
PHYSICAL REVIEW B 99, 085419 (2019)

Tuning the topological insulator states of artificial graphene
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We develop a robust, nonperturbative approach to study the band structure of artificial graphene. Artificial
graphene, as considered here, is generated by imposing a superlattice structure on top of a two-dimensional
hole gas in a semiconductor heterostructure, where the hole gas naturally possesses large spin-orbit coupling.
Via tuning of the system parameters we demonstrate how best to exploit the spin-orbit coupling to generate
time reversal symmetry protected topological insulator phases. Our major conclusion relates to a second set
of topological Dirac bands in the band structure (with spin Chern number C = 3), which were not reliably
obtainable in previous perturbative approaches to artificial graphene. Importantly, the second Dirac bands host
more desirable features than the previously studied first set of Dirac bands (with C = 1). Moreover, we find that
upon tuning of the system parameters, we can drive the system to the highly desirable regime of the topological
flat band. We discuss the possibilities this opens up for exotic, strongly correlated phases.
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I. INTRODUCTION

The quantum spin Hall effect, exhibited by time-reversal-
symmetric topological insulators (TIs), is by now a well
investigated topic. It has the desirable property of dissipation-
less spin currents along the edges of the sample, which is a
fundamental ingredient for reversible quantum computation
as well as for efficient spintronics applications. Realizations
of two-dimensional (2D) TI states has been slow, with the best
known examples arising in HgTe [1] and In As [2] quantum
wells as predicted theoretically in Refs. [3–5]. As is well
known, graphene was the first proposed material realization
of a TI [6]; however within naturally occurring graphene
the spin-orbit interaction is parametrically small. Therefore
the topological gap, a measure of the stability of the TI
state against (time-reversal-symmetric) disorder and thermal
fluctuations, is small.

Aside from generating a robust TI state for the sake of
technological advances, there has been a recent surge of
interest in 2D topological band insulators for the purpose
of realizing highly nontrivial strongly correlated phases of
matter. In particular, the theoretical efforts have been focused
on designing/predicting systems exhibiting (nearly) flat bands
with nontrivial topology. Such conditions are expected to
be sufficient to realize novel correlated phases: fractional
Chern [7–12], fractional anomalous [8,13,14], and fractional
topological insulators [15–19] (see reviews [20,21]), magnetic
insulating phases [22–26] (review [24]), or superconduct-
ing/superfluid phases [27–31]. The logic is rather simple:
the flat band implies that kinetic energy (which vanishes)
is dominated by particle-particle interactions, even if they
are “weak.” Moreover, the flat bands support a macroscopic
degeneracy—large density of states. Partial filling of such
a flat band therefore becomes an exciting playground for
strongly correlated physics. The prototypical example is the
fractional quantum Hall effect, where the flat bands are
the exactly flat Landau levels. Very recently, by analogy with

the fractional quantum Hall effect, there are mounting theo-
retical efforts to explain/predict fractional Chern insulators,
the fractional anomalous Hall effect, and fractional TIs. To
date, the pursuit for nearly flat bands with nontrivial topology
has led to the proposal of several model Hamiltonians with at
times peculiar properties such as complex or long-range hop-
ping parameters, for which finding an experimental realization
is a formidable task and requires fine tuning.

The present work considers a graphene simulator, arti-
ficial graphene, composed of a two-dimensional hole gas
(2DHG) confined by a semiconductor quantum well, with
an electrostatic potential of hexagonal symmetry etched onto
a metallic top gate. This superlattice structure generates a
graphene-like electronic band structure. There have been nu-
merous graphene simulator proposals: cold atoms [32–35],
lithographic [36–41], and more [42–48]; for a review see [49].
Our primary motivation is to optimize (with respect to system
parameters) the robustness of the topological insulator phase,
i.e., the topological gap. To this end, a hole gas, as opposed
to an electron gas, is the obvious choice since the holes in
semiconductor heterostructure systems possess effective spin-
3/2 angular momentum, and thus naturally experience larger
spin-orbit coupling than the corresponding spin-1/2 electrons.
Our secondary motivation is to search for nearly flat bands
with nontrivial topology. Due to the nature of the dispersion
of the 2DHG we will see that generating a nearly flat band
once the superlattice is imposed becomes a natural feature
of the artificial graphene spectrum—and does not require fine
tuning.

Artificial graphene (as defined here) is a readily tunable
system and hence has already been proposed as a candidate
material to exhibit a TI state [50] and a Chern insulator
under (in-plane) applied field [51], as well as realizing a
topological semimetal [52]. We are concerned with the TI
state suggested in [50], whereby such calculations have been
based on a perturbative theory of the 2DHG—valid in the
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FIG. 1. Schematic view of artificial graphene. (a) A top view
of the superlattice etched into the the metallic top gate. Blue dots
represent positive potentials (antidots). L is the lattice spacing. (b) A
cross section of the AlGaAs-GaAs-AlGaAs heterostructure. d is the
quantum well confined length; z0 is the separation length between the
superlattice top gate and the 2DHG.

limit of small spin-orbit interaction—which then enters into
the band structure calculations of the superlattice, artificial
graphene. Although these perturbative approaches no doubt
capture the essential qualitative physics, in the limit of large
spin-orbit coupling, which is the most desirable for technolog-
ical application or to pursue the topological flat band regime,
they become unreliable. To address this gap in the literature,
the present work develops a nonperturbative description of
artificial graphene, valid at arbitrarily large spin-orbit cou-
pling. Hence, as experimental efforts move closer to explicit
realization, the necessity of the present work is self-evident.

To conclude this introductory passage, it is important to
make explicit the differences and expected overlap of the
present results with those obtained for the electron-doped, i.e.,
2DEG, artificial graphene considered in Ref. [53]. The most
important difference between the 2DHG and 2DEG, having in
mind a heterostructure such as AlGaAs-GaAs-AlGaAs, is
that the electrons of the 2DEG have negligible spin-orbit
interaction, whereas the holes of the 2DHG host a substantial
spin-orbit interaction. On the other hand, one expects elec-
trostatic screening properties within a 2DEG and 2DHG to
be essentially equivalent. Reference [53] has demonstrated
that screening has a negligible effect on the band structure
of 2DEG artificial graphene. Armed with this knowledge, the
present paper ignores screening effects for the 2DHG analog.

The next section, Sec. II, provides a self-contained intro-
duction to the technical aspects of the paper, in which we
outline the construction of artificial graphene, the necessary
technical details of the 2DHG, and the previous perturbative
approach [50], and finally we develop our new nonperturba-
tive approach to artificial graphene. Having established these
necessary preliminaries we move on to our results in Secs. III
and III C.

II. MATHEMATICAL PRELIMINARIES

A. Key parameters of artificial graphene

To adequately set the stage for the mathematical details to
follow, we briefly outline the schematics of artificial graphene,
and in doing so establish the key parameters available for
tuning; see Fig. 1. First, we consider a 2DHG having in mind,
e.g., an AlGaAs-GaAs-AlGaAs quantum well. The confine-
ment is along the z axis, leaving the x-y plane for free motion;

this is the 2DHG. For the bulk of the results/calculations we
take the confinement to be a rectangular quantum well of
width d . We will also perform semianalytics for the case of a
triangular well. Next, a periodic electrostatic potential of
triangular symmetry is etched onto a metal plate on top
of the 2DHG; this is the superlattice. The lattice parameter
(henceforth the superlattice parameter) is L. The separation
along the z axis of the superlattice top gate from the 2DHG
is z0. Although z0 plays a role [53], we will fix its value and
not consider it further. Finally, we denote the magnitude of the
electrostatic potential by W . Ultimately, it is the ratio of d/L
that controls the spin-orbit interaction, and we can choose W
freely; this provides us with two tuning handles: d/L and W .
Also note that tuning z0 is equivalent to tuning W .

B. 2DHG

We consider a 2DHG confined along the z axis by the
quantum well potential:

V (z) =
{

0, z ∈ (−d/2, d/2),
∞, otherwise. (1)

For this confinement we set the characteristic momentum and
energy scale to be

k0 = 2

d
, E0 = γ1k2

0

2m
≡ k2

0

2m∗ , (2)

where m is the electron mass in vacuum, γ1 is one of the
Luttinger parameters entering the Hamiltonian below, and
we have introduced the effective mass m∗ to facilitate later
discussion. The energy scale for a quantum well of width
d = 20 nm is E0 = 2.6 meV. It is important to note that this
energy scales as E0 ∼ 1/d2.

The holes posses an ultrarelativistic spin-orbit coupling,
and can be described by the Luttinger Hamiltonian in the
axial approximation, i.e., U (1) symmetry in-plane. The axial
approximation is useful for quasi-2D systems with frozen
dynamics along one direction, in the present case, the z axis.
The Luttinger Hamiltonian we consider is [54]

H2DHG = H0 + HSO,

H0 =
[
γ1 + 2γ2

(
5

2
− Sz

)]
k2

z

2m

+
[
γ1 − γ2

(
5

4
− Sz

)]
k2

2m
+ V (z),

HSO = −γ2 + γ3

8m

(
k2
+S2

− + k2
−S2

+
)

− γ3

4m
{kz, {Sz, k+S− + k−S+}}, (3)

where Sx, Sy, Sz are angular momentum 3/2 operators, S± =
Sx ± iSy, we use bold font to express the in-plane momenta
k = (kx, ky), and k± = kx ± iky. In the expression for H2DHG

(3), we have chosen to separate the components H0 and HSO

(which accounts for spin-orbit interactions). This is merely
to help illustrate the following technical step: we perform
exact diagonalization of H2DHG in the basis of wave functions
obtained from H0. A later step will be to project the wave
functions of H2DHG onto the superlattice potential; the details
will be provided in Sec. II C.
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FIG. 2. (a) The dispersion of holes in the semiconductor quan-
tum well: Solid lines are the dispersions obtained from the multiband
Luttinger Hamiltonian approach (3). The dashed line corresponds to
the single-band, quadratic approximation, i.e., using Ek = k2/(2m∗).
The projections of the total angular momentum are denoted σ , which
at k = 0 are identically the physical spin projections. (b) A plot of the
relative weight of the projection onto each physical spin component
Sz, and their dependence on k, in the lowest-band Kramers spin state
|l = 0, σl = +3/2, k〉 ≡ |↑, k〉.

Some effort has been made [54] to obtain semianalytic
expressions for the H2DHG wave functions, which saves com-
putational time and provides a clearer mathematical picture.
We outline the results obtained previously [54]: the wave
functions are labeled by a k (a good quantum number) as
well as the energy-level index l and corresponding spin index
σl , which corresponds to the physical spin projection only
at k = 0. The wave functions of H2DHG for quantum well
confinement in the z direction read

|l, σl , k〉 = eikr
∑

Sz

k̂(σl −Sz )
+

∑
n

al,n,Sz (k) |Sz, n〉 , (4)

where, importantly, the argument of al,n is k ≡ |k|, and all
phase dependence on the 2D momentum plane is stored in the
prefactor k̂(σl −Sz )

+ such that k̂± ≡ (kx ± iky)/|k|, which greatly
simplifies the band structure computations. The ket, |Sz, n〉,
accounts for the basis of the four Sz = ±3/2,±1/2 spinors
and the infinite set of harmonics, enumerated by the non-
negative integers n, due to confinement along the z axis.

To be explicit, Fig. 2(a) shows the first three dispersion
levels l = 0, 1, 2 and the corresponding spin indices σl =
±3/2,±1/2,±3/2 (for the quantum well potential). If one
considers just the l = 0 subspace, then it is enlightening to
regard this as a pseudospin-1/2, such that |l = 0,+3/2, k〉 =
|↑, k〉 and |l = 0,−3/2, k〉 = |↓, k〉. Due to time-reversal
symmetry (denoted T ), E↑,k = E↓,−k; i.e., |↑, k〉 and |↓, k〉
are Kramers partners. (Note: Throughout the text we call the
two possible angular momentum eigenstates/projections of
any given dispersion band l the Kramers spin.) Moreover, for
the quantum well confinement there is an inversion symmetry
or parity (P), such that E↑,k = E↑,−k .

Figure 2(b) shows the probabilities of each physical spin
(Sz) component of the particular state |l = 0,+3/2, k〉 =
|↑, k〉. The probabilities of each Sz are expressed as [using
notation introduced in Eq. (4)]

Pl,σl ,Sz =
∑

n

|al,n,Sz (k)|2, (5)

/

/

/

/
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FIG. 3. (a) Spectrum of 2DHG in the triangular well confinement
of Eq. (7). (b) Rashba splitting: The energy splitting between the two
lowest (l = 0) dispersion bands in (a).

which are normalized for each index {l, σl} such that∑
Sz

Pl,σl ,Sz = 1. We see from Fig. 2(b) that all spin compo-
nents are mixed via Ĵ = 1, 2, 3 (dipole, quadrupole, octupole).

It is also instructive to contrast the exact diagonalization
results of Eq. (4) [and also partially represented in Fig. 2(b)] to
results of perturbation theory [50]. From perturbation theory,
the wave functions of the l = 0 Kramers doublet are given as

|↑, k〉 =
[∣∣∣∣+3

2

〉
+ βk2

+

∣∣∣∣−1

2

〉]
eik·r,

|↓, k〉 =
[∣∣∣∣−3

2

〉
+ βk2

−

∣∣∣∣+1

2

〉]
eik·r, (6)

β =
√

3d2

4π
.

Hence, in this approach we clearly see that only mixing
via Ĵ = 2 (quadrupole) selection occurs, i.e., Sz = ±3/2 and
∓1/2. Moreover, the wave functions (6) are valid only if
β2k4 � 1.

We will also consider a triangular well confinement by
introducing the confinement potential

V (z) =
{

eEz, z > 0,

∞, otherwise. (7)

For this confinement we set the characteristic momentum and
energy scale to be

k0 = 1

2
meE, E0 = γ1k2

0

2m
. (8)

This potential explicitly breaks P and with it, E tri
↑,k = E tri

↑,−k ,
which removes the double degeneracy of the energy at a given
momentum. We perform exact diagonalization of the Lut-
tinger Hamiltonian Eq. (3) subject to the triangular confine-
ment; the energy spectrum is shown in Fig. 3(a). In Fig. 3(b)
we show the energy splitting between the two l = 0 bands; we
call it the Rashba splitting and denote it by �R. The important
point here is that P-breaking confinement Eq. (7) generates
the Rashba spin-orbit interaction. In Sec. III C we will take
a semianalytic approach and consider just these two lowest
bands in an effective Hamiltonian.
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FIG. 4. Brillouin zone. Gi are vectors connecting zone corners
K j . K ′

j are parity reflections of K j .

C. Superlattice theory

We describe the superlattice potential via a harmonic ap-
proximation (for more details see Ref. [53]),

U (r) = 2W
3∑

t=1

cos(Gt · r), (9)

where W is a constant that determines the strength of the po-
tential. The vectors Gi [|Gi| = 4π/(

√
3L)] are the reciprocal

lattice vectors connecting corners of the hexagonal Brillouin
zone K j [|K j | = 4π/(3L)], as shown in Fig. 4. It is convenient
to introduce the energy scale of the superlattice,

EL = K2
j

2m∗ = 8π2

9L2m∗ . (10)

We describe the problem by the superlattice Hamiltonian
operator,

Ĥ = Ê2DHG + Û (r), (11)

whereby Ê2DHG represents the kinetic energy operator, which
encodes the dispersions of holes in the 2DHG; i.e., its matrix
elements (in a given basis) are the eigenvalues of H2DHG

(3), also shown in Fig. 2(a). The potential Û is given by
Eq. (9), except we use a hat/operator notation to imply that
we need to project these operators onto a particular basis.
We take the wave functions of H2DHG (3) as this basis, and
project the superlattice Hamiltonian Ĥ onto them. Previously
in Eq. (4) we used the notation |l, σl , k〉 for the H2DHG wave
functions; now due to the superlattice potential Û (r) we must
attach an extra index i (such that |l, σl , k〉 → |l, σl , k, i〉) that
labels sites in the momentum grid ki = k + gi, where the
discrete momentum space grid gi ∈ {n1G1 + n2G2 + n3G3 :
ni ∈ Z} is the space of degenerate momentum points. Note:
〈l, σl , k, i| Ê2DHG |m, σm, k, j〉 is diagonal in all indices and
〈l, σl , k, i| Û (r) |m, σm, k, j〉 is traceless (since it is traceless
in the indices i, j).

1. Perturbative, single-band theory

For completeness, we present here the effective Hamilto-
nian derived in [50], which will allow us to most easily con-

trast our nonperturbative Hamiltonian presented in Eq. (14).
Applying the procedure outlined above to the simplest case:
Considering just three degenerate points (of the same parity)
K1, K2, K3, we project the superlattice Hamiltonian (11) onto
the perturbative wave functions of Eq. (6), which have just
l = 0, σl=0 = ±3/2 components, and find

Hi, j,l,m = 〈σl , k, i| Ĥ |σm, k, j〉 ,

(Hi, j,l,m ) =
⎛
⎝E (k + K1) W W

W E (k + K2) W
W W E (k + K3)

⎞
⎠ ⊗ I

+ 1√
3
η

⎛
⎝ 0 i −i

−i 0 i
i −i 0

⎞
⎠ ⊗ τz,

(12)

where I is the two-dimensional identity matrix and τz is
the usual Pauli matrix, both of which act on the physi-
cal spin/Kramers doublet subspace. In this approximation,
the diagonal elements are just quadratic dispersions E (k) =
k2/(2m∗); we refer to this as the single-band, quadratic
approximation. The coefficient η = 3/2β2K4

1 W , with β taken
from Eq. (6) and W from Eq. (9), determines the strength
of the spin-orbit coupling. Consider k = 0, whereby the di-
agonal elements are equal since |K j | = 4π/(3L); upon set-
ting η = 0 we find that there is a doubly degenerate eigen-
value {−W,−W, 2W } of H in (12): this is the Dirac point
[37,50]. Projecting the Hamiltonian (12) onto the doubly
degenerate subspace, allowing for η = 0, and performing a
small k expansion about K1, K2, K3 gives the Kane-Mele-like
Hamiltonian [50],

HD = −v(pxσy + pyσz ) ⊗ I − ησx ⊗ τz, (13)

where σi are Pauli matrices acting on the pseudospin space
generated by the doubly degenerate eigenvalues {−W,−W }
of H in (12). From the Dirac-like Hamiltonian (13) one finds
[50] that the spin-orbit gap is given by �SO = 2η ∼ (d/L)4W .
In Sec. III B, we will compare this perturbative result for �SO

to our nonperturbative results obtained from the Hamiltonian
(14), presented next.

2. Nonperturbative, multiband theory

The so-called multiband approximation is our primary
technical development, and can be conveniently understood
as the nonperturbative extension of the Hamiltonian (12)
derived above. In the multiband approximation, we use the
exact diagonalization results for the Luttinger Hamiltonian (3)
wave functions, which are compactly expressed in Eq. (4),
and project the superlattice Hamiltonian operator (11) onto
this basis. Such a procedure generates the following matrix
structure,
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FIG. 5. Evolution of the miniband spectrum upon tuning d/L and W . All bands are doubly degenerate due to T and P symmetry; each
band possesses a pair of Kramers spins, which we can refer to as spin ↑ and ↓. (a) Corresponds to the Dirac regime, with small spin-orbit
interaction set by the small ratio d/L = 1/8. We call the lower (upper) two minibands in the vicinity of the Brillouin zone corners K, K ′,
the first (second) Dirac points. The superlattice potential (9) has strength W = 2EL , with EL from (10), chosen to produce steep second Dirac
cones. (b) The parameters, d/L = 1.75/8 and W = EL , are chosen to produce a prominent TI gap at the second Dirac cones. (c) Demonstration
of a nearly flat, topologically nontrivial band; the second highest in energy miniband is seen to become nearly flat upon choosing parameters
d/L = 1.75/8 and W = 3EL , while the Chern numbers for each of the Kramers spins in this band are C↑,↓ = ±3. Note: The topological band
gaps at the first Dirac points are nonzero, yet smaller than the thickness of the lines; see Fig. 6(a).

H(k)(i, j),(l,m),(σl ,σm ) = 〈k, j, l, σl |Ĥ|k, i, m, σm〉 = 〈k, j, l, σl |Ê |k, i, m, σm〉 + 〈k, j, l, σl |Û (r)|k, i, m, σm〉
= Ei,l,σl (ki )δi, j ⊗ δl,m ⊗ δσl ,σm + U(i, j),(l,m),(σl ,σm )(ki )δσl ,σm ,

U (k)(i, j),(l,m),(σl ,σm ) = W
3∑

t=1

δ(ki − k j ± Gt )
∑
Sz,S′

z

∑
n,n′

k̂
(σl −S′

z )
j,− k̂(σm−Sz )

i,+ a∗
l,n′,S′

z
(|k j |)am,n,Sz (|ki|) 〈S′

z, n′|Sz, n〉 (14)

= W
3∑

t=1

δ(ki − k j ± Gt )
∑

Sz

∑
n

k̂(σl −Sz )
j,− k̂(σm−Sz )

i,+ a∗
m,n,Sz

(|k j |)al,n,Sz (|ki|),

where a given matrix element of the kinetic matrix Ei,l,σl (ki ) is
evaluated directly from the underlying 2DHG spectrum, also
shown in Fig. 2(a). We note that previous approaches [50]
have taken a quadratic approximation, such that Ei,l,σl (ki ) =
k2

i /(2m∗), which we sketch via the dashed line in Fig. 2(a). To
generate a large topological gap, we are required to consider
momentum and energy scales that are beyond the validity of
the single-band, quadratic approximation. Moreover, the wave
functions obtained in perturbation theory only account for
quadrupole mixing, which is only valid for small k/k0 < 1,
as seen in Fig. 2(b). This motivates our present construction
over previous approaches [50].

That completes the mathematical preliminaries. The re-
maining discussion and results are centered around the so
called first and second sets of Dirac bands, which corre-
spond to the lower and upper two bands, respectively, shown
in Fig. 5. The opening of a topological band gap within,
and the subsequent evolution of the second Dirac bands,
is our main finding. We dedicate Sec. III A to this point.
However, since the first Dirac bands have been considered
previously using perturbation theory [50], we will discuss
two aspects of the first Dirac bands: Sec. III B provides
a comparison between our results and the perturbative re-
sults, while Sec. III C considers the influence of P break-
ing. Finally, Sec. IV contains our conclusions and further
discussion. Wherever possible, we present results in phys-
ical scales coincident with those currently experimentally
achievable.

III. RESULTS

Our results are obtained by varying the two available
tuning handles (recall from Sec. II A): the ratio d/L and the
strength W of the superlattice potential (9). We will now
discuss the influence of each. For convenience, in the vicinity
of the Brillouin zone corners K, K ′, we call the (nearly) band
touching points of the first (second) Dirac bands the first
(second) Dirac points—or just 1DP (2DP).

Tuning the ratio d/L determines the energy/momentum
scale at which the Dirac points occur relative to the underlying
2DHG spectrum, i.e., which part of the 2DHG spectrum is
band folded at the Dirac point. As the ratio d/L is increases
from zero, the anticrossing kink in the 2DHG spectrum,
Fig. 2(a), moves from higher energies down towards the
Dirac points of the corresponding band structure, i.e., after
imposition of the superlattice. At the same time, one can
see that the wave functions are becoming maximally mixed
at the scale k ∼ k0, Fig. 2(b); i.e., the pure spin projections
±3/2,±1/2 are heavily mixed for k ∼ k0, due to spin-orbit
coupling. Hence the location of the kink relative to the Dirac
point provides a qualitative indication of the effective strength
of the spin-orbit coupling at the Dirac point; the closer the
kink the larger the spin-orbit coupling.

The second tuning handle we have at our disposal is the
parameter W . Tuning the energy scale of the potential W
relative to the characteristic energy of the Brillouin zone EL

(10) provides a means to control the steepness of the Dirac
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cones, i.e., the effective velocity in the vicinity of the Dirac
points. For example, in Fig. 5(a) we choose W = 2EL to
approximately optimize the steepness of the 2DP; this choice
was also made in [53]. Moreover, by taking d/L = 1/8 we are
sitting in the quadratic band regime, and in this limit we verify
that our results reproduce Ref. [53].

With the freedom of two tuning handles, d/L and W ,
there are many quantitatively distinct band structures we can
present. For conceptual clarity as well as for ease of presenta-
tion we discuss what we consider to be the two most important
qualitatively distinct regimes: (i) The anticrossing is band
folded to be in the vicinity of the first Dirac points (1DP), such
that k0 = 2/d ≈ K1DP = 4π/(3L), and hence d/L ≈ 1/2. (ii)
The anticrossing is coincident with the second Dirac points
(2DP), such that k0 ≈ K2DP = 2K1DP, and hence d/L ≈ 1/4.

A. P and T symmetric: Second Dirac bands

The current experimental limitations are approximately
10 � d � 30 nm and L � 40 nm. Moreover, the energy scale
of the problem is set by E0 ∼ 1/d2 (or equivalently EL ∼
1/L2 for fixed d/L), inspiring us to consider the lower limit of
the well confinement d ∼ 10 nm to maximize the topological
band gaps.

Let us consider L/d ∼ 4, which is both (i) achievable
experimentally and (ii) places the anticrossing at the 2DP.
Figure 5 shows the evolution of the band structure with param-
eters d/L = 1/8, 1.75/8, 1.75/8 and W = 2EL, EL, 3EL for
Figs. 5(a), 5(b) and 5(c), respectively. Figure 5(a) corresponds
to the Dirac regime with vanishing spin-orbit gap; this result
approximately coincides with the results obtained previously
[53] assuming no spin-orbit interaction. Figure 5(b) shows the
opening of a significant topological gap at the 2DP, while the
topological gap remains vanishingly small at 1DP (although it
is still nonzero). This result has not been discussed previously,
and represents one of our primary conclusions. From here
we conclude that tuning the Fermi energy to lie within the
spin-orbit band gap of the second set of Dirac bands represents
a more suitable topological insulator than tuning to the first
set of Dirac bands. Suitability here refers to the size of the
topological gap and hence the state’s resilience to thermal
fluctuations and disorder. We find that the spin-orbit band
gap �SO (evaluated at the K points) of the 2DP is largest
in Fig. 5(c), which corresponds to parameters {d/L,W } =
{1.75/8, 3EL}. The gap is seen to be �SO ≈ 0.5EL, which cor-
responds to �SO ≈ 1.1 meV at d = 10 nm and L = 46 nm.
Again, for fixed ratio d/L the energy scale of the system
EL ∝ 1/L2, and hence motivation for small quantum well
confinement length d and superlattice spacing L, is apparent.

Tuning the Fermi energy to lie in the gap of the 1DP or
2DP, we can approximate the corresponding hole density as
〈n〉 = 4/(

√
3L2) or 16/(

√
3L2), respectively. Experimentally

achievable hole densities are currently n ≈ 1011 cm−2 [55].
Table I presents the hole carrier densities corresponding to
tuning the Fermi energy (EF ) to the first and second Dirac
points of Fig. 5, from which we see that the 2DP supports
realistic hole densities, and in this sense is more suitable than
the 1DP.

Each Kramers spin in the lower band of the second Dirac
bands has Chern number [56] C↑,↓ = ±3, implying there are

TABLE I. Hole carrier densities 〈n〉 for EF tuned to the 1DP
and 2DP of Figs. 5(a), 5(b) and 5(c), calculated for quantum well
confinement d = 10 nm and 20 nm.

d EF Fig. 5(a) Figs. 5(b) and 5(c)

10 nm 1DP 3.6 × 1010 cm−2 1.1 × 1011 cm−2

2DP 1.4 × 1011 cm−2 4.4 × 1011 cm−2

20 nm 1DP 9.0 × 109 cm−2 2.7 × 1010 cm−2

2DP 3.6 × 1010 cm−2 1.1 × 1011 cm−2

three pairs of topologically protected edge modes (when the
Fermi energy is tuned to lie in the spin-orbit band gap of
the second Dirac bands). Moreover, in Fig. 5(c) we see that
the topologically nontrivial bands of the second Dirac bands
are nearly flat. The nearly flat band generates a high density of
states, and since the kinetic energy scale (bandwidth) is van-
ishing the particle-particle interactions become important. On
general grounds there is expected to be an instability towards
an ordered strongly correlated phase with leading candidates
suggested in the literature; fractional TI [15–19], ferromag-
netism [22,23,25,26], or charge density wave [11,24,57]. Ex-
plicit calculation of particle-particle interactions or strong
correlation effects is beyond the scope of the present work,
which is manifestly a single-particle theory. Instead such a
calculation would be more suited to an effective quantum
field theoretic approach, although this typically comes at the
cost of losing microscopic details. Alternatively, to find which
instability dominates we hope that the present work will
motivate experimental searches for strongly correlated phases
in artificial graphene. Finally, we mention that in the limit
of flat bands, one cannot rely on single-particle theory and
our above discussion may seem hopeless. However, note that
single-particle physics predicts flat Landau levels, which are
then the basis for the understanding of the strongly correlated
fractional quantum Hall phase. This analogy has inspired our
above claims as well as the many other studies of fractional
TIs [15–19].

B. P and T symmetric: First Dirac bands

We now consider the first Dirac bands. The purpose of this
subsection is to compare our results to those obtained previ-
ously in Ref. [50]. For the 1DP, we find the Chern numbers
to be C↑,↓ = ∓1, which is consistent with the edge modes
calculated analytically in [50]; there they find a single pair
of counterpropagating, opposite (Kramers) spin edge modes.
For clarity, we depict such edge modes schematically by the
black dashed lines in Fig. 6.

We provide Figs. 6(a) and 6(b), with ratios d/L = 1/4
and d = 1/2, to demonstrate the sensitive dependence of
the topological gap on this ratio. As explained, the dramatic
enhancement of the gap occurs when the kink corresponds to
the 1DP. Focusing on Fig. 6(b), the spin-orbit gap is seen to
be �SO ≈ 0.3EL, which converts to �SO ≈ 0.8 meV for the
feasible system parameters: d = 20 nm and L = 40 nm. This
result compares well with �SO ≈ 0.2EL obtained in Ref. [50],
even though d/L = 2 corresponds to the upper limit of the
validity of the perturbative results.
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(a () b)

↑ ↓
↑ ↓

FIG. 6. Comparison of the first Dirac points with parameters (a)
d/L = 1/4, (b) d/L = 1/2, with the strength of the potential the
same for both cases, W = 2EL=4. The black dotted lines connecting
the upper and lower bands in each figure are a schematic representa-
tion of the edge modes. The arrows indicate the Kramers spin of the
edge modes.

C. P broken: First Dirac bands

We now turn to the influence of explicit parity breaking.
We consider specifically the triangular well confinement of
Eq. (7), whereby T symmetry remains intact while P is
explicitly broken. The results of this section are limited to the
perturbative approximation, via an extension of Eq. (12), and
hence only provide information for the 1DP. Motivation for
this calculation is to obtain a qualitative understanding of the
effect of parity breaking on the edge modes, since almost all
experimentally produced confining potentials possess some
degree of inhomogeneity and with it P breaking (as well as
that triangular wells are purposefully designed).

We use a semianalytic approach to elucidate the key in-
fluence of P breaking and Rashba spin-orbit coupling (see
Fig. 7). As outlined in Ref. [50] and Sec. II C 1, we construct
a low-energy effective Hamiltonian in the vicinity of the K j

points (K ′
j is easily obtained thereafter), which is valid only

for small k about this point; the result is shown in Eq. (13).
See also the original work [50]. Next, the P-breaking (cubic)
Rashba interaction is introduced via

δHR = − i

2
α
(
k3
+τ− − k3

−τ+
)
, (15)

where the raising operators τ± = τx ± iτy act on the two
spins in the lowest l = 0 subspace of the underlying 2DHG
dispersion [i.e., the lowest dispersion branch of Fig. 2(a)],
and α is an effective interaction constant. Evaluating the
projection of δHR onto a plane wave basis, and following up
with a projection into the pseudospin space (exactly following
the steps described after Eq. (13) and given in more detail in
[50]), we obtain the effective Hamiltonian,

HR = −v(kxσz + kyσx ) ⊗ I − ησy ⊗ τz − γ I ⊗ τy. (16)

Here γ ∼ α8K3 [with K = 4π/(3L)] is due to the Rashba
spin-orbit term (15) and is an energy scale that is comparable
to the Rashba splitting �R shown in Fig. 3(b). Again, this
Hamiltonian is valid for k ∼ 0, and is an expansion about
the K points; taking v → −v and γ → −γ one obtains the
corresponding expansion about the K ′ points. We easily obtain
the four eigenvalues of the effective Hamiltonian (16),

Ek = ±
√

(vk ± γ )2 + η2. (17)

− − −

−

−

( − )/

/

− − −

−

−

( − )/

/

(a () b)

↑↓

FIG. 7. Effect of Rashba (P breaking) on the band structure.
The bulk (solid lines) and edge (dashed lines) bands are evaluated
in the vicinity of (a) the K points, and (b) the K ′ points. We take
the parameters η = γ = v = 1 in Eq. (16). The arrows indicate the
Kramers spin of the edge modes.

Hence the (gapped) Dirac cones are shifted from the K points
(k = 0) to vk ± γ = 0. It is easy to deduce the correspond-
ing eigenvalues at the K ′ point, just by demanding the T -
symmetry condition: E↑

k = E↓
−k .

Overall, qualitatively, we find that the two degenerate
copies of the band spectrum under P symmetry are now
nondegenerate, and are simply momentum-shifted copies of
each other. Most importantly, the topologically protected
edge modes remain intact. Of course, taking into account
momentum dependence of the Rashba term (15), see also
Fig. 3(b), through the entire BZ will quantitatively change this
conclusion from being a uniform momentum space shift to
a momentum-dependent shift. But the salient point remains
that breaking P symmetry does not destroy the TI state con-
structed here. We therefore need not worry about experimental
inhomogeneities, or the influence of nonrectangular quantum
well confinement geometries.

Additionally, one finds from the above calculation (or from
[50] in the absence of Rashba) that the edge modes of the
1DP do not cross at the � point (unlike in the Kane-Mele
model of graphene [6]). They are still T -reversal-symmetric
partners; they just do not cross in momentum space. Without
further calculation we suggest that this offers two advantages
over usual graphene: First, backscattering from a T -breaking
impurity (i.e., magnetic impurity) must satisfy a strict mo-
mentum conservation condition and hence it is conceivable
that such backscattering events have a restricted phase space;
i.e., the topological edge modes are equipped with an extra
protection. Second, in a finite geometry the overlap of the
wave functions of edge modes which occupy opposite edges
of the sample is expected to produce a finite gap in the
edge mode dispersions due to level repulsion. By the same
argument as for the case of backscattering, the noncrossing of
the edge mode dispersions in momentum space reduces the
possibility of the finite geometry-induced level repulsion. We
do not pursue these directions any further.

IV. CONCLUSIONS

We consider the topological insulating states of artificial
graphene—generated by imposing a superlattice structure
on top of a two-dimensional hole gas in a semiconductor
heterostructure—and develop a method to calculate the band
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structure. The method developed and presented here provides
a nonperturbative treatment of the spin-orbit interaction and,
in particular, is not limited to low energy/momentum scales.
Previous approaches had precisely this limitation [50,51].

Using the developed technique we discuss the previously
found first set of Dirac points (1DP), and confirm that they
indeed represent a topological insulating state. Moreover, we
point out an extra protection of the edge modes against mag-
netic impurities and finite geometry effects. We also perform
a semianalytic, perturbative calculation to elucidate the effect
of explicit parity (inversion) symmetry breaking, taking the
particular case of a triangular well confinement. The analysis
shows that parity breaking does not destroy the key properties
of the topological edge states.

Our most important findings relate to what we call the sec-
ond set of Dirac points/bands; these Dirac points sit at twice
larger energy/momentum scales than the first set, and so have
been completely beyond the validity of previous approaches
to hole gas artificial graphene [50,51], although they were
originally identified in electron gas artificial graphene [53],
where spin-orbit interaction, and hence topological properties,
was neglected. Our developed technique is indeed appro-
priate to describe the second Dirac bands, and we find the
following desirable properties: (i) Owing to sitting at higher
energy/momentum, the second Dirac bands experience larger
spin-orbit interaction than the corresponding first Dirac bands,
and hence possess a larger topological/spin-orbit band gap.
With the present experimental limitations on the length scales
d and L, this makes the topological insulating state obtained

by tuning the Fermi energy to the second Dirac bands more
robust than the topological insulating state obtained by tuning
the Fermi energy to the first. (ii) The second Dirac bands
possess three pairs of counterpropagating edge modes; the
Chern number per spin species is C↑,↓ = ±3. Compare with
the first Dirac bands, which have just a single pair of counter-
propagating edge modes (C↑,↓ = ∓1). (iii) Upon tuning the
system parameters, we demonstrate the appearance of nearly
flat bands endowed with a nontrivial topology (C↑,↓ = ±3).
This finding suggests that hole-hole interactions become the
dominant energy scale and as a result the system is expected to
exhibit strongly correlated phases—most notably, a fraction-
alized topological insulator state, superconductivity, or exotic
forms of magnetism.

In conclusion, the present work has exploited the highly
tuneable nature of artificial graphene to show that it is an
excellent candidate to realize (i) a topological band insulator
phase, and (ii) a plethora of enigmatic, strongly correlated
phases.
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