|n−k|
min(n,k)

(
r2

2l2
H

)
, (A2)

where Lm
n (x) are the associated Laguerre polynomials.

The eigenfunctions of the Hamiltonian (A1) are
[4,18–21,37–39,41]

ψnk = (
√

2)δn0−1

(
snφ|n|−1,k

φ|n|,k

)
, (A3)

and eigenvalues are (1). Here n = 0,±1,±2, . . . is the Lan-
dau level number, k = 0, 1, 2, . . . is the guiding center index
responsible for Landau levels degeneracy, sn ≡ sgn (n), and
we assume that φnk = 0 if n or k is negative.

The bare electron Green function in the Matsubara
representation G(r, r′, τ ) = −〈Tτ�(r, τ )�+(r′, 0)〉 can be

constructed from (A3):

G0(r, r′, iε) =
∑

nk

ψnk (r)ψ+
nk (r′)

iε − En + μ
, (A4)

where μ is the chemical potential; note G0 is the (2 × 2)
matrix in the sublattice space.

Using the table integral Eq. 2.20.16.10 from [53], we can
present (A2) in Cartesian coordinates as

φnk (x, y) = in−k

√
2π

∫ +∞

−∞
dt eityϕn(lHt + x/2lH )

×ϕk (lHt − x/2lH ), (A5)

where ϕn(x) = e−x2/2Hn(x)/
√

2nn!
√

π are the dimensionless
eigenfunctions of quantum one-dimensional harmonic oscil-
lator and Hn(x) are Hermite polynomials. Then, using (A5),
and orthonormality and completeness of the basis {ϕn(x)}, a
lot of useful transformation rules for φnk can be obtained, for
example, the summation formula

∞∑
k=0

φn1k (r1)φ∗
n2k (r2) = ei(r1r2ez )/2l2

H√
2π lH

φn1n2 (r1 − r2) (A6)

and the form factor of Landau level wave functions (see
also [40])∫

dr eiqrφ∗
n1n2

(r)φn3n4 (r) = 2π l2
Hφ∗

n1n3
(aq)φn2n4 (aq),

aq ≡ −l2
H [ez × q]. (A7)

APPENDIX B: EXCHANGE SELF-ENERGIES

Exchange self-energy acquired by an electron in the state
ψnk is given by the usual Fock expression

�exch
nk = −

∑
n′k′

fn′k′

∫
dr1dr2 v(r1 − r2)ψ+

nk (r1)

×ψn′k′ (r1)ψ+
n′k′ (r2)ψnk (r2). (B1)

After the Fourier transform of the Coulomb interaction v(r) =
(2π )−2

∫
dq vqeiqr and using (A6) and (A7), we get

�exch
nk = −

∑
n′

fn′ 〈nn′|v|n′n〉, (B2)

with the exchange matrix elements of Coulomb interaction
defined as

〈nn′|v|n′n〉 = 2δn0+δn′0−2 l2
H

2π

∫
dq vq|snsn′φ|n|−1,|n′|−1(aq)

+φ|n||n′|(aq)|2. (B3)

We assumed that the occupation numbers do not depend on k′,
fn′k′ ≡ fn′ , and the resulting �exch

nk turns out to be also inde-
pendent on k, so the Landau level degeneracy is preserved. By
replacing vq with the statically screened interaction V (q), as
depicted in Fig. 1(c), we get the screened exchange energy (7)
and (8), and the bare electron Green function (A4) becomes
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“dressed” with the interaction and turns into

G(r, r′, iε) =
∑

nk

ψnk (r)ψ+
nk (r′)

iε − En − �n + μ
. (B4)

APPENDIX C: VERTEX EQUATION

Introducing the Green function for currents Gj
αβ (r, r′, τ ) =

−〈Tτ�
+(r, τ )σα�(r, τ )�+(r′, 0)σβ�(r′, 0)〉, we can write

the conductivity (4) as

σαβ (q, ω) = ie2v2
F

h̄ωS

∫
drdr′ e−iq(r−r′ )Gj

αβ (r, r′, h̄ω + iδ),

(C1)

where Gj
αβ can be calculated, as shown in Fig. 1(a), from the

(2 × 2) vertex matrix:

Gj
αβ (r, r′, iω) = T

∑
ε

∫
dr1dr2 Tr[σαG(r, r1, iε + iω)�β (r1, r2, r′, iε, iω)G(r2, r, iε)]. (C2)

Here the sum is taken over the fermionic Matsubara frequencies ε = πT (2n + 1).
The vertex equation in the mean-field (or ladder) approximation, depicted in Fig. 1(b), is written analytically as

�β (r1, r2, r′, iε, iω) = δ(r1 − r′)δ(r2 − r′)σβ − T
∑
ε′

∫
dr′

1dr′
2 V (r1 − r2, iε − iε′)

× G(r1, r′
1, iε′ + iω)�β (r′

1, r′
2, r′, iε′, iω)G(r′

2, r2, iε′). (C3)

To solve it, we can use the basis of magnetoexcitonic states of Dirac electrons in the symmetric gauge, which were described
earlier in [38] in slightly different notation:

�Pn1n2 (r1, r2) = 1

2π
eiP(r1+r2 )/2+i(r1r2ez )/2l2

H 
n1n2 (r1 − r2 − aP ). (C4)

Here P is the conserved magnetic momentum of the electron-hole pair and


n1n2 (r) =
√

2
δn10+δn20−2

(
sn1 sn2φ|n1|−1,|n2|−1(r) sn1φ|n1|−1,|n2|(r)

sn2φ|n1|,|n2|−1(r) φ|n1|,|n2|(r)

)
(C5)

is the matrix wave function of relative motion of electron and hole written in the basis of their sublattices A, B. Using (A5), the
unitary transformations between the magnetoexcitonic states and the states (A3) of individual electron and hole can be derived:

ψn1k1 (r1)ψ+
n2k2

(r2) = l2
H

∫
dP φ∗

k1k2
(aP )�Pn1n2 (r1, r2),

�Pn1n2 (r1, r2) = l2
H

∑
k1k2

φk1k2 (aP )ψn1k1 (r1)ψ+
n2k2

(r2). (C6)

Projecting the vertex matrix �β on the magnetoexcitonic states

�β,Pn1n2 (r′, iε, iω) =
∫

dr1dr2 Tr
[
�+

Pn1n2
(r1, r2)�β (r1, r2, r′, iε, iω)

]
(C7)

and using (B4) and (C6), we get (C3) in the electron-hole pair (or magnetoexcitonic) representation:

�β,Pn1n2 (r′, iε, iω) = �
(0)
β,Pn1n2

(r′) − T
∑
ε′n′

1n′
2

∫
dP′

〈
�Pn1n2

∣∣V (iε − iε′)
∣∣�P′n′

1n′
2

〉
�β,P′n′

1n′
2
(r′, iε′, iω)(

iε′ + iω − En′
1
− �n′

1
+ μ

)(
iε′ − En′

2
− �n′

2
+ μ

) . (C8)

Here the bare vertex is �
(0)
β,Pn1n2

(r′) = (e−iPr′
/2π ) Tr[
+

n1n2
(aP )σβ].

To solve Eq. (C8), we use the static approximation V (r, iε − iε′) = V (r) and neglect the mixing of different electron-hole
pairs in the ladder diagrams, assuming n′

1 = n1, n′
2 = n2. Therefore, the vertex matrix turns out to be independent on a relative

energy of electron and hole ε:

�β,Pn1n2 (r′, iω) = e−iPr′

2π
Tr

[

+

n1n2
(aP )σβ

]{
1 + 〈n1n2|VP|n1n2〉 fn2 − fn1

iω + En2 + �n2 − En1 − �n1

}−1

. (C9)

The average interaction energies of magnetoexcitons are 〈n1n2|VP|n1n2〉 = ∫
dr V (r − aP )Tr[
+

n1n2
(r)
n1n2 (r)], their counter-

parts in usual 2D electron gas were extensively studied earlier [54]. Making the Fourier transform V (r) = (2π )−2
∫

dq V (q)eiqr

and using (A7), we obtain

〈n1n2|VP|n1n2〉 = l2
H

2π

∫
dq V (q)e−iqaP Tr

[

+

n1n1
(aq)

]
Tr

[

n2n2 (aq)

]
. (C10)
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The Green function for currents (C2) can by found using (B4), (C4), (C6), (C7), and (C9):

Gj
αβ (r, r′, iω) =

∑
n1n2

∫
dP

(2π )2
eiP(r−r′ ) Tr

[

n1n2 (aP )σα

]
Tr

[

+

n1n2
(aP )σβ

]
( fn2 − fn1 )

iω + En2 + �n2 − En1 − �n1 + ( fn2 − fn1 )〈n1n2|VP|n1n2〉 . (C11)

Substituting it in (C1) and taking P = 0 for optical transitions in (C10), we finally obtain (5)–(10).
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