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We present a quantum optics theory, numerical calculations, and experiments on coupled quantum dots
in semiconductor nanowire waveguides. We first present an analytical Green function theory to compute
the emitted spectra of two coupled quantum dots, treated as point dipoles, fully accounting for retardation
effects, and demonstrate the signatures of coherent and incoherent coupling through a pronounced splitting
of the uncoupled quantum dot resonances and modified spectral broadening. In the weak excitation regime,
the classical Green functions used in models are verified and justified through full three-dimensional solutions
of Maxwell equations for nanowire waveguides, specifically using finite-difference time-domain techniques,
showing how both waveguide modes and near-field evanescent mode coupling is important. The theory exploits
an ensemble-based quantum description, and an intuitive eigenmode-expansion-based Maxwell theory. We then
demonstrate how the molecular resonances (in the presence of coupling) take on the form of bright and dark (or
quasidark) resonances, and study how these depend on the excitation and detection conditions. To go beyond the
weak excitation regime, we also introduce a quantum master-equation approach to model the nonlinear spectra
from an increasing incoherent pump field, which shows the role of the pump field on the oscillator strengths
and broadening of the molecular resonances, with and without pure dephasing. Next, we present experimental
photoluminescence spectra for spatially separated quantum dot molecules (InAsP) in InP nanowires, which
show clear signatures of pronounced splittings, although they also highlight additional mechanisms that are
not accounted for in the dipole-dipole coupling model. Two different approaches are taken to control the spatial
separation of the quantum dot molecules, and we discuss the advantages and disadvantages of each.
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I. INTRODUCTION

Quantum dots (QDs) have gained substantial interest over
the years for controlling and manipulating photons and light-
matter interactions. These mesoscopic semiconductor “is-
lands” act as artificial atoms with bound exciton states that
make them promising candidates for single-photon sources
[1,2], entangled photon pairs [3], and even photon triplets
[4]. One of the main challenges with working with single
QDs, rather than ensembles, is control over the size, shape,
position, and composition of the dot such that it maintains
specific quantum emission characteristics [5] (i.e., to couple
to a cavity mode [6]). This problem is even more significant
when one requires two or more QDs that can be resonantly
coupled, due to their very small spectral linewidths.

Recently, there has been much progress in bottom-up
nanowire-based quantum dots. In this system, the dot ge-
ometry can (in principle) be controlled with unprecedented
precision [7]. The nanowires are readily grown using site-
selective approaches [8,9], with each device inherently con-
taining a single emitter, thus facilitating high-purity single-
photon emission [10]. The position control does not affect
the optical quality of the emitter, with demonstrated near-
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lifetime-limited linewidths of 4 μeV and post-selected Hong-
Ou-Mandel visibilities exceeding 80% [11]. The nanowire
approach provides a highly symmetric system with reduced
fine-structure splitting [12], facilitating polarization entangled
pair generation via the biexciton-exciton cascade [3,13,14].
In a properly designed waveguide [15,16], the devices can be
extremely bright, with efficiencies of 43% reported [11] and
a potential for higher performance through the use of a back
mirror [17].

Uniquely, nanowire systems provide a controlled platform
for incorporation of (nominally) perfectly aligned quantum
dots optimally coupled to a mutual optical mode [4,18,19]
with a dot-to-dot separation controlled to the precision avail-
able to epitaxial growth techniques. Such a platform is re-
quired for enabling strong photon coupling between the dots.
Coupling QDs together opens up a rich range of coherent cou-
pling effects, such as QD entanglement [20], quantum state
transfer [21], waveguide-mediated super-radiance [22,23],
and the ability to manipulate flying qubits [24].

In this work, we present a detailed theory to describe how
the spectral signatures of QD molecules in nanowire systems
can give clear signatures of photon transport in the strong
QD-QD coupling regime; we then show related experiments
for QD molecules in InP nanowire waveguides. In Sec. II,
we first present a photon Green function (GF) theory of light
propagation in nanowires, and derive an expression for the
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emitted spectrum in the presence of two dipoles. We also
introduce analytical GFs for a homogeneous medium and the
waveguide mode of a nanowire, and show later how these
can be used to construct an accurate analytical model that
includes both waveguide medium transport and near-field
evanescent coupling (e.g., Förster coupling, and other photon
coupling effects from near-field interactions). We present both
classical and quantum expressions for the fields, and use
the latter to derive the spectrum for excited quantum dot
states in vacuum. The GF approach is restricted to weak
excitation and equivalent results can be derived classically.
To go beyond this approach, and to investigate the nonlinear
regime of strong pumping in the emission spectrum, as well as
linewidth broadening through pure dephasing, we also employ
a Markovian master-equation approach for coupled QDs in
Sec. III and assess its validity through comparison with the GF
approach. In Sec. IV, we show the key features of the medium
GFs, both analytically and numerically, using full three-
dimensional (3D) finite-difference time-domain (FDTD) cal-
culations, and develop an intuitive analytical model for the
QDs in a nanowire waveguide. Then, we use these models to
compute the emitted spectrum, investigating various features
such as detector position and the sensitivity to the initial
excitation, and QD separation. We highlight various spectral
features, and discuss the emergence of dark and bright states,
as well as super-radiance and subradiance features. Through
the nonlinear excitation master-equation solution, we also
highlight additional spectral features, including a reversal of
the relative spectral weights of peaks in the emission spec-
trum, that arise from two-exciton states, which can achieve
significant population under strong pumping conditions. In
Sec. V, we show experimental results for QD molecules in InP
nanowires, where we see a pronounced spectral splitting be-
tween excitons that increases for smaller dot-dot separations,
though there are clearly other mechanisms that are not cap-
tured within our quantum dipole model for the quantum dot
excitons. Finally, in Sec. VI, we present our conclusions. In
addition, we include three appendices. Appendix A discusses
a classical oscillator approach to model finite-size dipoles in
FDTD, Appendix B presents some technical details about the
master-equation solution for the nonlinear incoherent spec-
trum, and Appendix C presents various experimental spectra
for various sets of QD nanowires.

II. GREEN FUNCTION THEORY

A. Photon Green function for a lossless waveguide mode

Light propagation through an arbitrary dielectric medium
can be described in terms of the mode solutions to the
Helmholtz equation:

∇ × ∇ × fλ(r) − ω2
λ

c2
ε(r)fλ(r) = 0, (1)

where ε(r) describes the relative permittivity of the structure
and fλ(r) are generalized field modes with harmonic e−iωt

time dependence. The electric field GF [22], which describes
the field response at r to a point source at r′, is defined through[

∇ × ∇ × −ω2

c2
ε(r)

]
G(r, r′, ω) = ω2

c2
1δ(r − r′), (2)

where Gi, j is a second-rank tensor and 1 is the unit dyad;
elements [i, j] correspond to the response in direction i at r
from the jth component of the source at r′. When the GF is
known, the field response to an arbitrary polarization dipole
source P(r, ω) can be found from

E(r, ω) = Eh(r, ω) + 1

εo

∫
V ′

G(r, r′; ω) · P(r′, ω)dr′,

(3)

in which Eh is the homogeneous field solution in the absence
of the polarization source. The eigenmodes of Eq. (1), fλ(r),
form an orthonormal and complete set, so that

∫
V ε(r)fλ(r) ·

f∗
λ′ (r)dr = δλ,λ′ and

∑
λ ε(r)fλ(r)f∗

λ (r′) = 1δ(r − r′) [25].
The waveguides of interest here are photonic nanowires,

which have discrete translational symmetry in their in-plane
dielectric structure, supporting lossless waveguide modes

fkω
(r) =

√
1
L ekω

(ρ)eikωz, where ekω
(ρ) is the mode solution,

normalized according to
∫

Aw
ε(ρ)|ekω

(ρ)|2dρ = 1, where Aw

is the spatial area, kω = ωnω/c, nω is the effective index,
and L is the length of the structure. One can then obtain the
waveguide mode GF analytically as [26]

GWG(r, r′, ω) = iω

2vg

[
�(z − z′)ekω

(ρ)e∗
kω

(ρ′)eikω (z−z′ )

+�(z′ − z)e∗
kω

(ρ)ekω
(ρ′)eikω (z′−z)

]
, (4)

where the terms preceded by Heaviside functions correspond
to forward and backward propagating modes, respectively,
and vg = |vg(ω)| is the group velocity at the frequency on
interest. Since the modes are translationally invariant in z,
ekω

(rd ) = ekω
(ρd ), where rd is the quantum dot (QD) position

(and we assume the QD is at the center of the wire axis,
x = y = 0). For simplicity, we will also introduce the peak
field position, which is maximally coupled to the waveguide
mode, both in terms of position and polarization, such that
ekω

(r0) = ekω
(ρ0), with |ekω

(r0)|2 = 1/(AeffεB), with Aeff the
effective mode area, and εB = n2

B the bulk background dielec-
tric constant of the photonic wire.

B. Homogeneous medium Green function

In the near field, the homogeneous medium GF contri-
bution can be the dominant coupling mechanism in various
inhomogeneous dielectric systems, so we discuss the general
properties here and confirm when this is a good approximation
in Sec. IV. The homogeneous medium GF is

Ghom(r, r′; ω) = k2
0eikBR

4πR

[(
1 + i

kBR
− 1

(kBR)2

)
1

+
(

3

(kBR)2
− 3i

kBR
− 1

)
R ⊗ R

R2

]
, (5)

where R = r − r′, k0 = ω/c, kB = nBω/c, and 1 is the unit
dyadic. We will show later that the homogeneous GF is one of
the dominant contributions to the total GF for dot-dot coupling
in the near field of a nanowire. However, in general one
also needs the waveguide mode GF as well, e.g., to describe
photons propagating along the wire, and to satisfy the optical
theorem.

085311-2



THEORY AND EXPERIMENTS OF COHERENT PHOTON … PHYSICAL REVIEW B 99, 085311 (2019)

For two-point dipoles with x and/or y dipole moments,
but separated in ẑ (see Fig. 2), we can write the near-field
(kBR � 1) GF as

Ghom|xx,yy = −1

4πn2
BR3

+ i
nB

6π

(
ω

c

)3

, (6)

neglecting the intermediate and far-field contributions (1/R2

and 1/R terms, respectively). This simplification is often
used in the literature and makes a clear connection to typ-
ical dipole-dipole coupling models in the quasistatic limit.
Note that since we treat perfect point dipoles, we do not
allow for any effects beyond the dipole approximation, and
the possibility of polarization mixing between the x and y
dipole moments. While it would be interesting to explore such
effects, we will neglect them in this work.

C. Coupling classical fields to a single quantum dot exciton
or two-level atom

It is useful to first consider an embedded single QD or
two-level atom treated at the level of a classical polarization
dipole. We assume, for now, that the polarizability of the QD
exciton, with resonance energy ω0, is described through the
polarizability tensor

α0 = α0nd n†
d , (7)

where nd = ax̂ + beiφ ŷ is a unit vector with some arbitrary
in-plane polarization direction, with a2 + b2 = 1, φ some
arbitrary phase, and

α0 = 2ω0d2
0 /ε0h̄

ω2
0 − ω2

(8)

is the “bare polarizability” volume, i.e., it does not include
radiative coupling effects to the environment. For simplicity,
we will also neglect nonradiative decay processes (unless
stated otherwise) and assume that radiative coupling is the
dominant decay mechanism, though this can easily be added
into the above response function prior to adding in radiative
coupling. The total electric field in the wire waveguide can
now be written as

E(r, ω) = Eh(r, ω) + G(r, rd ; ω) · α0(ω) · E(rd , ω), (9)

where G has units of inverse volume and α0 has units of
volume. Since the QD is polarized in the plane of the wire
(i.e., in x̂ and ŷ) and the lowest-order propagating mode for
the wire waveguide is HE11 mode (also polarized in the plane)
[27], we only need to consider the GF as a 2 × 2 matrix, e.g.,
in a Cartesian coordinate system,

G =
(

Gxx Gxy

Gyx Gyy

)
. (10)

Note that we can choose any basis we like, as long as it is
complete, so we do not need to choose a linearly polarized
basis. This can be important for more general QD coupling,
such as with chiral networks [21,28].

D. General quantum theory and emitted spectrum

In this section, we introduce a medium-dependent quan-
tum optics approach which closely follows the formalism of

Refs. [29,30] for calculating the emission spectrum at some
detection point rD for an arbitrary photonic structure with two
embedded QDs, treated as point dipoles, at positions r1 and
r2. This approach is particularly useful for highlighting the
underlying physics of photon transport in terms of classical
response functions. It is also valid for arbitrary media, though
it is restricted in general to computing the linear spectra.
Thus, although we use a quantum theory below, which helps
to highlight the underlying physics, all the final equations in
this section could be equivalently derived classically, but with
a different interpretation. In the subsequent section, we also
discuss an alternative master-equation approach, which can
include nonlinear interactions.

Starting from a multipolar Hamiltonian in the dipole
approximation [22,31,32], the Hamiltonian of the general
medium and QD dipoles is

H =
∑

λ

h̄ωλâ†
λâλ +

∑
n

h̄ωnσ
+
n σ−

n

− ih̄
∑
λ,n

(σ+
n + σ−

n )(gn,λâλ − g∗
n,λâ†

λ), (11)

where the photon terms ωλ, â†
λ, and âλ are the angular fre-

quency, creation and annihilation operators, respectively, of
a photon in mode λ, and operators satisfy bosonic commu-
tation relations, e.g., [âλ, â†

λ′ ] = δλ,λ′ . Similarly, the dipole
terms ωn, σ+

n , and σ−
n denote angular frequency, creation and

annihilation operators, respectively, of an electron-hole pair
(an exciton) in the nth QD (two dots in the case of a molecule,
n = 1 or 2), and these operators satisfy fermion anticommu-
tation relations, i.e., {σ+

n , σ−
n } = 1. The light-matter coupling

strength is given by

gn,λ =
√

ωλ

2h̄ε0
dn · fλ(rn), (12)

where dn = dnen is the dipole moment of the nth QD of
magnitude dn and orientation en, and fλ(rn) is the normalized
mode. Next, one can derive the Heisenberg equations of
motion for the photon and exciton creation and annihilation
operators [31,32], which are then solved in the frequency
domain to yield an exact expression for the operators in
the limit of weak excitation, i.e., with at most one quantum
excitation in the system. For example, for one QD dipole at
rd , the general expression for the electric field operator takes
the form

Ê(r, ω) = Êh(r, ω) + G(r, rd ; ω) · αn · Ê(rd , ω), (13)

in an almost identical form to Eq. (9), but the quantum form
can correctly describe spontaneous emission processes from
vacuum fluctuations, using an excited QD as the quantum me-
chanical source. Of course, the fields are now field operators
[29], and this expression also includes free fields.

Next, let us consider an in-plane linearly polarized dipole
(e.g., d = d x̂ or d = d ŷ) in an arbitrary environment (i.e.,
waveguide, homogeneous, cavity, etc.). By exploiting the
Dyson equation G(1) = G + G · α0 · G(1), where the (1) su-
perscript denotes the GF with the addition of one QD in the
medium, we first rewrite Eq. (13) as (ω is implicit from now
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on, unless stated otherwise)

Ê(r) = Êh(r) + G(1)(r, rd ) · αn · Êh(rd ), (14)

where the renormalized one-dot GF is written as

G(1)(r, rn) = G(r, rn)

1 − α0n†
n · G(rn, rn) · nn

. (15)

Since we will use this expression at different discrete spatial
points rm, then we also define

G(1)
m,n ≡ G(1)(rm, rn) = G(rm, rn)

1 − α0n†
n · G(rn, rn) · nn

. (16)

Note that due to the divergence of the real part of the
background homogeneous GF, when rm = rn, we only use
the imaginary part of the background homogeneous GF [i.e.,
GB(rn, rn) → i Im{GB(rn, rn)}]. In general, the GF will of
course also contain contributions from the waveguide mode,
as well as contributions for radiation modes above the light
line. Directly from this renormalized GF, we can rearrange to
arrive at the radiative decay rate of one QD for a given dipole
moment and background dielectric constant:

�1,1(ω) = 2d2

h̄ε0
Im[e1 · G(r1, r1; ω) · e1]. (17)

The generalization to include more than one QD is straight-
forward, and similar to how one solves a classical Dyson
equation with multiple dipoles. In the present case, the GF
for two QD scatterers at r1 and r2, as seen by a detector at rD,
is given by

G(2)(rD, r2) = G(1)(rD, r2) + G(1)(rD, r1) · α1 · G(1)
1,2

1 − G(1)
2,1α1G(1)

1,2α2

, (18)

where G(1)
i, j = n†

i · G(1)
i, j · n j . A similar expression can be de-

rived for G(2)(rD, r1). These equations fully solve the scat-
tering problem without any rotating-wave or Markov approx-
imations. As before, with some rearranging of the two-dot
renormalized GF, we may arrive at expressions for the inco-
herent and coherent photon coupling (alternatively, the real
and virtual photon transfer) rates between the two dipoles

�1,2(ω) = 2d1d2

h̄ε0
Im[e1 · G(r1, r2; ω) · e2] (19)

and

δ1,2(ω) = −d1d2

h̄ε0
Re[e1 · G(r1, r2, ω) · e2], (20)

respectively, which are explicitly functions of frequency. The
former modifies the broadening of the spectral resonances,
while the latter is related to the splitting; the spectral splitting
of light emission and detection (as would be measured) is
given precisely by 2δ1,2 (see Fig. 1).

Next, the spectral response at position rD can be calculated
as a sum of the electric field response from the two dots, given
the initial conditions, through 〈σn,n(t = 0)〉. These are density
matrix elements that relate to the initial populations (on-
diagonal elements) or coherences in the system (off-diagonal
elements). This expression applies also for the field in vacuum
case (i.e., no external pump field):

S(rD, ω) ≡ 〈Ê†(rD, ω)Ê(rD, ω)〉, (21)

FIG. 1. Energy-level diagram of the coupled QD system to help
formulate a quantum master-equation description. In the regime
of δ1,2 
 {�1,1, �

′, �1,2, �inc}, the emitted spectrum is a sum of
Lorentzian peaks corresponding to each of the optically allowed
transitions. The transitions in red involve the two-exciton |E〉 state
(associated with the two excitons being excited from each QD)
and thus are missed by the weak excitation approximation, but
are typically important unless only one QD is pumped, or �inc �
{�1,1, �1,1 − �1,2}. The dotted transitions involving the |�−〉 state
tend to interfere destructively and have smaller decay rates, and thus
are typically less dominant in the emitted spectrum. We neglect the
possibility of biexcitons from each individual QD.

where the electric field E is given by

Ê(rD, ω) =
∑

n=1,2

G(2)(rD, rn) · pn, (22)

with the quantum operator dipole source term

pn ≡ idn

ε0

[
σ−

n (t = 0)

ω − ωn
+ σ+

n (t = 0)

ω + ωn

]
. (23)

Thus, if the initial excitation is in the QD dipoles, the spectrum
is obtained from

S(rD, ω) =
∑

n,m=1,2

〈σ+
n (t = 0)σ−

m (t = 0)〉
(ω − ω∗

n )(ω − ωm)

× [G(2)(rD, rn; ω) · dn]†[G(2)(rD, rm; ω) · dm]

ε2
0

,

(24)

where, in general, the spectrum will depend upon the excita-
tion conditions. For example, it is known that with dipole-
dipole coupling effects, then the two shared excitons can
take on the form of a symmetric [|�+〉 = 1/

√
2(|1〉1 |0〉2 +

|0〉1 |1〉2)] and antisymmetric state [|�−〉 = 1/
√

2(|1〉1 |0〉2 −
|0〉1 |1〉2]. With no additional symmetry breaking, e.g.,
through the propagation from the dots to the detector, the for-
mer state is super-radiant (decaying faster than the uncoupled
dot), and the latter is subradiant (decaying slower than the
uncoupled dot), and we thus expect an optically bright and
dark resonance [29,33–35]. For later use, we also define the
states where only QD 1 or 2 are excited: |�1〉 = |1〉1 |0〉2 and
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TABLE I. Summary of initial conditions for Eq. (24).

|�(t = 0)〉 |ψ (t = 0)〉QD

|�1〉 |1〉1 |0〉2

|�2〉 |0〉1 |1〉2

|�±〉 1√
2
(|1〉1 |0〉2 ± |0〉1 |1〉2)

|�2〉 = |0〉1 |1〉2, which can be realized by incoherent excita-
tion. The initial electric field is taken to be in vacuum. Since
the GF theory assumes weak excitation, we are considering
at most one quantum excitation in the total system (weak
excitation approximation) [29]. In Table I, we summarize the
various initial conditions for the QD pair that we will consider.

Equation (24) can be computed using analytical expres-
sions or numerical calculations for the photon GF. However,
clearly one would rather use purely analytic expressions,
that we will develop below. In particular, we will show how
the real and imaginary parts of the medium GF can be
approximated as

Re[G(r1, r2)] ≈ Re[Ghom(r1, r2)] + Re[GWG(r1, r2)],

Im[G(r1, r2)] ≈ Im[GWG(r1, r2)],

Im[G(rn, rn)] ≈ (1 − βWG)Im[Ghom(rn, rn)]

+ Im[GWG(rn, rn)], (25)

where βWG is the waveguide beta factor, i.e., the probability
that a photon will be emitted into the waveguide mode of the
wire, discussed in more detail in the next section.

III. MASTER-EQUATION APPROACH AND NONLINEAR
EFFECTS FROM INCOHERENT PUMPING

In this section, we introduce a master-equation approach to
explore the emission spectra of incoherently excited QDs at
excitation powers beyond the linear excitation regime studied
in the rest of this work; for increasing pump levels, even
if below powers where the individual biexcitons appear, the
finite population of the exciton states may become significant
enough to warrant a fully quantum mechanical treatment of
the excitation dynamics beyond a weak excitation. Further-
more, linewidth broadening mechanisms (i.e., pure dephas-
ing) beyond spontaneous emission may also be of interest. We
restrict this section to the analysis of two dots with identical
parameters, although we note the qualitative features (e.g.,
two peaks in the emission spectrum) remain in the nonlinear
regime even with a detuning between the two uncoupled QDs.
To study this nonlinear excitation regime, we employ a master
equation for the density operator ρ derived for two coupled
QDs in a structured photonic reservoir. Following Ref. [36],
we obtain

dρ

dt
= − i

h̄
[H, ρ] + �1,1

2
(L[σ−

1 ]ρ + L[σ−
2 ]ρ)

+ �1,2

2
(L[σ−

1 , σ+
2 ]ρ + H.c.)

+ �′

2
(L[σ+

1 σ−
1 ]ρ + L[σ+

2 σ−
2 ]ρ)

+ �inc

2
(L[σ+

1 ]ρ + L[σ+
2 ]ρ), (26)

where L[A, B]ρ = 2AρB − BAρ − ρBA, and L[A]ρ =
L[A, A†]ρ is the Lindblad superoperator. We have derived
this equation in a frame rotating at the bare exciton frequency
ω0. The term �1,1 = �1,1(ω0) is the spontaneous emission
rate from Eq. (17) evaluated at the bare exciton frequency
as a consequence of the Markov approximation made in
the master-equation derivation, here equal for both QDs at
positions r1 and r2.

Similarly, with regard to the QD coupling terms, the
incoherent photon transfer rate is �1,2 = �1,2(ω0) from
Eq. (19), while �′ and �inc are phenomenologically inserted
pure dephasing and incoherent pump rates, respectively.
The Hamiltonian H = h̄δ1,2(σ+

2 σ−
1 + σ+

1 σ−
2 ) arises from the

dipole-dipole coupling, where the coherent photon trans-
fer rate is δ1,2 = δ1,2(ω0) from Eq. (20). This Hamiltonian
has eigenstates |E〉 = |1〉1 |1〉2, |G〉 = |0〉1 |0〉2, and |�±〉 =

1√
2
(|1〉1 |0〉2 ± |0〉1 |1〉2). In the linear excitation regime (with

the weak excitation approximation), the transitions |�+〉 →
|G〉 and |�−〉 → |G〉 create the photoluminescence (PL) spec-
trum, where the second transition is rendered dark by de-
structive interference, barring any symmetry breaking in the
propagation of the spectrum to the detector. Here, however,
we pump both excitons, which introduces the possibility of
exciting the |E〉 state, adding new transitions (though with
the same frequency peaks as the linear spectrum) into the
nonlinear emission spectrum beyond the linear GF approach.

Additionally, for strongly coupled QDs (�1,2 ≈ �1,1), the
spectrum can become nonlinear, even for very small pump
powers, specifically, the criterion for linearity is �inc �
{�1,1, �1,1 − �1,2}. To study the nonlinear effects, we can
calculate the emission spectrum [36]:

S(ω) =
∑
n,n′

Re
{
gn,n′ (ω)S0

n,n′ (ω)
}

(27)

for n, n′ = 1, 2, where gn,n′ (ω) = 1
ε2

0
dn · G∗(rn, rD; ω) ·

G(rD, rn′ ; ω) · dn′ is related to the propagation of the emitted
fields to the detector at position rD, and

S0
n,n′ (ω) = lim

t→∞

[ ∫ ∞

0
dτ 〈σ+

n (t + τ )σ−
n′ (t )〉e−i(ω−ω0 )τ

]
,

(28)
where for identical emitters, S0

1,1(ω) = S0
2,2(ω) and S0

1,2(ω) =
(S0

2,1(ω))∗. Using the quantum regression theorem [37], one
can exactly solve the optical Bloch equations in the basis of
the system eigenstates, and decompose these spectral func-
tions into linear combinations of Fourier-transformed density
matrix elements corresponding to optical transitions between
the system states (see Appendix B):

S0
1,1(ω) = ρ+,E (ω) − ρ−,E (ω) + ρG,+(ω) + ρG,−(ω) (29)

and

S0
2,1(ω) = ρ+,E (ω) + ρ−,E (ω) + ρG,+(ω) − ρG,−(ω). (30)

Clearly, if gn,n′ (ω) vary little from each other over the
frequency range of interest, terms corresponding to |�−〉
transitions will interfere destructively in the emitted spectrum.
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In the general case, these spectral transitions for the nonlinear
spectrum can be found analytically:

ρG,+(ω) = P+(iω+R+,E )+PE (�1,1+�1,2)

(iω+RG,+)(iω+R+,E )−(�1,1+�1,2)�inc
,

(31)

ρ−,E (ω) = − PE (iω+RG,−)+P−�inc

(iω+R−,E )(iω+RG,−)−(�1,1−�1,2)�inc
,

(32)

and ρ+,E (ω) = [PE + �incρG,+(ω)]/[iω + R+,E ], ρG,−(ω) =
[P− − (�1,1 − �1,2)ρ−,E (ω)]/[iω + RG,−]. Here, R+,E =
(3�1,1 + �1,2 + �inc + �′)/2 + iδ1,2, RG,+ = (�1,1 + �1,2 +
3�inc + �′)/2 − iδ1,2, RG,− = (�1,1 − �1,2 + 3�inc + �′)/
2 + iδ1,2, and R−,E = (3�1,1 − �1,2 + �inc + �′)/2 − iδ1,2.
The values PE , P+, and P− refer to the steady-state populations
of the system eigenstates and are given by

P± = �1,1 + �inc + �′ ∓�1,2(1 − �inc/�1,1)

�D
(33)

and

PE = �inc(1 + �inc/�1,1 + �′/�1,1)

�D
, (34)

with

�D = 3(�1,1 + �1,2) +
(
�2

inc + �2
1,2

)
�1,1

+
(
�2

1,1 − �2
1,2

)
�inc

+ �′(�1,1 + �inc)2

�1,1�inc
. (35)

In the regime of δ1,2 
 {�1,1, �
′, �1,2, �inc}, the spectrum

can be further simplified to a simple form, as a sum of
Lorentzians. Then, we have

ρi, j (ω) = Pj

iω + Ri, j
(36)

for (i, j) = {(G,+), (G,−), (+, E ), (−, E )}. Note that in
the weak excitation approximation, the terms ρ+,E (ω) and
ρ−,E (ω) are zero. For a detector placed far away from the two
coupled QDs, gn,n′ (ω) vary little from each other, and the total
far-field spectrum takes on the simple form

S(ω) ≈ Re{ρ+,E(ω) + ρG,+(ω)}, (37)

which consists of a peak at ω = −iδ1,2 with FWHM 3�1,1 +
�1,2 + �inc + �′, and a peak at ω = +iδ1,2 with FWHM
�1,1 + �1,2 + 3�inc + �′, where only the latter peak remains
in the linear spectrum. Thus, for �1,1 > �inc, the FWHM
of the peak at −iδ1,2 is broader than the one at iδ1,2 by
2(�1,1 − �inc), and vice versa for �1,1 < �inc. Similarly, the
ratio of the spectral weights (integrated intensity) of the peak
at −iδ1,2 to the one at iδ1,2 can be found as PE/P+, which is
(approximating �1,1 ≈ �1,2 for simplicity)

PE

P+
≈ 1

2

(
1 + (�inc + �′)/�1,1

1 + �′/(2�inc)

)
, (38)

which transitions at the �1,1 = �inc point. Note that for
�1,1 − �1,2 < �inc, the weak excitation approximation does
not accurately predict the emission spectrum, as the |�−〉

FIG. 2. Schematic side view of a nanowire where two QDs with
x/y dipole moments are separated only in ẑ and a detection point is
located at rD; Rmon is defined as the distance between the detector
position and the second/upper QD. For small separations, the GF
is dominated by the homogeneous solution. To help understand the
underlying physics, we will connect to point detectors as a function
of height, but in practice these would be outside of the waveguide
geometry, e.g., captured by a fiber. The radiative decay rates into the
WG, �WG, and out of the wire (side), �S, are labeled as well.

eigenstate becomes optically dark, and thus PE will be excited
substantially even for a weak pump.

To compare with a weak excitation approximation, we can
derive the previous equations assuming the system to be only
the set of |G〉, |�+〉, |�−〉 eigenstates. Then, ρ±,E = 0, and
we have the weak excitation results for ρw

G,±(ω):

ρw
G,± = Pw

±
i(ω ∓ δ1,2) + 1

2 (�1,1 ± �1,2 + 2�inc + �′)
, (39)

where

Pw
± = �1,1 + �′ ∓ �1,2

2(�1,1 + �′) + (
�2

1,1 + �1,1�′ − �2
1,2

)
/�inc

. (40)

The effects of the nonlinearities are made clear by comparing
to Eq. (34).

IV. RESULTS

A. Numerical calculations of the nanowire photon Green
function, field profiles, Purcell factors, and beta factors

In Fig. 2, we first show a simple schematic of two dots
(point dipoles) in a nanowire, with a taper that is usually
(experimentally) included to maximize the coupling vertically
to a fiber. Following, we will consider calculations for the
infinite wire as well as the tapered nanowire, and point out any
subtle differences. The electromagnetic response of a com-
plex photonic system is usually not known analytically, yet
semianalytical models can often be adopted when guided by
the full numerical solutions. Numerical approaches can return
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both the analytical modes as well as the numerically exact
GF, within numerical precision. To do this, we use FDTD
methods [38] to perform a full 3D GF analysis [39] using
Lumerical FDTD [40], a commercially available Maxwell
equation solver. This FDTD method uses a Cartesian grid
(Yee cell [41]) to discretize the system in space, solving the
electromagnetic fields at each cell location in discrete steps
forward in time.

To obtain the numerical GF in Eq. (5) using FDTD, we
solve the time-domain electric field response in the presence
of a single dipole polarization source and open boundary
conditions (perfectly matched layers, or PML) such that

Gi, j (r1, r2; ω) = FFT[Ei(r1, t )]

FFT[Pj (r2, t )]
, (41)

where Ei is the ith component of the electric field response
at r1, Pj is the jth component of the polarization response
of the dipole at r2, and FFT is the fast Fourier transform
from the time to the frequency domain. Care must be taken
when calculating the GF using the Yee cell configuration,
as the x, y, and z components of the electric and magnetic
fields are obtained at different locations within the cell; thus,
the dipole and time monitors must be placed at the correct
locations within the Yee cell corresponding to the polarization
or field component of interest. As well, the real part of the total
GF analytically diverges as r1 → r2, though FDTD gives a
finite answer which is a volume-averaged result over the mesh
cell [42]. For small separations, the size of the mesh cell is
therefore of paramount importance, if an accurate real part of
the GF is needed. As a result of the offset locations for the
field components in a Yee cell [38] and mesh size dependence
of the GF, there are also cross-coupling terms (i.e., xy for
separations strictly in z) that appear in the FDTD method that
do not appear in the analytical result of two-point dipoles.
These unintentional off-diagonal terms in the GF contribute
to the total GF (and, thus, the spectral splitting between two
QDs), which may be important to consider for real QDs
which are separated on the same order of magnitude as their
lateral radii.

One useful quantity to examine in such structures is the β

factor, which can be described as a measure of how much of
the light is coupled into a particular optical mode of interest
[i.e., of the nanowire (NW) or of a output coupling fiber
above the NW]. As shown in Fig. 3, this can be calculated by
measuring the transmission through a power monitor normal
to the axial direction of the NW (z, here):

β = T +
z + T −

z

PF
, (42)

where T +/−
z is the Poynting vector power transmission

through the top/bottom z plane with a specific size/location,
and PF is the Purcell factor (i.e., local field enhancement due
to the environment),

PFi(r0, ω) = Im[Gtot|i,i(r0, r0; ω)]

Im[Ghom|i,i(r0, r0; ω)]
, (43)

where the homogeneous GF, Ghom|i,i, is given by Eq. (5), and
the total GF, Gtot|i,i, is the full response given by Eq. (41) at
the location of the dipole emitter.

FIG. 3. Purcell factor (a) and β factor (c) for the tapered (dashed
line) and infinite (solid line) nanowire with radius of 110 nm. The
magnitude of the electric field in the (b) x-z plane of the tapered wire
and (d) in the x-y plane of the infinite wire. The dashed white lines
show the z-monitor locations/sizes used for the calculated β factor
given by Eq. (42). See text for more details.

Using the dipole excitation approach, the finite tapered NW
and infinite NW which are examined numerically using FDTD
have a radius of 110 nm and index of refraction of 3.37. The
2D mode solver in Lumerical FDTD was used to obtain the
infinite wire’s modal properties at the frequency of interest,
which are summarized in Table II. The β factor as well as the
PF were obtained using a full 3D simulation of the infinite and
finite tapered NW geometries [Eq. (42)], and are summarized
in Fig. 3. It is important to highlight that the β factor, in
this definition, is highly sensitive to the size and position of
the transmission monitor. For the infinite NW, the monitor
was placed at ±2 μm ẑ from the dipole emitter located in the
center of the NW, and span 300 nm in x and y such that the
mode is appropriately captured with minimal contributions
from the leaky scattered light from the NW. However, for
the finite tapered NW, the transmission monitors are placed

TABLE II. Waveguide parameters used in the analytic GF, ob-
tained from the mode solution of the wire waveguide in FDTD.
The effective mode length is simply Leff = A1/2

eff as defined by Aeff =
1/εB|ek (ρ0)|2, with

∫
Aeff

ε(ρ)|ek (ρ)|2dρ = 1, as discussed for Eq. (4).

nB 3.37
neff (FDTD, best fit) 1.86, 1.905
ng (FDTD, best fit) 5.35, 5.25
Leff (FDTD, best fit) 155, 180 nm
f0 324.1 THz
h̄ω0 1.34 eV
r 110 nm
β 0.9
Height (base, taper) 1 μm, 5.7 μm
r (base, taper) 110 nm, 10 nm
Taper 1◦

Dipole r0 260 nm ẑ
nsubstrate 3.37
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FIG. 4. A direct comparison of the two-point GF as a function of separation (xx component) R along the axis of a nanowire using
the waveguide [Eq. (4)], homogeneous [Eq. (5)], as well as the sum of the two GFs at h̄ω0 = 1.34 eV (λ0 = 925 nm). The waveguide
parameters are given in Table II. Full FDTD simulations of an infinite NW are shown to examine the approximation that Re[G(r1, r2)] =
Re[Ghom(r1, r2)] + Re[GWG(r1, r2)] and Im[G(r1, r2)] = Im[GWG(r1, r2)], unless r1 = r2, in which case Im[G(r1, r1)] = Im[GWG(r1, r1)] +
(1 − β )Im[Ghom(r1, r1)] (see text).

at −1.500 μm and +8 μm (wire spans from 0 to 6.7 μm)
and spans from −5 to +5 μm in x and y. The reason for
the large x − y span is that the light would be experimentally
collected via some type of fiber placed above/below the NW.
Figure 3 includes transmission data collected above the NW
(top) as well as collected within the substrate (bottom) to get
the total transmission, even though experimentally only the
top would be collected. By symmetry, the infinite wire splits
the transmission equally between the forward and backward
z directions, but due to symmetry breaking and the tapered
design, the β factor of the finite tapered wire is split such
that 67.5% of the light propagates upward toward a fiber and
32.5% propagates downward into the substrate. Not only is
the total β factor improved in a tapered design, but the percent
directed upward is enhanced.

The value of β, as defined above, is used with the PF to
calculate the radiated emission rate into the WG and scattered
out the side of the WG, �WG and �S, respectively. The β factor
for the WG and the scattered light is then defined by

β = �WG

�WG + �S
, (44)

βS = �S

�WG + �S
, (45)

such that

�WG = PF · �0β, (46)

�S = PF · �0(1 − β ), (47)

where Ghom(r0, r0; ω), β, and the PF are determined via
Eqs. (6), (42), and (43), respectively, and d = d1 (we also
assume d1 = d2 below). The values calculated here are

consistent with those reported experimentally under similar
conditions [19].

Using the FDTD mode solution as a guide, Fig. 4 directly
compares the real and imaginary components of the analytic
GF for three scenarios: (i) WG only, (ii) homogeneous only,
and (iii) WG + homogeneous. The GF is calculated at the
center frequency f0 for different separations along the ax-
ial direction of the wire R between 4 and 1000 nm; this
spatial range adequately captures features from the near-,
intermediate-, and far-field contributions of the GF. The left-
hand panels, Figs. 4(a) and 4(c), show the three GF options
calculated using Eqs. (4) and (5) and the FDTD computed
values summarized in Table II. It is evident that over the entire
range of R, the real and imaginary GF of our nanowire is best
described analytically by the WG+homogeneous and the WG
only, respectively. The right-hand panels, Figs. 4(b) and 4(d),
compare the best analytic GF to the FDTD calculated GF for
the infinite wire (black solid line), as well as the best analytic
fit which is determined by varying Aeff , ng, and neff within
≈15% of the FDTD calculated values to minimize:

1000 nm∑
R=4 nm

∣∣∣∣ Im
[
GWG

xx (R)
] − Im

[
GFDTD

xx (R)
]

Im
[
GFDTD

xx (R)
]

∣∣∣∣.

The period of oscillation is affected only by neff , thus,
there is a clear optimization value for this variable. How-
ever, the amplitude of GWG is proportional to Aeff/ng, thus,
there are infinitely many solutions to this optimization prob-
lem. We therefore used the pair of optimal values that best
represented the original values of ng and Aeff . Note that we did
not perform separate optimizations for the real and imaginary
components of the GF due to the fact that both components
should physically describe the same photonic system.
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FIG. 5. Gxx of the nanowire taper, in units m−3; see text for
details of the wire geometry and parameters.

The FDTD solution for the tapered NW design is not
shown in Fig. 4 since the infinite wire is the system that will be
used in the rest of this work; however, we do present all of the
components of Gtot|x,x(r, r′, ω0) for the tapered NW in Fig. 5.
These data are represented as a two-dimensional (2D) spatial
contour map which illustrates qualitatively similar behavior to
the infinite wire, where the real part of GF rapidly increases
as r → r′ and is then dominated by the WG contributions
that create the oscillatory behavior in the axial direction.
The dipole in the tapered NW FDTD simulation is placed at
an antinode, determined using a sweep PF calculation as a
function of Rẑ to obtain the best results.

B. Linear spectrum from excited quantum dots in vacuum using
the Green function approach

In this section, we examine the emitted spectrum S(ω), as
defined by Eq. (24) for a variety of parameters including cross
coupling in the GF, initial conditions, QD bare resonance
detuning (�), background broadening (through a complex
ω0), and detection position. Note that most features of the
spectral features can also be explained in terms of the molec-
ular eigenstates as described by the master-equation model
discussed in Secs. III and IV C.

Theoretically, we expect the QD resonance to split into
two distinct resonances centered around h̄ω0 and separated
by 2h̄δ1,2(ω0) [Eq. (20)], which is proportional to 1/R3 for
small QD separations, as well as to the dipole moments of
the QDs (d2 if d1 = d2). For example, for d1/2 = 50 D (in
x̂ or ŷ) and R = 5 nm, the expected splitting would be
approximately 2.2 meV. These parameters will be considered
our base example for all studies unless otherwise noted. Note
that the spectral splitting will double in value if both x̂ and ŷ
dipole moments are considered.

FIG. 6. (a), (b) Splitting as a function of detuning and dot separa-
tion for d = 50D, shown in two different ways. (c) Spectra for R = 5
nm, d = 50 D, and initial condition |�1〉 as a function of detuning.
The detection point rD is located 1000 nm ẑ above the first/lower QD.

First, let us consider detuning between the QDs, such that
ω1/2 = ω0 ± �/2. Figure 6 shows how the splitting changes
as a function of detuning for a range of QD separations
from 4 to 20 nm, as well as the spectra for R = 5 nm for
various values of detuning. We see that for small separations,
the increase in splitting due to detuning is relatively small
compared to the initial splitting and is nonlinear. If we look
at various separations, the effect of detuning changes rapidly
such that as R increases, the resonances simply become ω0 ±
�/2 (i.e., the dots become “uncoupled”); within a rotating-
wave and Markov approximation, the resonances become

ω0 ±
√

δ2
1,2 + �2/4. Importantly, the splitting for very close

QDs (R < 10 nm) is robust to the detuning that may be present
even for nominally identical experimental dots.

Figure 7 shows how the spectra change for the four initial
conditions defined in Table I, as well as the full-width at
half-maximum (FWHM) of each of the resonances, using the
three different GF models from Fig. 4. The presence of dipole-
dipole coupling, the conditions of |�1/2〉 (dashed lines) are
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FIG. 7. A direct comparison of the analytic spectrum S given by
Eq. (24) at a detection point rD = 1000 nm ẑ and dot separation of
R = 5 nm ẑ. The FWHM of each resonance [except for WG only,
(b)] is shown on the right axis, determined using a Lorentzian fit,
matching the expected FWHM from Eq. (48). The initial conditions
for |�(t = 0)〉 are labeled as described in Table I. For comparison,
the single QD (black) solution is shown. Ghom/WG apply for both the
real and imaginary components, whereas Gbest refers to the best fit
described in Fig. 4.

analogous to either of the QDs being initially excited and the
other in the ground state, where |�+/−〉 (solid lines) are linear
combinations of |�1/2〉, and are the set of new eigenstates
(|�+/−〉) of the system, similar to that of molecular dipole-
dipole coupling and Förster coupling [33,43–45]. The analytic
FWHM of the peaks will have values of

�± ≈ �1,1 ± �1,2 + �, (48)

where � is a possible additional single QD broadening. Note
that �1,2 accounts for incoherent coupling of the dots medi-
ated entirely through the waveguide mode, and specifically
through the imaginary part of the waveguide GF. Note that this
is the same result given by the weak excitation regime in the
master-equation approach within the Markov approximation,
given by Eq. (39). One can easily verify this solution by fitting
the spectra to a two-peak Lorentzian model. As expected, the
real part of GWG approaches zero for small separations, so
no splitting is observed if only the WG is considered. The
spectra are shown on the left axis and the FWHM on the
right. Depending on the initial condition (i.e., initially excited
molecular eigenstate), the spectra illustrate a super-radiant
(ω > ω0) and subradiant resonance (ω < ω0), as shown by
the FWHM relative to the single QD solution. When the WG
is added to the homogeneous solution, the super-radiant and
subradiant solutions are still present, except with modified
FWHM that reflect the additional broadening from the imagi-
nary part of GWG.

Next, we will look at the possibility of cross coupling in
the GF. Figure 8 directly compares the analytical homoge-
neous GF with the FDTD homogeneous GF in the calculated

FIG. 8. Analytic (black) and FDTD (color) for two separations.
Mesh size = 1 nm and d = 50 D. Note: We have used all four tensor
components of the homogeneous GF. If the QDs have x-xy and y-yx
couplings, then the splitting is precisely double. The detection point
rD is located 120 nm ẑ above the first/lower QD.

spectrum with and without x-y dipole cross coupling. As R
decreases, the GF is overestimated by FDTD (mesh of 1 nm
used, here). This is a known effect due to finite meshing ef-
fects in the Yee cell [42]. As discussed in the previous section,
it is very possible that at such close separations the dipole
approximation breaks down due to the lateral dimensions of
the QDs being comparable to the vertical separation; in this
case, cross coupling may contribute to the total GF, which is
naturally captured in FDTD depending on the choice of mesh
size. These effects are out of the scope of this paper, but are
useful to keep in mind as a source of additional splitting.

As seen in Figs. 7 and 8, |�1〉 and |�2〉 produce identical
spectra. However, due to the asymmetry between the locations
of r1, r2, and rD, this is not strictly true. In Fig. 9, we show that
as the detection point moves closer to the QD pair in the axial
direction, this asymmetry between the two states becomes
evident, although only visible on a log10 scale. For all other
calculations, the detection point is taken to be 1000 nm
such that the two states are effectively symmetric. This is
understandable given that |Ghom

1,D -Ghom
2,D | → 0 as rD ⇒ ∞.

C. Nonlinear spectra with incoherent pumping using
a master-equation solution

In this section, we discuss the results from the master-
equation approach, which allows for the nonlinear quantum
regime to be studied. Such effects are now beyond what could
be captured by a classical Maxwell solution. As discussed
in Sec. III, the emission spectrum of two coupled QDs in
the regime where δ1,2 
 {�1,1, �

′, �1,2, �inc} consists of four
superimposed Lorentzians with center frequencies ω0 ± δ1,2.
These peaks form from optical transitions between the dressed
states of the system, where transitions involving |�−〉 are ren-
dered mostly dark by interference in the far field. In the linear
spectra (the regime of the weak excitation approximation),
two of these peaks are nonzero, while in the nonlinear regime
the |E〉 state population becomes substantial and the other
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FIG. 9. Analytic spectra as a function of detector position (Rmon,
see Fig. 2) where rD is directly above the QDs in the axial direction
of the NW. R = 5 nm and d = 50 D.

transitions appear in the spectrum. For strong pumping, this
can cause the spectral weights, as well as the linewidths of
the most dominant peaks in the spectrum to flip in magnitude
(see Sec. III). In Fig. 10, we plot the master-equation solution
with and without a weak excitation approximation for two
sets of parameters. In strongly coupled QDs, the features of
nonlinearity can appear even for relatively weak pumping,
as the |�−〉 state is very nearly optically dark, allowing for
population buildup in this state and thus easier pumping to the
|E〉 state.

In Fig. 11, we plot the emission spectrum in the lin-
ear excitation regime for both the master-equation and GF
approaches, to investigate the validity of the Markov and
rotating-wave approximations made in the derivation of the
master equation. Notably, the effect of additional broadening
in the Green function approach is shown to be nearly equiv-
alent to adding a pure dephasing with the master equation, in
both the spectral weights and degree of broadening. Except at
very strong coupling strengths (small dot spatial separation),
for which other effects such as electronic tunneling and the
breakdown of the dipole approximation are likely significant,
the differences in the two approaches are negligible. Either ap-
proach is thus appropriate for modeling the dipole-dipole cou-
pling in nanowire waveguides under these parameter regimes,
with the master-equation solution allowing for insight into
the nonlinear excitation regime. Furthermore, a more accurate
master equation for strong coupling between dots can be de-
rived by first including the Coulomb dipole-dipole interaction
in the system Hamiltonian before tracing over the photonic
reservoir [45].
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FIG. 10. Emission spectra for incoherently pumped QDs for two
sets of parameters using the full master-equation solution (solid black
line) and the weak excitation approximation solution (dashed-dotted
red line). For (a), h̄�1,1 = 2 μeV, �1,2 = 0.999 �1,1, h̄δ1,2 = 80 μeV,
and all the gn,n′ (ω) are assumed equal and independent of ω, such that
all transitions involving the |�−〉 eigenstate destructively interfere.
In (b), we use the “best-fit” parameters and GF, with R = 12 nm,
rD − r1 = 1 μm, and d = 50 D. For both (a) and (b), �′ = 1

2 �1,1.

V. PHOTOLUMINESCENCE EXPERIMENTS
ON QUANTUM DOT MOLECULES IN INDIUM

PHOSPHIDE NANOWIRES

To experimentally study waveguide-mediated coupling in
QD molecues, we use bottom-up InP nanowires incorporating
two InAsP QDs. The nanowires are grown using selective-
area vapor-liquid-solid epitaxial growth on a patterned InP
substrate [9]. Briefly, a Au catalyst is positioned in the center
of a circular opening in a SiO2 mask using a self-aligned liftoff
process. Growth on such a substrate allows for independent
control of the nanowire core (e.g., the quantum dots) defined
by the Au catalyst and the waveguide defined by the oxide
opening (see Refs. [9,10] for details). A scanning electron
microscopy (SEM) image of the nanowire waveguide and a
high-resolution transmission electron microscopy (HRTEM)
of the nanowire core are shown in Fig. 12.

Quantitative analysis of the coupling is nontrivial due to the
difficulty in experimentally determining R in clad nanowires
(e.g., in waveguides). As shown in Fig. 12(c) the nanowire
growth rate is nonlinear and diameter dependent and there
exists a growth incubation time which is also diameter de-
pendent. Unlike nanowire cores, the quantum dots in clad
nanowires cannot be imaged with TEM to determine R. We
rely instead on calibrated catalyst diameters and calculations
based on a nonlinear growth model which is successful in
predicting the heights of nanowire cores [9]. The accuracy of
this method is limited by the process-related variation in the
catalyst size (±2 nm in a single run and slightly larger from
run to run).

We have investigated two approaches to controlling R. One
relies simply on growing samples with nominally identical
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FIG. 11. Comparison of linear emission spectrum calculated
with the weakly pumped [�inc = 10−5�1,1(ω0)] master-equation so-
lution of Sec. III (solid lines) with the GF approach of Sec. II
(dashed-dotted lines). Here, rD − r1 = 100 nm, d = 50 D, and the
dot separation is varied. For clarity, the lower- and higher-frequency
peaks are shown separately on the left and right panels, respectively.
To compare additional broadening mechanisms, we let the numerical
value of the master-equation approach pure dephasing to be equal to
the additional broadening in the GF approach (�′ = �); for the blue
and red curves, �′ = 0, and for the purple and yellow, h̄�′ = 0.5 μeV
(omitted on right panels for visual clarity).

nanowires but with the growth time between incorporation of
the first and second dot varied. In the second approach, we
take advantage of diameter dependence of the nanowire core
growth rate. We grow double-dot nanowires with controlled
core diameters ranging from 16 to 70 nm. Since the growth
rate decreases with increasing diameter, devices with varying
R are obtained in a single growth as shown in Fig. 12(c). We
note that, unlike the InP nanowire growth rate, the QD growth
rate does not depend strongly on the indium flux provided to
the growth system. The indium used for QD growth comes
primarily from the excess indium in the gold particle, as
described in [46]. This means that there is only a small
dependence on the QD growth rate as a function on nanowire
diameter. However, we still expect a diameter dependence of
the ground-state emission energy due to changes in the lateral
confinement [47].

The μPL measurements were taken at 4 K in a He-flow
cryostat using above-band excitation at 633 nm focused on the
nanowires using a 50× (NA = 0.5) objective. The emission
was collected through the same objective, dispersed using
a grating spectrometer and detected with a nitrogen-cooled
CCD. Experimental spectra for selected QD separations using
the diameter-controlled approach are shown in Fig. 13 [4].
We observe a clear red-shift in the emission energies of
the dots with decreasing R (e.g., increasing core diameter)
due predominantly to a decrease in lateral confinement as
mentioned above. We also observe a gradual increase in the

FIG. 12. (a) SEM image of a tapered InP nanowire waveguide.
The position of the QD molecule in the waveguide is schematically
indicated by the two red disks. (b) HRTEM image of the nanowire
core showing two InAsP quantum dots separated by a 5-s InP spacer.
(c) Dependence of R on core diameter. The inset shows a SEM image
of four nanowires with different diameters. Each nanowire nominally
contains four QDs, each separated by 60 s of InP growth. The QDs
are delineated using a selective wet etch and indicated by arrows.
The smaller diameter nanowires are missing the first dot due to a
diameter-dependent growth incubation time.

complexity of the low-energy QD spectra and a decrease in
the intensity of the high-energy QD as R is reduced.

Low-excitation PL spectra of QDs are typically multi-
peaked. Recombination from different charge complexes may
occur depending on background doping and Fermi level pin-
ning. In our samples we typically observe emission from both
neutral and singly charged excitons. We assign the peaks
based on excitation power-dependent measurements shown in
Fig. 13. The spectra reduce to a single peak in the limit of low-
excitation power which we identify with the neutral exciton
X . For higher powers, i.e., P = Psat/20 where Psat = 200 nW
is the excitation power required to saturate the transition
in single dot nanowires, the brightest peak is typically the
charged exciton X −. In Fig. 14, we plot the energies of the
high- and low-X − peaks as well as the splitting as a function
of R.

The energetic splitting of the X − peaks as a function of
R is consistent with the predicted behavior described in Sec
II C (see Fig. 6). However, it is clear from the nonvanishing
splitting at large values of R that the two emitters in isolation
are not degenerate. Such a nondegeneracy for dots grown
under identical growth conditions indicates that the growth of
the first dot affects the growth of the second dot. For example,
this can be expected for closely spaced dots due the arsenic
tail from the first dot that increases the effective arsenic
composition in the second dot, hence shifting the second dot
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FIG. 13. (a) PL spectra of double QD nanowires with a 15-s
spacer as a function of R where R is controlled using the core
diameter-dependent growth rate. Excitation powers are 1 nW except
for R = 7.2 and 122 nm, which are 5 nW. (b) Power-dependent
spectra from a nanowire with R = 36 nm, where the saturation power
is 200 nW. Integrated PL intensities of the emission peaks from the
high- (c) and low- (d) energy dot as a function of excitation power.

to lower energy. For the data in Fig. 14, we have traced
the nondegeneracy to a difference in the arsenic injection
valve response time between the initial valve opening and
subsequent openings.

The additional measurements, where R is controlled
through growth time between the first and second dots, were
made with the valve response time corrected. Also, PL spectra
for each sample were collected from >50 nanowires to obtain
a better measure of the splitting given the amount of scatter
evident in Fig. 14.

All of the spectral data for the time-controlled samples are
summarized in Fig. 16 in Appendix C, where a total of four
experimental QD separations are measured. The growth times
between QDs are 15 s, 30 s, 1 min, and 3 min, and from our
growth model, these times correspond to R values of 5, 10,
20, and 61 nm, respectively. The NWs are grown such that
the diameter between each sample may vary, but the two QDs
in each sample are nominally identical to each other (but not
to the QDs in the next sample). Thus, we expect that there
will be variance in the center frequency of the resonances,
as mentioned above. For the purpose of this study, we will
examine the 15-s (5-nm) data set more closely.

FIG. 14. (a) Emission energy of the X − transition in the high-
and low-energy QD (diameter-dependent growth only) and (b) their
energy separation as a function of R. Excitation power is between
1–5 nW, as described in Fig. 13. The energies for the diameter-
(time-) dependent data are extracted from spectra taken of up to 10
(75) nominally identical nanowires for each value of R. The spectra
for each sample of the time-dependent data are shown in Fig. 16 in
Appendix C, which includes the statistical analysis used to determine
the error in splitting. The error in R is determined experimentally.

The extracted splittings are included in Fig. 14(b) where
we observe an R dependence similar to the previous data,
but with an offset of approximately −30 meV. The simi-
larity in the observed spitting is consistent with the robust
nature of the interaction in the presence of detuning (see
Fig. 6). Although we cannot rule out an R-dependent detuning
discussed above, supporting measurements made on closely
spaced dots, including the observation of correlated emission
between the two peaks [4] and a negative diamagnetic shift in
magnetophotoluminescence [48], strongly suggest a coupled
dot system. In the absence of a growth technique that guar-
antees zero detuning independent of R (or a growth technique
that guarantees a variance in the bare resonance detuning that
is independent of R), an additional tuning method [49,50]
is clearly required for a more quantitative measure of the
interaction-mediated splitting.

To compare the experiments directly with theory is difficult
because we do not know the nominal splittings (i.e., without
dipole-dipole coupling) in the experiments, nor the dipole mo-
ments of the QD excitons. However, in an attempt to connect
the two, Fig. 15 shows the analysis of spectral splitting in the
closest QD pairs (i.e., 15 s/5 nm), where we have fit the dipole
moment dfit given a fixed separation of 5 nm. To fit the data,
we use the GF theory as presented and analyzed in Secs. II
and IV, and make the assumption that there are two excitons,
one in x̂ and one in ŷ. In the case of one dipole moment, dfit

increases by a factor of
√

2, and the number would reduce if
we allowed polarization cross coupling. Figure 15 also shows
the fit for different nominal detunings of 0, 5, and 10 meV,
which ranges generously over the expected detuning for such
QD pairs. From these fits, we see that average dipole moment
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FIG. 15. Histogram of the dipole moment dfit used to fit to
experimental spectral splitting for two QDs separated by R = 5 nm,
assuming a dipole moment oriented in both x̂ and ŷ (for results
with only one dipole moment, multiply dfit by

√
2); we neglect any

cross-polarization mixing which would enhance the splitting and
reduce the extracted dfit. A total of 58 samples are used, and the
statistics and individual spectra for each sample are given in Fig. 16
in Appendix C. Three nominal detunings (i.e., without dipole-dipole
coupling) of 0, 5, and 10 nm (blue, red, and yellow, respectively) are
shown. The star markers indicate the peak of each histogram.

required to explain the experimental results is approximately
80–100 D. Of course, the splitting is dependent on both R
and d (approximately, δ ∝ d2

R3 in the near field), so slight
variation in the measured separation will affect the fitted
dipole moment. However, the QD separation was determined
quite precisely from calibration samples, as shown by SEM
imaging (Fig. 12).

These extracted dipole moments are larger than what might
be expected (e.g., say 30–60 D), suggesting that there are
other effects going on in the experiments beyond dipole-
dipole coupling (although we also include effects beyond the
usual static dipole-dipole coupling term). However, it does
not consider charge-tunnel-mediated coupling between the
electronic states in each dot. Interestingly, however, both ap-
proaches can be described by a Hamiltonian of the form given
in Eq. (11) when including the full GF response within the
electric field operator, hence, the predicted spectral splitting
as a function of R can be qualitatively similar [51–53] for the
main spatially dependent coupling rate. Indeed, even at the
classical Maxwell level, the optical near-field optical coupling
is well known to reproduce the expected Förster coupling [35].
However, quantitative differences are to be expected since the
dipole-dipole model does not include the excited states of the
quantum dots whereas the tunneling approach neglects the
possibility of long-range interaction, and our approach allows
one to more easily account for nonlinear and quantum optical
processes. As we have also discussed earlier, for QD disks
whose radii become larger than the vertical separation, the
dipole approximation for the emitter-field interaction is likely
to break down.

VI. CONCLUSIONS

We have first presented a theoretical GF analysis of the lin-
ear spectra from two QDs (QD molecules) in a InP nanowire
waveguide coupled via photon-mediated dipole-dipole

interactions, including effects beyond the usual static
coupling. We introduce appropriate analytic solutions for
the waveguide GF as well as dipole-dipole coupling via the
homogeneous GF, allowing us to model the photon transport
along the wire. Using quantitative FDTD numerical calcula-
tions for the full 3D structure, we then show how both the
background and waveguide contributions of the GF, as well
as including retardation effects, are required to adequately
model the spectral splitting of the QD resonance. Using these
quasianalytic solutions, we examine the spectral splitting and
the FWHM of the dressed states of the QD molecule system
as a function of homogeneous QD broadening, detuning, and
spatial separation of the QDs along the axis of the nanowire.
Second, we presented a quantum master-equation approach
to better examine the nonlinear spectra due to an increasing
incoherent pumping strength, revealing a reversal in the
relative spectral weight and linewidths of the peaks in the
emission spectrum in the high-pump regime. In the limit of
weak pumping, this approach recovers the GF linear spectra
within the Markov approximation.

Next, we provided experimental PL measurements from
nominally identical QDs in InP nanowires which show clearly
increased splitting with decreasing spatial separation. Two
types of growth are performed: diameter-dependent growth
and time-dependent growth, the first of which has a strong
shift in the resonant frequency of the QDs due to the changing
diameter, and thus, changing electron-hole wave functions.
We also showed a summary of the experimental data for
closely separated QDs, and extracted the theoretically de-
termined dipole moments to yield the same splitting, which
suggested dipole moments of around 80–100 D, which are
likely too high (though unknown for our QD disks). It is
likely that the dipole model is not sufficient in modeling
such systems which have lateral radii on the same order of
magnitude as the separations (similar effects happen for QD
disks approaching metal surfaces [54]), and this could be
interesting to explore in future work. Nevertheless, there is
compelling evidence that there is certainly pronounced QD
couplings, even for nominal exciton separations of around
5 meV, and the expected dipole-dipole splittings can likely be
considered a lower limit.
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APPENDIX A: BEYOND THE DIPOLE APPROXIMATION:
THE LORENTZ OSCILLATOR MODEL IN FDTD

As an alternative to using a simple dipole emitter in FDTD
to get the nanowire GF without embedded QDs, we may
model the QDs directly as a finite-size Lorentz oscillator
(LO), as outlined in Schelew et al. [55], and numerically
obtain G(1) (e.g., in the case of one QD). In that work, a
single LO was implemented in Lumerical FDTD in two ways:
a single-Yee cell dot and a multi-Yee cell dot (both spherical).
The purpose of using such a model for dot-dot coupling is to
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FIG. 16. (a)–(d) (Left) Spectra for various sets of experimentally grown QD nanowires for different QD separations along the axis of the
NW, in units of growth time (see text). Each spectrum corresponds to a specific NW grown under the required conditions for its nominal QD
separation. Colored lines represent the original data, and black lines are the smoothed data which reduce the noise, particularly in (a). The
black markers indicate the chosen peaks used to estimate the spectral splitting due to dot-dot coupling in the NW. Excitation power is 2 nW,
except for R = 61 nm, which is 10 nW. (a)–(d) (Right) Analysis of the splitting is presented using histograms. The lower- (blue) and higher-
(red) energy peaks are presented in (i), relative to the center energy of that data set (ii). The total separation is shown in (iii), determined as
the difference between the left and right peaks in each data set (not the difference of the average left and right peaks). The histogram bin sizes
(total number) are 3 meV (21), 4 meV (24), and 2 meV (14), for (i), (ii), and (iii), respectively.

capture any cross coupling beyond the dipole approximation
due to the geometry of the QDs. The LO permittivity, εLO, is
defined as

εLO = εB + α0(ω)/V

1 − α0(ω)[1 − (ζkBr)2]/(3εBV )
, (A1)

where V is the volume of the disk (V = 2πr2�z for a disk,
V = �z3 for a single-Yee dot), r is the disk radius, �z is
the mesh size in ẑ (all directions), ζ is a correction factor
(based loosely on the Mie frequency shifts for a sphere), and
α0 is the bare polarizability of a point LO dipole, defined by

Eq. (8). Since QDs have a geometry that is disklike, we predict
that as the distance between the dots becomes comparable
to the radius of the dots, there may be enhanced coupling
(and thus splitting) due to cross-coupling x-y terms in the
GF. Although these results show spurious modes due to finite
gridding effects, they generally support the overall splitting
estimated from the point dipole model. A more detailed anal-
ysis of finite-size dots would require coupling the QD wave
functions with the GFs, which is beyond the scope of this
paper. Techniques for modeling single QD dipole breakdown
effects are discussed in Refs. [54,56,57].
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APPENDIX B: NONLINEAR SPECTRUM
FROM MASTER-EQUATION SOLUTION

To calculate the coupled QD emitted spectrum with a
master-equation approach, one needs to calculate the two-time
correlation functions 〈σ+

i (t + τ )σ−
j (t )〉, for i, j = 1, 2. With

the aid of the quantum regression theorem and a Born-Markov
approximation (also made in the derivation of the master
equation), these two-time correlation functions can be found
from the master-equation solution:

〈σ+
i (t + τ )σ−

j (t )〉 = Tr[σ+
i ρ̃ ( j)(τ )], (B1)

where the function ρ̃ ( j)(τ ) evolves in the same manner as the
density operator in Eq. (26), but solved with initial condition
σ−

j ρ(t ). These two-time correlation functions are most easily
found if we solve for the matrix elements of ρ̃ ( j)(τ ) in the
basis of the system eigenstates |E〉 , |G〉 , |�+〉 |�−〉. In this
case, we find

〈σ+
1 (t + τ )σ−

j (t )〉 = 1√
2

[
ρ̃

( j)
+,E − ρ̃

( j)
−,E + ρ̃

( j)
G,+ + ρ̃

( j)
G,−

]
,

(B2)

〈σ+
2 (t + τ )σ−

j (t )〉 = 1√
2

[
ρ̃

( j)
+,E + ρ̃

( j)
−,E + ρ̃

( j)
G,+ − ρ̃

( j)
G,−

]
.

(B3)

The relevant equations for the ρ̃
( j)
a,b(τ ) functions can be found

from Eq. (26) as 〈a| dρ

dτ
|b〉:

dρ̃
( j)
G+

dτ
= −RG,+ρ̃

( j)
G,+ + (�1,1 + �1,2)ρ̃ ( j)

+,E , (B4)

dρ̃
( j)
+E

dτ
= −R+,E ρ̃

( j)
+,E + �incρ̃

( j)
G,+, (B5)

d ρ̃
( j)
G−

dτ
= −RG,−ρ̃

( j)
G,− − (�1,1 − �1,2)ρ̃ ( j)

−,E , (B6)

dρ̃
( j)
−E

dτ
= −R−,E ρ̃

( j)
−,E − �incρ̃

( j)
G,−, (B7)

with Ra,b defined in the main text. The nonzero components
of the initial conditions are ρ̃

(1)
+,E (τ = 0) = 1√

2
PE , ρ̃

(1)
−,E (0) =

−1√
2
PE , ρ̃

(1)
G,+(0) = 1√

2
P+, and ρ̃

(1)
G,−(0) = 1√

2
P− for j = 1,

and ρ̃
(2)
+,E (0) = 1√

2
PE , ρ̃ (2)

−,E (0) = 1√
2
PE , ρ̃ (2)

G,+(0) = 1√
2
P+, and

ρ̃
(2)
G,−(0) = −1√

2
P− for j = 2, where Px = limt→∞ 〈x| ρ(t ) |x〉.

Taking the Laplace transform f (s) = ∫ ∞
0 dt e−st f (t ) of the

above equations and letting s = iω, one arrives at the solutions
given in the main text, where a factor of 1

2 has been dropped as
it can be factored out of the overall spectrum. From inspection
of these solutions and the initial conditions above, it can be
seen that S0

1,1(ω) = S0
2,2(ω) and S0

1,2(ω) = (S0
2,1(ω))∗. Thus,

for notational simplicity, we drop the j index and tildes and
let ρa,b(ω) ≡ ρ̃

(1)
a,b(s = iω). To calculate the weak excitation

approximation solution also used in the main text, the same
procedure as above is carried out, but in a truncated basis
without the |E〉 state.

APPENDIX C: ADDITIONAL EXPERIMENTAL DATA

Figure 16 summarizes all of the experimental data for each
of the four QD separations (15 s, 30 s, 1 min, and 3 min),
with fixed diameters (i.e., time-controlled separation versus
diameter-controlled separation). In general, the peaks in the
spectra were chosen as the two brightest peaks since it is
not feasible to fit each spectra for the excitons [(un)charged,
biexcitons, etc.] without a complete power-dependent analysis
(i.e., such as Fig. 13).
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