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We present first-principles calculations of structural, electronic, magnetic, and optical properties of zigzag-
oriented silicene nanoribbons, which, being endowed with spin-polarized edge states, are promising candidates
as building blocks of future spintronic devices. The minimal width for a structurally stable planar structure
having zigzag edges corresponds to a 4-chain ribbon, whose ground state presents antiferromagnetically coupled
spin-polarized edges, and a lattice parameter along the nanoribbon axis contracted (~5%) with respect to the
bulk value. Starting from the dependence of structural and electronic properties on the ribbon width, we present
theoretical predictions for the optical spectra of narrow nanoribbons, in which excitonic effects are relevant
due to the confinement in a quasi-one-dimensional structure. Especially for light polarized parallel to the
ribbon axis, we find significant differences in the position of optical absorption peaks of ribbons with ferro-

or antiferromagnetically coupled edges, showing that optical spectra can be used as a fingerprint of the magnetic

coupling of electronic edge states.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms packed into
a two-dimensional (2D) honeycomb lattice, has attracted
considerable attention in the scientific community for its
peculiar properties since a method to produce freestanding
flakes by mechanical exfoliation was proposed in 2004 [1].
This discovery paved the way to the engineering of novel
2D graphene-like materials. Silicene, the analog of graphene
based on silicon, can take advantage of its compatibility
with the current industrial processes based on the silicon
technology. The traditional scaling of the electronic devices
had reached limitations of electrostatics and short-channel
effects, threatening the continuance of Moore’s law. The
industry has already moved to thin-film channel devices, and
a Si-based 2D material such as silicene is a good candidate
to reach the ultimate limit of channel thickness [2]. A 2D
structure of silicon was predicted a decade before the advent
of graphene by first-principles total-energy calculations [3].
The most important achievement obtained in that pioneering
work was that the equilibrium geometry of 2D silicon is a
corrugated structure, favored with respect to the planar one.
Cahangirov et al. predicted, by means of a first-principles
structural optimization and phonon dispersion, that silicene
can be stable in a low-buckled honeycomb structure, due to
a mixed sp’-sp’ hybridization [4]. They also predicted that
the low-buckled silicene is a semimetal and its bands cross
at the Fermi level forming a Dirac cone centered at the K
point in the Brillouin zone, similarly to graphene. As a conse-
quence, the charge carriers resemble massless Dirac fermions.
Furthermore, it has been recently predicted that the realization
of silicene-germanene 2D heterostructures could allow one to
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engineer the band structure and the Fermi velocities within the
Dirac cone [5].

Nevertheless, no successful attempt to synthesize free-
standing silicene has been reported. Recently Du et al. ob-
tained a quasi-freestanding layer through the oxidation of
bilayer silicene on the Ag(111) surface [6]. Silicene has been
grown on various metallic substrates, such as Ag [7,8], ZrB,
[9], and Ir [10]. The most frequently investigated phase is a
4 x 4 silicene reconstruction on the Ag(111) substrate [7].
However, a strong hybridization between the silicene states
and the silver ones affects both the electronic [11,12] and the
optical properties [13].

This strong coupling between the epitaxial silicene lattice
and its metal-hosting substrate inhibits the required semi-
conducting properties and represents a drawback in the fab-
rication of functional electronic devices [14]. Nevertheless,
the reported electrical decoupling of silicene from its silver
substrate and the announced fabrication of the first functional
transistor device with a transferred silicene layer on insulat-
ing substrates [15] indicate that the problem of the metallic
substrates could be overcome.

The passivation of the dangling bonds of silicene with
adatoms, such as H, that yields silicane, the silicon analog
of graphane, is a possible way to produce a gap and to form
a 2D semiconductor [16]. An alternative route to achieve the
opening of the energy gap in silicene is to restrict the geometry
to one dimension, by constructing nanoribbons, i.e., silicene
stripes of finite width. The honeycomb structure of silicene
allows the formation of mainly two kinds of edges, namely
the armchair and the zigzag ones, defined by the relative
orientation of the hexagons relative to the ribbon length.
First-principles calculations predicted that freestanding sil-
icene nanoribbons with armchair edges are nonmagnetic [4],
while zigzag edges are magnetic [4,17]; in particular, zigzag
edges have an antiferromagnetic semiconducting ground state,
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which may find some possible applications in nanoelectronics
and spintronics [17]. Up to now, silicene has been synthe-
sized in the form of nanoribbons on the anisotropic Ag(110)
surface [18], showing a metallic character [19] and a well-
defined width of integer multiples of 0.8 nm [20]. However,
the atomic structure of the nanoribbons remains unknown.
There is a complex interplay between the amount of deposited
silicon and the deposition temperature, resulting in a rich
array of possible self-assembled nanostructures and surface
reconstructions [20]. Several reconstruction models have been
proposed, both for freestanding silicene nanoribbons [21,22]
and for silicene nanoribbons on Ag [23].

The aim of this work is to provide an ab initio calculation of
the optical properties of freestanding zigzag oriented silicene
nanoribbons focusing, in particular, on the role played by the
inclusion of quasiparticle and electron-hole corrections. We
show in the present work that the optical spectrum is a pow-
erful tool to characterize structural and magnetic properties of
ribbon edges. The dependence of band gaps and absorption
spectra peaks on the nanoribbon width allows a tuning of
magneto-optical properties, which can be modified according
to the needs of the electronics industry.

We have simulated zigzag Si nanoribbons (ZSiNRs), for
their potential application in forthcoming spintronic devices;
further, we focus our study on narrow nanoribbons, where
confinement effects are expected to be larger. After a brief
overview of methods and technicalities used in the present
work (Sec. II), we will present our results for structural
(Sec. III), electronic (Sec. IV), and optical (Sec. V) properties
of ZSiNRs.

II. COMPUTATIONAL METHODS

We performed our structural and electronic calculations
in the framework of density functional theory (DFT), solv-
ing the Kohn-Sham (KS) equations through the plane-wave
pseudopotential approach, as implemented in the Quantum
Espresso (QE) open-source code [24]. Following our previous
work [25], we chose a fully relativistic norm-conserving pseu-
dopotential, generated with a Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [26], and a 75 Ry cutoff ra-
dius for the wave function. Adopting the standard convention,
the width of the nanoribbon is classified by the number of
zigzag chains across it. So we label a nanoribbon with N,
zigzag chains as N;-ZSiNR. We described the geometric struc-
ture of the ribbon using the supercell method with periodic
boundary conditions, adopting a tetragonal cell which we dou-
ble along the ribbon direction in order to reproduce the (2 x 1)
edge reconstruction reported in the literature [4,21]. We set a
vacuum region of 15 A in the directions perpendicular to the
ribbon axis in order to avoid spurious interactions between
the periodically repeated replicas of the ribbon. The Brillouin
zone (BZ) is sampled with a45 x 1 x 1 Monkhorst-Pack grid
[27] to properly describe the Fermi surface in the nonmagnetic
(NM) and in the ferromagnetic (FM) configuration. In the
semiconducting antiferromagnetic configuration (AFM) we
sampled the BZ with a less dense 15 x 1 x 1 Monkhorst-
Pack grid, since we have verified that the error on the total
energy is already lower than 10~> meV/atom in this case. The
atomic positions and the lattice constant are fully relaxed by

a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [28]
with a threshold on the forces of 0.25 meV/A.

The optical calculations were carried out using the Yambo
package [29]. The macroscopic dielectric constant was com-
puted using 230 empty states (spanning an energy region up
to 8 eV above the Fermi level), and a 25 (60) x 1 x 1 k-point
mesh for the AFM (FM) ribbons. The effect of the local fields
has been taken into account with an energy cutoff of 1 Ry and
2 Ry for the FM and the AFM configurations, respectively.
Those values differ because the greater number of k points
used to sample the BZ of the FM 4-ZSiNR requires more
computational resources forcing us to limit the values of the
other parameters. We checked for the AFM case that this
reduced computational setup does not alter the conclusions
of the present work. We solved the Bethe-Salpeter equation
(BSE) within the Tamm-Dancoff approximation in order to
include the excitonic effects. The two-particle Hamiltonian
has been constructed with 24 occupied and 24 empty states
for the AFM configuration and with 10 occupied and 10 empty
for the FM case.

III. STRUCTURAL PROPERTIES

We constructed ZSiNRs cutting stripes of different widths
from the geometric structure of the low-buckled honeycomb
silicene. We found two different edge reconstructions after
the structural optimization, which are shown in Fig. 1. In
both of them one Si atom at the edge is pushed down, while
the adjacent atom is raised. This situation is emphasized
especially in Fig. 1(b), in which one Si atom gets close enough
to an inner Si atom to induce it to form a new bond, making
a triangle-pentagon pair. These atomic arrangements were
studied for the first time by Li ez al. [21], who have shown that

FIG. 1. Top and side views of reconstructed structures of 4-chain
silicene nanoribbons having zigzag edges. The structure (b) has
energy 28 meV A~ lower than the structure (a). Edge atoms have
a different color from the bulk ones to increase readability.
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FIG. 2. Left panel: Edge energy per atom in the edge chain for different width of the nanoribbon for antiferromagnetic (squares),
ferromagnetic (circles), and nonmagnetic (diamonds) spin polarization at ribbon edges. Right panel: Lattice constant for different width of
the nanoribbon for antiferromagnetic (squares), ferromagnetic (circles), and nonmagnetic (diamonds) spin polarization at ribbon edges. Lines

are a guide to the eye.

the structure with the triangle-pentagon pair defect is the most
energetically favored one. The formation of a new covalent
bond contributes to lowering the edge energy, defined as

Eiibbon — N X Es;
2a

where Eppbon represents the total energy per unit cell of the

ribbon, N is the number of atoms within the unit cell, Es; the

energy per atom in an infinite layer of silicene, and a the lattice

constant of the ribbon (parallel to the ribbon axis). We found

that the edge energy of the triangle-pentagon configuration is

, ey

Eedge =

28 meV A~ lower than the one of the structure depicted in
Fig. 1(a), in agreement with the values obtained in Ref. [21].

It is known from the literature that ZSiNRs have an an-
tiferromagnetic ground state [17,21], similarly to graphene
zigzag nanoribbons [30]. Therefore we investigated how the
inclusion of the spin polarization affects the stability and
the structural parameters of this peculiar atomic arrangement.
Two different kinds of spin-polarized structures are taken into
account: a configuration with an opposite spin orientation
between two ferromagnetically ordered edges [conventionally
called antiferromagnetic configuration (AFM)], and its ferro-
magnetic (FM) counterpart.

We calculated the edge energy per edge atom (i.e., Eeqge X
2a/Negge, Where Negge is the number of edge atoms), for both
the AFM and FM configurations, and we compared their value
with the one of the NM structure for different widths of
the ribbon. The AFM state corresponds to the ground state
as shown in the left panel of Fig. 2. The energy difference
between the magnetic (AFM, FM) and NM configuration
slightly increases with the ribbon width, confirming that a spin
polarization of the edge atoms is energetically favored also
in the limit of a semi-infinite 2D silicene sheet. At variance,
the energy difference between the AFM and FM configuration
decreases as the ribbon width increases, due to the decoupling
between the two magnetic edges.

We considered zigzag nanoribbons of different widths
(N,-ZSiNRs) with N, =4, 5, 6, and 7 corresponding to the
number of zigzag chains (including the edge ones). As shown
in Ref. [25], the 3-ZSiNR is unstable in a nanoribbon config-

uration, and spontaneously reconstructs in a kind of nanowire
structure, whose total energy per atom is 0.225 eV/atom lower
than the starting nanoribbon configuration cut from ideal 2D
silicene.

The dependence of the equilibrium lattice constant on
ribbon width is depicted in the right panel of Fig. 2. The
dashed line shows the lattice constant of infinite 2D silicene,
which can be considered as a ribbon of infinite width. The
lattice constant increases with the number of chains, with our
7-chain ribbon being still contracted by about 2% with respect
to the bulk limit. The magnetization also has a noticeable
effect on the lattice constant, especially in the thinner ribbon
(4-ZSiNR, with a difference of about 0.5% between the lat-
tice constants of ferromagnetic and nonmagnetic structures),
since the confinement effects and the edge-edge interaction
are stronger and affect the atomic rearrangement. To charac-
terize quantitatively how such atomic rearrangements change
the structural properties of the ribbon, we define the buckling
of a chain parallel to the ribbon axis as

bewain = Y, 1z — (2)], )

iechain

where the z axis is taken in the direction perpendicular to the
ribbon plane, z; is the coordinate of the position of ith atom
along the z axis, and the average z plane is defined as: (z) =
Zieribbon Zie

We show in Fig. 3 the b.p,in values for atoms placed at the
edges [begqe; Fig. 3(a)] and for those placed in the central rows
of the ribbon [beeneer; Fig. 3(b)].

The dashed lines represents the limit for infinite 2D silicene
0.23 A), i.e., half the silicene buckling. While the atomic
arrangement of the atoms placed at the edges is quite indepen-
dent of the width of the ribbon, the atoms at the center tend to
converge rapidly to the configuration of 2D infinite silicene,
consistently with a rapidly decreasing variance (shown by the
error bars), as we can see also from the decreasing error bars.
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FIG. 3. Atomic buckling for different widths of the nanoribbon
(see text). The error bars represent the standard error of the set
of the distances of atoms along the (edge/central) chain from the
z = 0 plane. For a given number of chains, the values corresponding
to different magnetic structures are slightly displaced along the
horizontal axis to increase readability.

IV. ELECTRONIC PROPERTIES

We focus on narrow nanoribbons in which confinement
effects and the magnetic coupling between the two edges are
expected to be more relevant than in the case of larger ribbons
such as those considered by Li et al. [21].

We display in Fig. 4 our computed band structures and
the corresponding electronic density of states (DOS) for the
4-7ZSiNR, the shorter width allowed for a structurally stable
ZSiNR [25]. We compare the nonmagnetic (NM), antifer-
romagnetic (AFM), and ferromagnetic (FM) spin-polarized
cases. Band structures of larger 5-ZSiNR and 6-ZSiNR are
shown in Appendix B. We remark that all these structures
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FIG. 4. Electronic band structures of 4-chain zigzag silicene
ribbon, for nonmagnetic, antiferromagnetic, and ferromagnetic con-
figuration of spin density at the edges.

feature a (2 x 1) reconstruction of the edges, so they have the
same one-dimensional BZ (apart from small changes in the
optimized lattice constant).

We first focus our attention on the band structure of the
NM (spin-unpolarized) 4-ZSiNR, reported in the left panel of
Fig. 4 with the corresponding DOS. This system is metallic
with two bands crossing the Fermi level, and a double peak
in the DOS close to E = 0. Comparing with the results of
Li et al. [21] for the 8-chain nanoribbon in a nonmagnetic
configuration where the two bands close to the Fermi level are
almost degenerate in the first half BZ, our results for the 4-
chain ribbon show them as well separated and distinguishable.
This is consistent with a much stronger edge-edge interaction,
which increases the level splitting in the narrower ribbon. The
double DOS peak near the Fermi level (DOS at —0.02 eV and
at 0.01 eV) is essentially due to p, electrons of edge atoms,
according to our results for the projected density of states
(PDOS) on the atomic orbitals [31]. The presence of a sharp
double peak in the DOS close to the Fermi level may lead to
a magnetic transition [32]. This is consistent with our result
showing that the magnetic configurations are energetically
favored (see Sec. III).

In the following, we analyze the band structure of the mag-
netic systems. In all the ZSiNRs studied the lowest-energy
magnetic configuration is the one with an AFM coupling
between the edges. The ground state of the 4-ZSiNR is hence
AFM, and remains so also when structural relaxations are
included. The AFM 4-ZSiNR band structure and DOS are
reported in the central panel of Fig. 4. The magnetization
opens an energy gap, shifting upwards the band immediately
above Ep, hence removing the double DOS peak at the Fermi
level and creating a range of forbidden energies. The system
displays a small indirect gap of 0.194 eV between the valence
band maximum (VBM) and the conduction band minimum
(CBM) at the I" point. This makes the 4-ZSiNR a magnetic
semiconductor. However, the bands are still twofold spin de-
generate, consistently with the general properties of a system
with an equal number of spin-up and spin-down electrons
with a spatial inversion symmetry operation, together with
time-reversal invariance [33].

The uppermost valence band and the first conduction bands
are almost parallel in the first half of the BZ, as we can see
by comparing the direct gap at the I' point, 0.32 eV, with
the 0.29 eV direct gap at VBM. We report in our PDOS
analysis (Fig. 4, central panel) the projected DOS on the edge
atoms only, which shows that bands near the Fermi level are
essentially edge states.

The FM 4-ZSiNR is only slightly higher in energy (energy
per Si atom 1.1 meV/atom) than the AFM one, and presents
several interesting features. Its spin-polarized band structure
is shown in the right panel of Fig. 4. The exchange splitting of
the bands corresponding to spin-up and spin-down electrons
is evident, with the largest separation (0.3 eV) displayed by
bands close to the Fermi level. The exchange splitting moves
two spin-down bands above E at the I' point. The lowest of
them becomes then occupied around the middle of the BZ, by
linearly crossing a spin-up band at the Fermi level. Each spin
polarization displays a metallic behavior, but the global band
structure is that of a semimetal, because the DOS at the Fermi
level is very small for both spin polarizations.
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The net magnetization of the material comes from the dif-
ferent number of spin-up and spin-down occupied states. The
band crossing point at the Fermi level occurs at slightly before
half of the I'-X direction (X/2 = } %) at k = 0.242%, 50 that
the spin-up electrons fill almost two half bands more than
spin-down ones. Hence the total magnetization is 0.97 g /cell
(see also Table II in Appendix B), slightly lower than the value
of 1up/cell that would have been obtained for a crossing point
at X/2. This linear crossing on the Fermi level is particularly
interesting because it resembles the shape of the Dirac cone
in 2D honeycomb silicene, here for states of different spin.
At the T" point, these two bands (the uppermost filled and
the lowermost empty bands) are mainly constituted by edge
electrons, but this contribution progressively decreases as
the wave vector approaches the X point, a peculiar property
discussed in Appendix A, together with other features of the
band structure of the FM 4-ZSiNR.

In summary we found that the AFM 4-ZSiNR is a magnetic
semiconductor, with a small indirect energy gap of about
0.2 eV. The FM 4-ZSiNR is a semimetal with a linear dis-
persion around the Fermi level, similar to the Dirac cone
in 2D honeycomb silicene. Despite the fact that it shows
a somewhat similar behavior to the 2D silicene, the FM
structure represents an excited configuration, since the AFM
one is lower in energy. Due to its semiconducting properties,
the AFM 4-ZSiNR could be a candidate to be integrated in
electronic devices.

V. OPTICAL PROPERTIES

The imaginary part of the macroscopic dielectric function,
ey (w), is a key property for technological applications be-
cause it is proportional to the optical absorption. The € (w)
is related to microscopic quantities which can be computed
on the basis of transition matrix elements between electronic
states, by considering both interband and intraband transitions
in the case of metals.

In our study we considered the long-wavelength limit
(g ~ 0), which is appropriate for spectra obtained by
ultraviolet-visible spectroscopy (UV-VIS). In this limit the
macroscopic dielectric function €, reads

1
ey(w) = lim —
40 [GG(I;’(q» w)]G=0G’=0’

, 3

which involves only the term having the reciprocal lattice
vectors G = 0, G’ = 0, i.e., the so-called “head” of the inverse
microscopic dielectric function written in reciprocal space as
[35,36]

€ge (4, ©) = Sge + v(q + G)xge (g, w), 4)

where v is the Coulomb potential and xgg (q, @) represents
the reducible polarizability, which in the random-phase ap-
proximation (RPA) is expressed in terms of the irreducible
polarizability as

xee (€. ©) = Y [feer — v(q + G xde (. )]
G//

X Xére (@, @) )

Here, the noninteracting response function ng,(q, )
is constructed from the single-particle eigenvalues (g°),
eigenfunctions (1), and occupations (f) as

Ko (@ o) =3 3 3 Uik — )

nk mk’

5 ((Ilf,zk/ ’ei(q+G)r ‘ ‘/’gkxwr?k ’e—i(q—&-G’)r/

o _ 0 _ _
Emk’ 8nk w m

Vo) )
(6)

where V is the unit cell volume.

The simplest (and crude) approximation 1is the
independent-particle RPA [35,36], in which the response
function is computed by using the Kohn-Sham (KS)
eigenvalues (¢ = &X%) and eigenfunctions (¥ = ¥*5),
and including only the G =0, G' =0 terms in Eq. (5).
The KS-RPA spectrum is obtained by summing explicitly
the G # 0, G’ # 0 terms up to the energy cutoff. However,
this spectrum is constructed from the DFT Kohn-Sham
eigenvalues (¢X5) and eigenfunctions (%) and it is
well known that DFT underestimates the energy gap in
semiconductors and insulators and, therefore, also the optical
absorption edge. To overcome this problem, we move from
the DFT energies to the quasiparticle (QP) energies in the
framework of many-body perturbation theory (MBPT).
The electronic structure is corrected replacing the DFT
exchange-correlation potential with the nonlocal self-energy
operator X:
ek = em + U [Z(ER) —Velyil) D
The QP eigenfunctions |wﬁp ) are taken as the unperturbed
Kohn-Sham states [A5), while the effect of the self-energy
can be determined, for example, by the GW approximation
[34]. In many cases, a rigid shift of the conduction bands
(“scissors operator”) followed by a band stretching represents
a good approximation to the true corrections, implemented
in the Yambo code [29]. Hence we followed this simpler
approach, with parameters for the shift and stretching obtained
by our GW calculations for a narrower set of bands. We refer
to Ref. [31] for further details.

The QP response function can be expressed in terms of

single—particle electronic eigenstates by substituting |9 ) =

|1/fgf ) and eigenenergies &%, = sng in Eq. (6).

The above scheme, however, still neglects the electron-
hole interaction effects, which, due to the strong confinement,
are expected to be important in narrow ribbons. In order to
include such effects in an ab initio calculation of optical spec-
tra, we adopted the Bethe-Salpeter equation (BSE) scheme
[35,36], as implemented in the Yambo code, to compute the
optical spectra at the most refined level.

In the VIS-UV range small-width ZSiNRs are essentially
transparent to light polarized perpendicularly to the axis of
the ZSiNR, because of the local-field effects (see Ref. [25]
for a detailed discussion), which induce a strong quenching
of the optical absorption for such polarization. Hereafter, we
hence focus our study on the VIS-UV optical response for
light polarized parallel to the ribbon axis.
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FIG. 5. Optical response of the AFM 4-ZSiNR with electron-
hole interaction (dashed area) in comparison with the spectra ob-
tained at KS-RPA level (dashed line, from Ref. [25]) and QP-RPA
level (blue line).

A. 4-chain antiferromagnetic nanoribbons

In Fig. 5 we display the imaginary part of the dielectric
function for light polarization parallel to the axis of the AFM
4-ZSiNR, for a photon energy spanning the range between 0
and 6 eV. The red dashed lines represent the KS-RPA results
from Ref. [25], the blue lines represent the QP-RPA ones (in
which we applied a rigid upward shift of the empty states
of 0.35 eV (obtained from a linear fit of QP corrections of
the electronic bands close to the Fermi energy) [31], and the
green lines are used for optical spectra obtained by solving the
QP-BSE within the Tamm-Dancoff approximation. In the left
panel of Fig. 6 we display the QP-corrected electronic bands
of the AFM 4-ZSiNR.

The QP-RPA spectrum is characterized by a main ab-
sorption peak at 0.7 eV, which is due to the transitions
between states around the Fermi level in the first half BZ
(see Fig. 6, left panel). The energy difference between these
weakly dispersing bands is exactly 0.7 eV. We notice also a
weaker absorption peak at 1.3 eV. The band shift due to QP
corrections leads to a blueshift of the absorption spectrum
with respect to the KS-RPA one.

The inclusion of the electron-hole interaction redshifts the
absorption spectrum, giving rise to excitonic states within
the QP energy gap. As often found in confined systems, the
strongest absorption peak is close in energy to that obtained
within the bare KS-RPA. This compensation between self-
energy and excitonic effects is due to balancing between
(1) the renormalization of the energy gap due to QP effect,
which corrects the DFT-KS gap underestimation producing a
blueshift of the spectrum with respect to the KS-RPA results;
(2) the electron-hole interaction, which introduces bound
states in the electronic band gap and modifies the oscillator
strengths, resulting in a redshift of the spectrum with respect
to the QP results. Such a compensation is similar to that
observed by Bruno et al. in a first-principles study on excitons
in 1D germanium nanowires [37].

The three main absorption peaks of our BSE spectrum for
the 4-ZSiNR are labeled as A, B, and C in Fig. 5. The main
contribution to the peaks labeled as A and C comes from
optical transitions between the uppermost valence band and
the first conduction band localized in the center of the BZ, as
depicted in the left panel of Fig. 6. In this figure, the transitions
depicted in red contribute both to peak A and peak C. The
peak B, instead, is due to transitions between the last valence
band and the second conduction band (depicted by blue lines
in the left panel of Fig. 6).

The exciton binding energy is defined as E, = Ag — E
where Acg is the difference between the QP energies of the
states involved by the transition and Ee is the excitation
energy. The binding energies for these excitons are 0.47, 0.42,
and 0.55 eV for the A, B, and C peaks, respectively. They
are smaller than those found by Prezzi et al. in graphene
nanoribbons [38].

We evaluate now the spatial correlation between the elec-
tron and the hole. The strongest absorption peak involves tran-
sitions from the top of the valence band and in Sec. III we have
shown that the edge states provide the main contribution to the
uppermost valence band. Therefore we place a hole at the edge
and plot the probability distribution of the electron position,
corresponding to the lowest excitonic state (A). As shown in
the right panel of Fig. 6 (top structure), the electrons tend to
localize on both edges, while in the center of the ribbon the
probability is lower. This indicates a strong coupling between
the edges due to electron-hole interaction. To see the position
in which the electron is mostly localized we plot, in Fig. 6
(right panel, bottom structure) a more restrictive isosurface
(20% of the maximum square modulus of the electron-hole
wave function), showing the edge atoms where the probability
to find the electron in a binding excitonic state is greater.
The average distance between the electron and the hole was
evaluated by computing the distance between the hole and the
sites where the electron is mostly localized (see Fig. 6, right
panels) and it was estimated to be around 10 A, indicating that
the exciton is a kind of 1D Wannier-like electron.

B. 4-chain ferromagnetic nanoribbons

In Fig. 7 we plot the imaginary part of the dielectric
function for light polarization parallel to the axis of the FM
4-ZSiNR (same notation as in Fig. 5).

Since the FM 4-ZSiNR is semimetallic, the intraband
transitions should be taken into account in the calculation
of the response function. The simplest way to obtain this
contribution is to add a semiempirical Drude term, ep(w) =

1— #’aw) in the dielectric constant. We set the plasma
frequency wp = 2.3 eV [39], while the damping parameter
yp was set to 0.5eV. As for the QP correction, for this
metallic case only a band stretching was required (i.e., without
shifting the empty states). We notice that the tendency toward
a compensation between the self-energy and the excitonic
effects displayed in the AFM spectra is strongly reduced for
the FM one, due to the more efficient screening of the latter
metallic system. The inclusion of the Drude term does not
significantly broaden the peak structure still present at the
KS-RPA and QP-RPA levels.
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FIG. 6. Left panel: Transitions which mainly contribute to the exciton peaks A and C (red) and B (blue) in Fig. 5. The electronic band
structure is corrected with QP self-energies. Right panel: Spatial distribution of the electron for a hole (green dot) fixed at the edge of the
ribbon for exciton peak A. The isosurface represents the 2% (top panel) and the 20% (bottom panel) of the maximum square modulus of the

electron-hole wave function.

The main difference in BSE spectrum with respect to RPA
structures is the absence of a broad peak at zero frequency,
which can be attributed, at least in part, to the dimensional ef-
fect in 1D metallic systems when the electron-hole interaction
is taken into account [40].

The BSE has a strong absorption peak at about 0.8 eV. The
RPA spectra (with the exception of the Drude peak) has a peak
structure similar to that of the BSE, but the latter is redshifted

12
11 -
10 -
i — QP-BSE i
= — QP-RPA .
i —- KS-RPA T
8 L —
= 7L 4
8 B 1

I
@ OfF ]
E sp ]
4 i
3 —
2 —
1 —
00 1 2 3 4 5 6
Photon Energy (eV)

FIG. 7. Optical response of the FM 4-ZSiNR with electron-hole
interaction (dashed area) in comparison with the spectra obtained at
KS-RPA level (dashed line, from Ref. [25]) and QP-RPA level (blue
line). The Drude term has been included.

with respect to the former due to electron-hole interaction,
with a larger shift than in the former AFM case due to smaller
compensation between QP and excitonic effects.

All spectra present a peak at about 0.8 eV, while the
absorption decreases as the photon frequency increases. The
drop of signal computed by the BSE for the FM 4-ZSiNR at
frequencies larger than 3 eV is probably due to the limited
range of conduction bands we were able to include in the
computation of the BSE, as a result of the large computational
effort required by the simulation of this system.

The significant difference between the AFM and FM cases
in the absorption spectra of 4-ZSiNRs may allow a simple way
to discriminate the AFM or FM coupling between the edge
states on the basis of optical absorption measurements.

C. Zigzag nanoribbon of larger widths

To enlighten the effect of confinement we computed the
imaginary part of the dielectric function for light polarization
parallel to the axis of the 5-ZSiNR. Our results for the ground
state having AFM coupled edges are displayed in Fig. 8. The
red dashed lines represent the KS-RPA curves, the blue lines
represent the QP-RPA ones, while the green lines represent
the optical spectrum obtained by solving the BSE.

The A and C peaks present in the spectrum of the AFM
4-ZSiNR now collapsed in one broadened peak at ~0.35 eV.
This collapse can be explained by noticing that, in the region
of the BZ close to the VBM, the first conduction band of the 5-
ZSiNR is flatter than the corresponding band of the 4-ZSiNR
(see Fig. 10). Since these transitions mainly contribute to
peaks A and C of the 4-ZSiNR spectra, in the 5-ZSiNR case,
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FIG. 8. Optical response of the AFM 5-ZSiNR with electron-
hole interaction (dashed area) in comparison with the spectra ob-
tained at KS-RPA level (dashed line) and QP-RPA level (blue line).

in the region of the BZ, close to VBM the energy difference
between the bottom conduction band and the top valence band
is almost constant, thus producing a merging of the A and C
peaks into a single broader structure.

By comparing the 4-ZSiNR and 5-ZSiNR spectra we
notice that the intensity of the main peak (A) decreases
as the ribbon width increases. To understand the effects of
confinement on the optical properties, we compare our BSE
spectra obtained for ZSiNRs with that of 2D honeycomb
silicene computed by Wei et al. [42], where the inclusion
of the excitonic effects (by the BSE) redshifts the absorption
spectrum of about 1 eV. In our AFM ZSiNR this value is equal
to 0.4 eV.

The main effect of the confinement is to remove the peak at
higher energies, e.g., the one at 4 eV present in bulk silicene.
Further, while the spectrum of bulk 2D honeycomb silicene
displays a peak at about 1.3 eV, the spectrum of the 5-ZSiNR
displays a broadened structure ranging from 1 eV to 3 eV.

Significantly, at variance with the AFM 4-ZSiNR case,
for the AFM 5-ZSiNR the strong absorption structure due to
excitonic peaks in the band gap below 0.8 eV is well separated
by the broader structure in the range 1.0 eV to 2.5 eV, thus
allowing us, at least in principle, to determine with atomic
resolution the number of zigzag chains composing the ribbon
on the basis of optical spectra.

VI. CONCLUSION

In summary, we have shown that confinement effects are
crucial in short-width zigzag silicene nanoribbons since they
significantly modify the lattice parameter, the electronic band
structure, the magnetism, and the optical spectra. We inves-
tigated the dependence of these properties on the nanoribbon
width and on the magnetic coupling of the nanoribbon edges,
allowing, at least in principle, the tuning of electronic and
magneto-optical properties of the nanoribbons. We studied the
result of the inclusion of many-body effects in the optical
spectra. In general, the solution of the BSE gives rise to

excitonic states which redshift the absorption spectrum, with
a partial compensation between the self-energy effects and
the excitonic effects. In particular, for the 4-ZSiNR with
AFM coupled edges, the strongest exciton peak comes from
transitions between the top of the valence band and the lowest
conduction band, and the corresponding Wannier-like exciton
couples the two edges of the ribbons.

The significant differences in the optical spectra for differ-
ent ribbon widths or for different magnetic coupling of edge
states can be exploited to characterize on the atomic scale the
structure and the magnetic configuration of the nanoribbons
in future applications in nanoelectronics devices.
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APPENDIX A: ELECTRONIC STRUCTURE OF
FERROMAGNETIC 4-ZSiNR

To investigate the origin of the band crossing of the FM
spin-polarized edge structure, we analyze in real space the
wave functions corresponding to the bands closest to the
Fermi level. In Fig. 9 we report the band structure and
wave functions at the I" point, at the crossing point, and at
the X point. At the I' point each wave function is localized
at the edges, while, as the wave vector increases, there is
a tendency towards combining with states localized at the
center of the ribbon. At the X point we notice that wave
functions are mainly localized in the center of the ribbon, for
eigenvalues lower than the Fermi energy and along the bonds
corresponding to the triangle defect, for the eigenvalues above
the Fermi level. It seems that the edge states do not interact
with center states at the I point but they do so as the wave
vector increases. Therefore we perform a k-resolved projected
DOS (k-PDOS) analysis in order to study the localization of
the wave function for each k point. We project the Bloch
function {¥, } onto a set of atomic orbitals {¢5 ; ,,(t)}, where
7 indicates the atomic position within the unit cell and 7, [, m
are the atomic quantum numbers. The k-PDOS is obtained by
decoupling the sum over k from the double summation over n
and over k:

DOS(E):ZZ
k T

> Wnklasn(@)PSE —e,(6)) |-

n,(n,l,m)

(AD)

The term in the square brackets is the k-PDOS projection
of the atom at t which allows us to study the atomic contri-
butions to the band structure. We project the wave function on
the edge atoms and on the center atoms for each k point in the
BZ by summing up the term in square bracket on the specific
set of atoms at the edge (central) chain. The result is shown in
Fig. 9(c). Blue lines indicate a greater localization of the wave
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FIG. 9. Ferromagnetic edge states of 4-chain zigzag silicene nanoribbon. Panel (a): Detail of the band structure around the Fermi level.
Panel (b): Projection in real space of the wave functions of the bands closest to the Fermi level. From left to right the wave functions reported
in real space correspond to the I' point, crossing point, and X point; the isovalue is set to 3 x 1073 (a.u.)™>. Panel (c): k-resolved projected
density of states. Blue and red lines indicate a greater localization on the edge and the center of the ribbon, respectively.

function on the edge atoms, while red lines indicate a tendency
toward localizing on center atoms. White areas indicate that
there is an equal contribution, or no states at that energy.

For k lower than the band crossing value, the bands around
the Fermi energy are strongly localized on edge atoms as we
can see from the bright blue lines. The first filled/empty states
mostly localized on the center atoms are at —0.9 and 0.8 eV,
respectively. In the second half BZ the intensity of the blue
diminishes, since it approaches the white in correspondence
with the valence bands near the X point. At the X point there
is a slightly higher contribution by atoms of the center but
the difference is so small that we cannot distinguish it in
this figure. The edge contribution in the conduction bands is
lowered but the wave functions are still mainly localized on
edge atoms. So the wave function tends towards delocalizing
on the whole ribbon as the wave vector increases. We notice
some hybrid bands around £1 eV, whose localization clearly
changes from edge to center and vice versa. Some bands
are strongly localized at the edges, like those between 1 and
1.5 eV near the X point. This can be a signal of an avoided
crossing between these bands and bands around the Fermi
level.

APPENDIX B: ELECTRONIC BAND STRUCTURE AS A
FUNCTION OF NANORIBBON WIDTH

In this section we illustrate the influence of the ribbon
width on the band structure. In the top panel of Fig. 10 we
show the band structures of the 5-ZSiNR and 6-ZSiNR with
the AFM triangle-pentagon edge reconstruction in compari-
son with the 4-ZSiNR one.

The ribbon width does not affect considerably the global
band shape around the Fermi level, where the contribution
of the edges is especially significant, so that the ribbons are
still magnetic semiconductors. We notice some differences in
the shape of the higher conduction bands and in the energy
difference between the lower valence bands. The indirect
gap between the VBM and the conduction band minimum
at the I point remains constant, while there is a tendency
towards enlarging the direct band gap at the I" point and
decreasing the direct band gap at VBM. Considering also
that excitonic effects are more relevant in confined systems,
these behaviors can result in a shift towards a higher energy
of the main absorption peak in optical spectroscopy. The
VBM shifts its position in the BZ, tending towards the X
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TABLE 1. Position of the VBM and energy gaps in AFM
N-ZSiNRs.

4-ZSiNR  5-ZSiNR  6-ZSiNR
VBM position (27” units) 0.230 0.260 0.265
Indirect energy gap (eV) 0.194 0.193 0.200
I" direct energy gap (eV) 0.323 0.355 0.350
VBM direct energy gap (eV) 0.293 0.259 0.243
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FIG. 10. Band structure for AFM (left panel) and FM (right
panel) magnetic configurations for 4-, 5-, 6-chain zigzag silicene
nanoribbons (with the triangle-pentagon edge reconstruction).

point. We notice also that the density of bands increases with
width, consistently with the larger size of the system. These
results are summarized in Table I. A PDOS analysis for the

6-ZSiNR [31] (not shown) demonstrates that the conduction
is still due to the electrons localized on edge atoms. The
intermediate and the central chains poorly contribute to the
conduction.

We now analyze the ferromagnetic case. The band struc-
tures of the FM ZSiNRs are shown in the bottom panel of
Fig. 10. Similarly to the VBM shift in the AFM structure, we
notice a shift of the crossing point of the bands towards the X
point of the BZ. This shift increases the total magnetization
of the ribbon as reported in Table II, since there are more
occupied spin-up states under the Fermi level. Since the edges
are less interacting as the ribbon width increases, we notice
also that the splitting between the two spin-up bands just
below the Fermi level in the first half BZ reduces. The two
spin-down bands just above the Fermi level show the same
behavior. This can explain the degeneracy of these two bands
found in Ref. [21] for the NM state of the 8-ZSiNR. In
summary, we can say that the number of chains does not mod-
ify substantially the electronic properties of the nanoribbon,
which maintains its semiconducting character in the AFM
configuration and the semimetallic character in the FM one.
Therefore it is possible to engineer the width depending on the
purposes, without losing the desired conduction properties.

TABLE II. Position of the crossing points and the total magneti-
zation in FM N-ZSiNRs.
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