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Collimation of electrons at closed magnetic barriers in two-dimensional electron gases
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It is shown that closed magnetic barriers defined in two-dimensional electron gases generate a collimated
emerging electron beam at the edge of the Hall bar. The collimation takes place through two mechanisms:
electron selection for �E × �B drift at the edge and bulk collimation of the emerging electrons due to the magnetic
field gradient. The collimation effect is verified by experiments and simulations: a second magnetic barrier used
as a probe will reflect the collimated beam differently when positioned at various distances from the first one,
resulting in oscillations in the resistance.
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I. INTRODUCTION

Two-dimensional electron gases (2DEGs) with large mo-
bilities enable the implementation of ballistic circuits and de-
vices. For example, ballistic rectification at asymmetric Hall
crosses [1] and the quantization of the conductance in quasi-
one-dimensional ballistic wires [2,3] have been demonstrated.
Two prominent members of the family of electron ballistics
are collimation and focusing. The electron beam emerging
from a quantum point contact is typically collimated [4,5].
Electrostatic lenses [6] and elliptic reflectors [7] are based
on gated nanostructures that change the electron trajectories
and allow electron focusing. Coherent electron focusing with
quantum point contacts in a 2DEG exposed to a homogeneous
magnetic field was demonstrated by van Houten et al. [8].

One structural element of ballistic electronic circuits in
2DEGs is a magnetic barrier [9]. This term usually designates
a magnetic field configuration which is localized in the longi-
tudinal direction and homogeneous in the transverse direction
with respect to the flow of electrons. Magnetic barriers have
been at the focus of various experimental and theoretical
studies in relation to classical transport properties [10–19],
magnetic confinement in both semiconductor heterostructures
[20–22], resonant reflection [23], Hall magnetometry [24],
and spin filtering in nanostructures [25–30]. Furthermore,
magnetic barriers appear as structural elements in magnetic
superlattices [9,31–33]. Finally, we mention the relevance of
magnetic textures for graphene, where not only can elec-
tronic confinement be achieved by applying inhomogeneous
magnetic fields [34,35] but also mechanical strain can cause
a modification of the hopping matrix elements between the
electronic sites, an effect that can be mapped onto an effective
magnetic field [36], with values as large as 300 T [37].
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Here, we show that, in an implementation which is typical
for two-dimensional electron gases in Ga[Al]As heterostruc-
tures, magnetic barriers can collimate electron beams. Above
a critical magnetic barrier amplitude and in the absence of
additional scattering, all electrons that enter the barrier re-
gion sufficiently far away from the edge of the Hall bar get
reflected by the Lorentz force. However, electrons close to
the sample edge may experience an �E × �B drift and pass
the barrier via skipping orbits. In this closed regime, the
magnetic barrier thus forms a pointlike electron emitter. We
show with numerical simulations how the emerging electron
beam is collimated by the magnetic barrier, and the results
are verified experimentally by studying the resistance of two
magnetic barriers in series, where the second barrier, placed at
various distances, acts as a probe for the collimated electron
beam emerging from the first one. Resistance oscillations as a
function of the distance between the two barriers are observed.

In Sec. II we present a study of the statistics of the electron
flow emerging at the edge of the magnetic barrier, while in
Sec. III we present an example of the effects produced by
the collimation on the resistance, experimentally and with
simulations. The paper closes with a summary of the results
and our conclusions (Sec. IV).

II. STATISTICS OF ELECTRON COLLIMATION
AT A CLOSED MAGNETIC BARRIER

The usual method for defining a magnetic barrier in a
2DEG is by placing a ferromagnetic stripe on the surface of
the host semiconductor heterostructure and magnetizing it in
the direction parallel to the applied current [x direction in
Fig. 1(a)]. The component of the fringe field perpendicular
to the 2DEG (z direction) has a peaked shape, with its max-
imum beneath the edge of the stripe, and, assuming that the
ferromagnet has a very large extension in the y direction, may
be expressed as [15]

Bz(x) = − Bs

4π
ln

[
x2 + d2

x2 + (d + h)2

]
, (1)

where Bs = μ0M is the product of the vacuum permeability
and the magnetization, h is the thickness of the ferromagnetic
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FIG. 1. (a) Cross section of the considered implementation of
a magnetic barrier Bz(x) in a 2DEG. (b) Ballistic electrons may
pass through a closed magnetic barrier in skipping orbits at the
edge (blue transmitted electron trajectory). In the bulk, electrons
get reflected by the closed barrier (black electron trajectory). The
initial cosine distribution is indicated on the left side of the Hall bar.
(c) Distribution of angles of electron velocity with respect to the x
direction at different distances from the center of the magnetic barrier
at x = 0. The bin size of the histogram is 2◦.

stripe, and d denotes the depth of the 2DEG below the sample
surface. The full width at half maximum is 2

√
d (d + h) and

is of the order of 300 nm in typical samples [14,15,18,19].
The x component of the fringe field produces weak effects
and will be neglected below. For an infinitely extended 2DEG
with no scattering in the magnetic barrier region, the electrons
approaching the barrier will be deflected by the Lorentz force,
and if the magnetic barrier is high enough, none of the
electrons may pass through, leading to an infinite resistance.
However, the resistance is limited by edge skipping [18] in the
magnetic barrier region. The edge skipping is unidirectional at
each edge, and an asymmetry is induced in the distribution of
the velocity vector angles (which from now on we will call the
distribution) that the transmitted electrons have with respect
to the x direction. To study the distribution, we simulated
the electron flow by injecting 106 electrons in a Hall bar of
10 μm at a distance of 50 μm in front of the magnetic barrier
[Fig. 1(b)] given by Eq. (1). We use the values d = 65 nm,
h = 250 nm, and the electron density n = 2.45 × 1015 m−2.
Bs is set to 1.5 T, which provides a maximum barrier height
of Bz(0) = 0.38 T. These values are in agreement with the
experimental ones that will be discussed below. We calculate
the electron trajectories by solving the semiclassical equations
of motion in the presence of the magnetic field given by
Eq. (1) in combination with hard electrostatic walls at y = 0
and 10 μm, which simulate the edges of the Hall bar, and
we record the distribution. The initially injected electrons
have a cosine distribution to reflect the electron injection
rate [38].

In Fig. 1(c), we show the distribution (+90◦ is along the
y axis, and 0◦ is along the x axis) at various positions along

the x axis. We characterize the distribution by its mean value
α and its standard deviation σα . The center of the magnetic
barrier is at x = 0 [Fig. 1(b)]. At x = −2 μm, the initial cosine
distribution is almost completely preserved [Fig. 1(c)], with an
average angle of α = −0.08◦ and σα = 39◦ (for the initially
injected cosine distribution, the value is σ cos

α = 39.1◦). One
hundred percent of the injected electrons reach this point.
However, only 54% of the electrons reach the position x = 0.
The distribution at this point is asymmetric, as many electrons
approaching the barrier at negative angles [e.g., the black
electron trajectory in Fig. 1(b)] were already reflected by
the barrier, while many electrons that approached the barrier
at a positive angle are deflected into a negative angle by
the time they reach x = 0. About 9.9% of the electrons reach
the position x = 1 μm [third histogram in Fig. 1(c)], where the
angles have shifted to more positive values, since electrons get
reflected at the lower edge of the Hall bar [the blue trajectory
of a transmitted electron in Fig. 1(b) is an example]. At x =
2 μm, most of the electrons that passed through the barrier
experienced a reflection at the lower edge, and a very small
tail of the distribution is still present at negative angles close
to zero, corresponding to electrons moving almost parallel to
the lower sample edge. At x = 7 μm, the distribution splits
into two well-separated peaks. The peak at negative angles
represents electrons that were reflected at the upper Hall bar
edge. As we move to larger x coordinates, the number of peaks
in the distribution increases due to successive reflections at the
edges. These snapshots also show that directly after passing
the magnetic barrier, the distribution gets narrower, which
corresponds to a collimation of the electron beam. In order to
characterize this effect further, the angle maps, i.e., the local
average velocity vector angles of the electrons α as a function
of x and y, are shown as color plots in Fig. 2 for three different
values of Bs. For the given electron density, the critical value
of the saturation magnetization at which the magnetic barrier
is closed in the absence of edges is Bsc = 1.32 T. Also shown
are the corresponding mean α(x) and standard deviation σα (x)
of the distribution, as well as the average y(x) and the standard
deviation σy(x) of the y position of the electrons. No electron
trajectories are recorded in the white area denoted as the no
trajectory area (NTA).

As the magnetic barrier height increases, the angle maps
indicate that electrons pass only at the lower edge, and the
maximum angle of emerging electrons decreases with larger
magnetization, resulting in a collimated electron flow with
a narrower distribution. The maximum angle in the map de-
creases from 67.7◦ at Bs = 1.5 T to 42.8◦ at Bs = 2.0 T and to
27.4◦ at Bs = 2.5 T. As the electron beam hits the upper edge
of the Hall bar, specular reflections lead to a homogenization
of the distribution on a length of about x = 30 μm in the x
direction, with y approaching 5 μm, the center of the Hall bar,
and α approaching zero.

We look in some more detail at the case of Bs = 1.5 T in
Fig. 2(a). First of all, σα (1.5 T) has a minimum around x = 0,
followed by a sharp maximum at 0.8 μm. The maximum is
due to the reflection of the electron beam at the lower edge,
with a maximum disorder when half is reflected and moving
upwards while the other half is still moving downwards, also
indicated by the fact that α = 0 at the position where σα

has a maximum. For x between 0.8 and 4.2 μm, α decreases
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FIG. 2. Average velocity angle α and its standard deviation σα ,
as well as the average y position y of the electrons and its standard
deviation σy for three values of Bs. The background color plot
represents the local average angle of the electrons within the Hall bar
according to the color code to the right, from x = −4 to 40 μm. NTA
denotes the area (white) where no electron trajectories are recorded
and is not part of the color scale.

monotonically to α(1.5 T, 4.2 μm) = 34.6◦. Simultaneously,
σα decreases to a minimum of 19.6◦ at x = 4.2 μm. As the
first electrons of this beam, traveling at large angles, hit the
upper edge, σα starts to increase and reaches its original value
of ≈39◦ at around x = 10 μm.

For larger values of the magnetization [Figs. 2(b) and 2(c)],
the collimation is stronger, which may be observed
in the decreasing α and increased NTA. For exam-
ple, the minimum standard deviation for Bs = 2.0 T is
σα (2.0 T, 10.9 μm) = 11.1◦, and the minimum average an-
gle is α(2.0 T, 10.9 μm) = 15.2◦, while the corresponding
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FIG. 3. The distribution of emerging electrons at 2 μm and their
corresponding distribution at −2 μm for specular reflection at the
lower edge (left) and random scattering at the lower edge (right).

minima for Bs = 2.5 T are σα (2.5 T, 21.4 μm) = 6.12◦ and
α(2.5 T, 21.4 μm) = 8.32◦, respectively.

These simulations show that the strength of the magnetic
barrier field gradient in the closed regime determines the
degree of collimation of the transmitted electron beam by two
mechanisms. Inside the barrier, the collimation takes place
through �E × �B drift, and behind the barrier, it is due to the
magnetic field gradient. As seen in Figs. 2(b) and 2(c), the
emerging beam collimation after the �E × �B drift is stronger
for higher barriers. In the left panel of Fig. 3, the distribution
at x = 2 μm in the case of a ballistic system with specular
reflection at the lower edge is shown (in red). As expected
from time-reversal symmetry arguments, under the reversal of
the directions of the current and the magnetic field, we will
obtain a symmetric distribution with respect to the case de-
scribed above. This means that the distribution of the emerg-
ing electrons at x = 2 μm must originate from a symmetric
distribution at x = −2 μm. This is also represented (blue) in
the left panel of Fig. 3. The distribution is mirrored in the
following way: the electrons entering at large (small) angles
may emerge at small (large) angles depending on the initial
position and angle, which also determines how many times an
electron is reflected at the lower edge during skipping. This
indicates directly that a narrow emerging distribution comes
from a symmetrically narrow incident distribution. This hap-
pens because for larger magnetic fields, only electrons that
are closer to the lower edge and moving at larger angles will
pass through the �E × �B drift. After emerging at the lower
edge but still in the magnetic field gradient, the electrons that
move towards the upper edge at larger angles will spend more
time in the magnetic barrier region until they reach the same
x position, and therefore, they will be deflected more than
the electrons that move more parallel to the sample lower
edge, improving the collimation. Thus, the collimation of the
electron beam emerging at the lower edge at an average angle
α > 0 and the shape of the magnetic barrier are correlated.
Even though a specific shape of the magnetic barrier has been
assumed here, the effect is more universal since it requires just
a magnetic barrier with smooth edges.

III. EFFECTS OF COLLIMATION ON THE RESISTANCE
OF CLOSED DOUBLE MAGNETIC BARRIERS

It is to be expected that the collimation of the electron beam
emerging at the lower edge of the magnetic barrier will have
influence on the resistance of a ballistic device, or, in more
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FIG. 4. (a) Schematic top view of the sample, with the relevant
geometrical parameters. (b) The corresponding cross-sectional view
with the x-dependent magnetic field profile at the 2DEG depth,
showing two magnetic barriers of opposite polarity under the edges
of the stripe, as described by Eq. (2). (c) The magnetoresistance
R23 produced by the magnetic stripe as a function of the applied
magnetic field and the background resistance R12 of the Hall bar.
(d) Hysteresis in the Hall resistance R78(B) measured under a single
edge of a ferromagnetic stripe with a = 40 μm, where one edge is at
the center of a Hall cross.

general terms, for samples where the distance between the
magnetic barrier and the point where the electron beam hits
the upper edge of the Hall bar is smaller than the mean free
path of the electrons. One straightforward way to detect the
emerging electron beam is by using a second, closed magnetic
barrier which acts as a probe. A ferromagnetic stripe of
finite extension on top of the sample generates two magnetic
barriers in series of equal strength but of opposite polarity [see
the sketch in Figs. 4(a) and 4(b)]. If the edge transmission
of the collimating magnetic barrier placed at x = 0 occurs at
the lower edge (y = 0), the electrons can pass the probe, the
second barrier, only at the upper edge (y = w). Thus, if the
probe barrier is placed at the position where the collimated
electron beam hits the upper edge, we expect a resistance
minimum, while the resistance should be particularly large
for a probe position where ȳ is at the center of the Hall bar.
Consequently, the resistance of the closed magnetic barriers in
series should show a characteristic dependence on the spacing
a between them. The magnetic field as a function of x for this
configuration reads

Bz(x) = − Bs

4π

{
ln

[
x2 + d2

x2 + (d + h)2

]

− ln

[
(x − a)2 + d2

(x − a)2 + (d + h)2

]}
. (2)

The layout of the samples is shown in Figs. 4(a) and 4(b).
We used a commercially available GaAs/Al0.3Ga0.7As het-
erostructure with a 2DEG located at d = 65 nm below the
surface, from which we prepared ten identical Hall bars by
optical lithography and wet-chemical etching. The width of
the Hall bars is 10 μm. The 2DEG has an electron density of

n = 2.45 × 1015 m−2 and a mobility of μ = 32 m2/V s, pro-
viding a mean free path of 2.6 μm, at a temperature of 1.4 K.
Ferromagnetic Dy stripes with a thickness of h = 250 nm and
various lengths a, which define the spacing between the colli-
mating (first) barrier and the probe (second) barrier, were de-
posited simultaneously on the Hall bars by sublimation of Dy
in high vacuum (on top of a Cr layer 2 nm thick, which limits
the piezoelectric strain under the Dy edge). The Dy stripes
extend over a large distance outside the Hall bar. The samples
were finally covered by Cr/Au gates to prevent Dy oxidation,
and the surface metals were grounded during the experiments.

Nine stripes with lengths a = 0.35, 0.7, 1.3, 2.2, 3.1, 4, 7.1,
7.2, and 30 μm are prepared. They were positioned between
probes 2 and 3, which were used to measure the voltage drop
across the two barriers formed under the two edges of each
stripe in a four-probe geometry [Fig. 4(a)] and represented
as the magnetoresistance R23 vs the applied magnetic field
Bx, an example of which is shown in Fig. 4(c). The mag-
netoresistance of the 2DEG between voltage probes 2 and
3 in the absence of magnetic barriers R23(Bc) is determined
from the minimum of R23(Bx ) at the coercive field of the
Dy stripe Bc. When the mobility and electron density in the
2DEG are not modified by the presence of the Dy stripe,
R23(Bc) equals R12(Bc) [as may be seen in Fig. 4(c)], where
the later term is scaled to the same length. Finally, we are
interested in the resistance change �R between the resistance
when the stripes are fully magnetized (at a saturation field
of 6 T) and the resistance when the stripes are demagnetized,
�R = R23(6 T) − R23(Bc).

A tenth magnetic stripe has a length of 40 μm. The first
edge resides in between two voltage probes, while the sec-
ond one is placed at the center of a Hall cross [inset in
Fig. 4(d)]. For this value of a, much larger than the mean
free path, the two magnetic barrier resistances are additive.
The measured Hall voltage as a function of Bx is used to
determine the saturation magnetization of the stripe [24,39],
which is found to be 1.5 T, and the longitudinal resistance
measurement across the second magnetic barrier is used to
determine the magnetoresistance of an individual barrier. All
magnetoresistance measurements were carried out in a liquid-
helium cryostat with a base temperature of 1.4 K using a
lock-in technique with a current of I = 100 nA at 17.7 Hz.

The measured values for �R(a) are shown in Fig. 5. At
very small values of a, �R(a) tends to zero. A maximum
in the resistance is visible at a = 3.1 μm, with a value that
exceeds twice the value of a single magnetic barrier (indicated
by the red horizontal line). Also, a minimum at 7.1 μm is
observed. For larger distances, the resistance increases and
saturates towards 30 μm at a value which equals twice the
resistance of a single barrier.

In order to obtain a better understanding of this behavior,
we simulated the resistance of the 2DEG produced by such
a stripe, using the Landauer-Büttiker formalism [40] in a
four-probe geometry in the ballistic limit [41]; 106 electrons
are injected from each contact using a cosine distribution.
The injection line is at 50 μm before the first magnetic bar-
rier, and the electron trajectories are calculated solving the
semiclassical differential equations of motion in the presence
of the inhomogeneous magnetic barrier, given by Eq. (2).
The transmission probabilities between various contacts are
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FIG. 5. Red circles: measured values of �R(a) of the two mag-
netic barriers in series. The dashed red line is a guide to the eye.
The solid horizontal red line denotes the resistance of two individual
magnetic barriers in series. The measured magnetization of the
Dy stripe that formed the barriers was Bs = 1.5 T. Blue circles:
simulations of �R(a) for various magnetizations between Bs = 1.0 T
and Bs = 1.5 T. The blue horizontal lines denote the corresponding
resistances of two single barriers in series. Furthermore, for the Bs

values where the magnetic barriers are closed at large a, the vertical
green bars denote the separation at which the barriers open up, i.e.,
where bulk transmission is enabled.

translated into a conductance matrix [42], and thereby, the
potential difference between different probes is calculated.
Infinite potential walls at the edges of the Hall bar are con-
sidered, at which electrons experience specular reflection. No
diffuse scattering is taken into account either at the edge or
at impurities. The results of these simulations are presented
in Fig. 5 as well. Each �R(a) trace (blue lines and dots)
corresponds to one value of the magnetization, while a is
varied in between 0 and 38 μm.

First of all, as a approaches zero, �R vanishes rapidly.
This is due to the cancellation of the two magnetic barriers at
small distances by reason of their opposite polarity. Due to this
effect, magnetic barriers that are closed for large a open up at a
critical separation as a is decreased. These critical separations
are indicated by the vertical green bars in Fig. 5 for the upper-
most two traces where the magnetic barriers are closed at large
distances. Also, an oscillatory behavior of �R(a) is found in
the simulations, which gets more pronounced as Bs increases.
The peak value of the first maximum is well above the resis-
tance expected for two individual magnetic barriers in series
(these values are indicated by the horizontal blue lines). This
peak occurs at separations where the electron beam emerging
from the collimating barrier hits the probe barrier away from
the transmissive upper edge of the Hall bar such that electrons
are reflected with highest probability towards the upper edge
of the collimating barrier, which allows transmission to the
left. If the collimated electron beam hits the probe barrier
away from the upper edge, the reflection probability at the
probe barrier is higher than what the uncollimated electrons
had at the collimating barrier. As the separation is increased
by approximately a factor of 2, the electron beam hits the
probe barrier at the upper edge of the Hall bar, where there
is a high probability of transmission to the right. Therefore,

FIG. 6. The trajectory of an electron when the first barrier is
positioned at (0 μm and the second barrier is positioned at 3, 7,
or 10 μm.

�R drops below the resistance of two barriers in series. For
example, Fig. 2(a) indicates that the electron beam exiting
the first barrier has an x interval (1.8 to 4.4 μm) in which
most electrons are moving upwards [α(3.3 μm) = 35◦] in
a narrow beam σα (3.3 μm) = 20.2◦, which is slightly more
than half of the original cosine distribution. Moreover, most
of the electrons are nearer to the lower edge than to the
upper, transmissive one (i.e., y(3.3 μm) = 2.6 μm) and in a
quite narrow region (σy(3.3 μm) = 1.8 μm. This produces a
scenario where the fraction of electrons that gets reflected by
the second barrier reaches a maximum. In Fig. 6, we show
the calculated possible trajectories of an electron passing in
�E × �B drift through the first barrier and encountering the
second barrier placed at three possible distances: 3 μm (near
the maximum in resistance), 7 μm (near the minimum in
resistance), and 10 μm. The second barrier in the 3-μm case
reflects the electron directly into the first magnetic barrier at
its upper edge that transports the electron back to the left
contact. For the second barrier placed at a larger distance
of 7 μm the electron reaches the upper edge in the second
magnetic barrier region, and the second barrier is passed by
�E × �B drift. Placing the second barrier farther away (10 μm)
produces a reflection of the electron that travels back through
the first barrier and into the left-hand contact. If the barrier
were placed at a considerably smaller or larger distance, the
electron would be reflected by the second barrier in a too low
or two high position, which could lead to very long resonant
snake orbits between the two barriers. Considering scattering,
this will finally result in equal probabilities that the electron
will be transmitted to the right or back reflected.

The separation for the largest transmission is, in this simu-
lation, a = 7.4 μm. In Fig. 2(a), this corresponds to the point
where the center of the electron beam has reached the upper
edge. Examining in some detail Fig. 5 for Bs = 1.5 T, one may
see further very broad but small fluctuations at larger distances
between barriers which might be caused by the subsequent
minima and maxima that we can still see in the α values;
however, this is not expected to be observed in the experi-
mental conditions, where the elastic mean free path represents
a cutoff length for these effects. Other reasons can also be a
cause of smearing effects. The shape of the collimated beam
will be affected in the experiment by deviations from the
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perfect scenario described above. For instance, diffuse scatter-
ing at imperfect edges can lead to a broadening of the emerg-
ing beam. The diffuse edge scattering limit case is presented in
the right panel in Fig. 3, where random scattering takes place
every time the electrons hit an edge. Although predominantly
specular reflection is expected [43], even in the diffuse limit
the angle range of the emerging electrons is generally pre-
served, while the angle distribution is flattened. Imperfections
in the ferromagnetic film that creates the magnetic barrier may
induce fluctuations in the magnetic barrier height or magnetic
field fluctuations under the magnetic film [15]. The latter has
a very small effect in the present case due to the fact that the
ferromagnetic film is magnetically saturated parallel to the
current direction. However, the imperfections at the edge of
the ferromagnetic film may result in certain portions of the
barrier of lower height. When the imperfections are so large
that the magnetic barrier is open at a certain position in the y
direction, some of the electrons might travel through, escaping
the edge collimation and thereby smearing to some degree the
effects discussed.

IV. SUMMARY AND CONCLUSIONS

The results show that the region in a two-dimensional
electron gas where a closed magnetic barrier crosses the

edges of a Hall bar can be regarded as a point source of
a collimated electron beam. The emerging electron beam
has a minimum width (standard deviation) of σα = 19.6◦ for
a barrier height of Bz(0) = 0.38 T, which is about half of
the value of the injected cosine distribution and falls easily
within the experimental conditions. The collimation becomes
stronger with increased barrier heights and persists over a
length scale which is comparable to, or even larger than, the
elastic mean free path of the electron gas or, in the case where
the mean free path is larger than the width of the Hall bar,
until it hits the opposite edge of the electron gas. The effect
was studied by simulations and demonstrated experimentally
by using a second magnetic barrier as a probe. Our results
represent a possible explanation for deviations between ex-
periments with magnetic lattices and numerical simulations,
where, often, edge effects are not included [32,33,44,45].
Furthermore [45], such effects may influence the performance
of strain-engineered electronic circuits of graphene, where the
strain acts as an effective magnetic field [37].
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