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We study the effects of bond randomness in the spin-1/2 J1 − J2 triangular Heisenberg model using exact
diagonalization and density-matrix renormalization group. With increasing bond randomness, we identify
a randomness-induced spin-liquid-like phase without any magnetic order, dimer order, spin-glass order, or
valence-bond-glass order. The finite-size scaling of gaps suggests the gapless nature of both spin triplet and
singlet excitations, which is further supported by the broad continuum of the dynamical spin structure factor. By
studying the bipartite entanglement spectrum of the system on cylinder geometry, we identify the features of the
low-lying entanglement spectrum in the spin-liquid-like phase, which may distinguish this randomness-induced
spin-liquid-like phase and the intrinsic spin-liquid phase in the clean J1 − J2 triangular Heisenberg model. We
further discuss the nature of this spin-liquid-like phase and the indication of our results for understanding
spin-liquid-like materials with triangular-lattice structure.
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I. INTRODUCTION

Frustrated quantum magnets realize a surprisingly rich
place to explore the interplay between classical orders and
quantum fluctuations, which may lead to novel quantum
phases and unconventional quantum phase transitions [1]. One
of the exotic quantum states is quantum spin liquid (QSL)
[2–5], which breaks no spin rotational or lattice translational
symmetry, even at zero temperature, and exhibits fractional-
ized quasiparticles [6,7] with the emergent long-range entan-
glement [8]. QSL is now actively sought in quantum antiferro-
magnets with frustrated and/or competing interactions [3,4],
which may enhance quantum fluctuations and suppress the
ordering of magnetic moments. In experiment, many spin-1/2
antiferromagnetic materials on the frustrated lattices do not
show any magnetic order down to very low temperature; spin-
liquid-like behaviors have also been observed in the neutron
scattering, NMR, and thermal conductance measurements
(see Refs. [3–5], and references therein). Theoretical studies
have indeed identified QSL states in particular parameter
regimes for some microscopic models (see review articles
Refs. [3–5]). However, it remains unclear whether these the-
oretical observed quantum states explain the widely reported
spin-liquid-like behaviors in materials.

In reality, materials inevitably have defects and/or random
disorder. For example, in the triangular organic salt materials
such as κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 [9–13],
the randomness of the spin degrees of freedom has been sug-
gested as a consequence of the random freezing of the electric-
polarization degrees of freedom at low temperature [14]. In
the kagome material herbertsmithite, the random substitution
of magnetic Cu2+ for nonmagnetic Zn2+ on the adjacent
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triangular layer would lead to the random modification of
the exchange couplings connecting the Cu2+ on the kagome
layer [15]. The randomness may enhance quantum fluctua-
tions and thus suppresses magnetic order. Very recently, it has
been proposed that the disorder even can generate long-range
entanglement and thus transform a classical non-Kramers spin
ice into a QSL [16]. The interplay among frustration, quantum
fluctuations, and randomness remains a largely open question
in the study of frustrated quantum magnetism, leaving the ori-
gin of the spin-liquid-like behaviors in materials an intriguing
question.

The pioneer cornerstone of our understanding on ran-
domness in quantum system is the random singlet phase
in the one-dimensional (1D) Heisenberg spin model, which
represents the infinite-randomness fixed-point (IRFP) in the
strong-disorder renormalization group (SDRG) and is univer-
sal for a broad class of spin chains [17–20]. The schematic
picture of the random singlet state consists of pairs of spins
which are coupled together into singlets, where the long-range
singlet bonds are much weaker than the short ones and the
singlet bonds cannot cross [17,21]. Later, extended 1D chains
and ladder systems with randomness have also been studied
[22–27], in which other random phases such as the quantum
Griffiths phase [28] and the spin-glass phase [29] have been
discovered.

In two dimensions (2D), Imry and Ma gave an argument
for weak randomness which suggests that the ordered state
is unstable against an arbitrarily small random field that is
directly coupled to the order parameter [30]. In the strong-
randomness case, the IRFP has been found in a quantum Ising
model [31,32], disordered contact process [33], or dissipative
systems [34]. For the general 2D Heisenberg models, frustra-
tion is an intriguing ingredient that may lead to novel quan-
tum states. For example, while the Néel antiferromagnetic
order persists up to the maximal randomness in the bipartite
square and honeycomb Heisenberg models without frustration
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[35,36], the numerical SDRG calculation shows a large spin
formation in the frustrated Heisenberg models, suggesting a
spin-glass fixed point [37]. The potential effects of random-
ness in spin-liquid-like materials have stimulated the exact di-
agonalization (ED) study on the frustrated triangular, kagome,
and honeycomb Heisenberg models [14,36,38,39], in which
the disordered phases displaying no magnetic or spin-glass
order have been found in the strong bond-randomness regime.
The dynamical correlation and thermodynamic properties of
the random phases could be consistent with the gapless spin-
liquid scenario suggested from experimental observations
[14,36,38,39].

Recently, a new triangular spin-liquid-like material,
YbMgGaO4, has been reported [40–43]. The possible mixing
of Mg2+ and Ga3+ ions in the material [40,41,44] has stimu-
lated further study on the randomness effects [45–49]. More
recently, another triangular-lattice compound YbZnGaO4,
which is a sister compound of YbMgGaO4, shows some spin-
glass-like behaviors which may due to the disorder and frus-
tration effects [50]. Since further-neighbor interaction in the
material has been identified [43], the nearest-neighbor model
with disorder [14,36] may not capture the novel physics of
such systems. Inspired by the experimental indications, in this
paper, considering the presence of further-neighbor couplings
in materials, we study the bond randomness in the J1 − J2

triangular Heisenberg model, which would be more relevant
to the randomness effects in the related materials. In reality,
spin-orbit coupling is strong in YbMgGaO4 and YbZnGaO4,
which effectively induces anisotropic magnetic interactions.
Nonetheless, theoretical studies have found that the micro-
scopic model with only nearest-neighbor anisotropic inter-
actions is always magnetically ordered [45,46]. Competing
interactions and disorder seem to be the dominant ingredients
for the spin-liquid-like behavior [43,51]. Thus here we study
a simpler Heisenberg model with competing J2 interaction
and bond randomness so that we can use SU(2) symmetry to
deal with larger systems. By using the ED and density-matrix
renormalization group (DMRG) calculation, we identify a
randomness-induced spin-liquid-like (SLL) phase that does
not show any magnetic order, dimer order, spin-glass order
or valence-bond-glass (VBG) order, as shown in the phase
diagram Fig. 1. The dynamical spin structure factor shows a
broad continuum extending to the zero frequency, supporting
the gapless excitations obtained from the finite-size gap scal-
ing. We also find the features of entanglement spectrum in
the SLL phase, which may distinguish the SLL phase and the
intrinsic spin-liquid phase in the J1 − J2 triangular Heisenberg
model [52–57]. The nature of this SLL phase appears to
be consistent with the recently proposed 2D random singlet
phase [48]. Finally, we discuss the relevance to the rare-earth
triangular-lattice materials YbMgGaO4 and YbZnGaO4.

II. MODEL HAMILTONIAN AND METHODS

The Hamiltonian of the spin-1/2 J1 − J2 Heisenberg model
on the triangular lattice with bond randomness reads

Ĥ =
∑
〈i j〉

J1(1 + � · αi j )ŜiŜ j +
∑
〈〈i j〉〉

J2(1 + � · βi j )ŜiŜ j,

(1)

FIG. 1. Contour plot of |S(K ) − S(M )| in the parameter space
J2 − �, where S(K ) and S(M ) are the spin structure factor for the
120o Néel order and the stripe magnetic order obtained on the 24-site
torus system. The definition of finite-size momentum points is shown
in Appendix A. The solid points with error bars denote the phase
boundaries between magnetic ordered and disordered phases, where
the error bars are from the linear size scaling of magnetic order
parameters shown in Fig. 2. The possible quantum phase transition
between the spin-liquid phase and the randomness-induced spin-
liquid-like (SLL) phase is discussed in Sec. III C.

where αi j and βi j are bond random variables which are
uniformly distributed in the interval [−1, 1], and � is the pa-
rameter to control the random interval [Ji(1 − �), Ji(1 + �)]
of exchange interactions on each bond, i = 1, 2 for the nearest
neighbor and the next-nearest neighbor. We use � ∈ [0, 1] to
ensure the antiferromagnetic coupling. Here, we set J1 = 1 as
the energy constant.

We use ED and SU(2) DMRG [58,59] to study this model.
The finite-size clusters we used are shown in Appendix A.
To measure the possible orders in the system, we define
the high-symmetry points in the first Brillouin zone (BZ),
including the � point with q = (0, 0), the K point with q =
(2π/3, 2π/

√
3), and the M point with q = (π, π/

√
3). While

the 120o Néel order exhibits the spin structure factor peak at
the K point, the stripe order has the peak at the M point. In the
randomness case, we use 2000 (for smaller system sizes) to
20 (for the largest system size with the number of lattice sites
N = 48) in ED or DMRG torus calculation, and 15 indepen-
dent samples for YC6-24 and YC8-24 cylinders in DMRG
calculation. We keep 2000 SU(2) states for torus and 1200
SU(2) states for cylinder geometry in these calculations. The
truncation error is less than 5 × 10−5. In the following, we use
“〈〉” and “[ ]” to represent quantum mechanical expectation
value and stochastic averaging, respectively.

III. NUMERICAL RESULTS

A. Melting the magnetic orders

In the absence of randomness, the spin-1/2 J1 − J2 trian-
gular Heisenberg model exhibits an intermediate spin-liquid
phase for 0.07 � J2 � 0.15 according to the previous study
[52–57], which is sandwiched between the 120o Néel phase
and the stripe phase. First of all, we identify the intermediate
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FIG. 2. Linear extrapolation of the square magnetization of (a–c) the 120o Néel order and (d–f) the stripe order vs 1/
√

N (N is the total
site number). The insets show the extrapolated order parameters as a function of bond randomness strength �. The vanishing orders with bond
randomness can be used to estimate the phase boundaries between the magnetic order phases and the nonmagnetic phase. In the stripe phase,
the m2

str of the 36-site torus shows some deviation from other system sizes due to the finite-size geometry effects (see Appendix A).

nonmagnetic phase from the vanishing magnetic orders that
are extrapolated to the thermodynamic limit using the torus
data up to 36 sites (see Appendix B). Our estimations quali-
tatively agree with the previous results, although the ED data
slightly overestimate the intermediate regime because of the
finite-size effects. Next, we focus on the system with bond
randomness.

In the magnetic order phases, bond randomness is not
directly coupled with the order parameter and it has been
found that only a finite bond randomness may kill the mag-
netic order [14,35,36]. In order to quantitatively characterize
how the ordering strength decreases with bond randomness,
we introduce two magnetic order parameters. The first is
(I) the square sublattice magnetization for the 120o Néel
antiferromagnetic (NAF) phase [14,39]

m2
N = 1

3

3∑
α=1

⎡
⎣ 1

(N/6)(N/6 + 1)

〈(∑
i∈α

Ŝi

)2〉⎤
⎦ , (2)

where α = 1, 2, 3 represents the three sublattices of the 120o

order (which is labeled by the three different colors in
Appendix A). For the classical 120o Néel state, the spins
in the same sublattice order ferromagnetically and the spins
in the different sublattices are in the same plane with
120o angle structure. So actually, we have normalized m2

s
to 1 in the classical case by using the expectation value
(N/6)(N/6 + 1) of the total spin operator in the sublattice.
In the quantum case, the definition of Eq. (2) describes the
residual order after considering quantum fluctuations. The
second is the square sublattice magnetization for the stripe

antiferromagnetic phase [39],

m2
str = 1

2

2∑
β=1

⎡
⎣ 1

(N/4)(N/4 + 1)

˝⎛
⎝∑

i∈β

Ŝi

⎞
⎠

2˛⎤
⎦ , (3)

where β = 1, 2 represents the two sublattices of the stripe
order. m2

str has also been normalized to 1 in the classical stripe
phase. According to the spin-wave theory [60], the magnetic
orders follow the size scaling behavior

m2
N/str = m2

s/str (∞) + c1√
N

+ c2

N
+ · · · . (4)

We use the leading behavior of this scaling function 1/
√

N
to estimate the magnetic order strength in the thermodynamic
limit through finite-size scaling.

In Fig. 1, we show the linear extrapolation of the magnetic
orders using torus geometry up to 36 sites. To consider the
two competing magnetic orders simultaneously, we chose the
cluster geometries that are compatible with both the 120o

order and the stripe order. For this reason, we chose only the
12-, 18-, 24-, and 30-site clusters for the size scaling of m2

str
as shown in Figs. 1(d)–2(f). Both orders are suppressed by
increasing randomness. Up to some critical values, the bond
randomness kills the magnetic orders. The system undergoes
a quantum phase transition to a randomness-induced nonmag-
netic phase. Then we can estimate the phase boundaries be-
tween the magnetic order phases and the nonmagnetic phase
in the J2 − � phase diagram of Fig. 2.
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FIG. 3. Linear extrapolation of (a) chiral and (b) dimer orders
vs system size 1/

√
N in the nonmagnetic regime with or without

bond randomness. Both orders go to zero in the thermodynamic limit.
Point X is the momentum point where the dimer structure factor
shows the maximum value, see Appendix C.

B. Randomness-induced spin-liquid-like phase

In this section, we will focus on characterizing the SLL
phase. We first show that there is no long-range chiral or
dimer order. For detecting the possible orders, we define the
structure factor for the scalar chiral correlation as

χ (q) = 1

N

∑
i j

e−iqri j [〈χ̂iχ̂ j〉],

χ̂i = Ŝi · (Ŝi+a1 × Ŝi+a2 ), (5)

and the structure factor for the dimer correlation as

D(q) = 1

3N

∑
i j

∑
pq

e−iqrip, jq [〈B̂ipB̂ jq〉],

B̂ip = ŜiŜi+p − 〈ŜiŜi+p〉, (6)

where i + p means the nearest-neighbor site of i-site along
a1, a2,−a1 + a2 direction for p = 1, 2, 3 respectively. a1 and
a2 are the primitive vectors on the triangular lattice. rip, jq

means the displacement between centers of two bonds, see
Appendix C. In Fig. 3, we show the finite-size scaling of the
peak value of the chiral and dimer structure factors. Appar-
ently, as the bond randomness increases, these two structure
factors become weaker, which does not show any ordering
tendency both in the clean limit and the large randomness
limit.

In magnetic systems, randomness may induce glass orders
at low temperature such as the spin glass [29] and valence-
bond glass [61,62], which have short-range order but do not
show long-range order. For example, the spin-glass state has
the vanished total magnetization M = 1

N

∑
i

[〈Ŝi〉
] = 0 but

nonzero spin-glass order q̄ = 1
N

∑
i

[〈Ŝi〉2
] �= 0. For detecting

the possible glass order, we define the structure factor for the
square spin correlation,

GS (q) = 1

N

∑
i j

e−iqri j [〈ŜiŜ j〉2], (7)

which can be used to detect the spin-glass order. In our
calculation, we find the peak of GS (q) at the � point with
q = (0, 0), which is the spin-glass susceptibility and can be
used as the spin-glass order parameter [63,64]. If the peak

FIG. 4. Finite-size scaling of the spin-glass and valence-bond-
glass structure factor peak. The insets show the linear extrapolation
of glass orders as a function of 1/N . The dashed lines are guides to
the eye using the fitting results in the insets.

value increases with system size N equal to or faster than
a linear behavior, the order could be finite in the thermo-
dynamic limit. In our calculation, we find that GS (�)/N
appropriately scales to zero with both 1/

√
N and 1/N , as

we can see in Fig. 4(a), indicating the vanished spin-glass
order. In the 2D Ising spin-glass phase, the spin-glass order
scales with 〈q̄2(L)〉 − 〈q̄2(∞)〉 ∝ L−1/2 [65–67], which is
quite different from this triangular model, where the order
seems more natural to scale with 1/N . Although the spin-
glass order grows slightly with increased randomness on
finite-size systems, the order parameter actually drops faster
with increasing system size. Clearly, for both J2 = 0.1,� =
1.0 and J2 = 0.3,� = 1.0 cases, the linearly extrapolated
values are zero within numerical error. The absence of the
spin-glass order in the SLL phase has also been found in
other frustrated Heisenberg models with bond randomness
[14,36,38].

Similar to the spin-glass order, we could define the struc-
ture factor for the VBG correlation as

GD(q) = 1

3N

∑
i j

∑
pq

e−iqrip, jq [〈B̂ipB̂ jq〉2], (8)

where B̂ip has been defined in Eq. (6). The VBG structure
factor also shows the peak at the � point. Interestingly, the
VBG peak at the � point seems to decrease with growing
randomness, as shown in Fig. 4(b), which indicates the absent
VBG order in the SLL phase.

For further characterization of the SLL phase, we study
the energy spectrum and the excitation gaps. In Fig. 5(a),
we show a random averaged energy spectrum on the 24-
site torus. The eigenvalues appear to be continuously dis-
tributed in the energy landscape. In both the ED torus
and the DMRG cylinder calculations, the random averaged
ground state is the nondegenerate spin singlet state (the
ground state has probability to be in the S = 1 sector in
some random distributions) and the averaged first excited
state is the spin triplet state. In Fig. 5(b), we show that
in the SLL phase both the singlet gap �SS = E1(S = 0) −
E0(S = 0) and the triplet gap �ST = E0(S = 1) − E0(S = 0)
drop fast and seem to go to vanishing, suggesting gapless
excitations.

085141-4



RANDOMNESS-INDUCED SPIN-LIQUID-LIKE PHASE IN … PHYSICAL REVIEW B 99, 085141 (2019)

FIG. 5. (a) Energy spectrum for J2 = 0.1, � = 1.0 on the 24-site
torus as a function of total spin S(S + 1). (b) Linear scaling of the
singlet and triplet gap vs 1/N for J2 = 0.1, � = 1.0.

Next, we study the dynamical spin correlation using ED
simulation. We define the dynamical spin structure factor as

Szz(q, ω) =
∑

n

[|〈ψn|Ŝz
q|ψ0〉|2δ[ω − (En − E0)]], (9)

where Ŝz
q = (1/N )

∑
i e−iqri Ŝz

i is the Fourier transform of the
z component of the spin operator, |ψn〉 is the eigenstate of the
Hamiltonian with energy En, and |ψ0〉 is the ground state with
energy E0. The dynamical spin structure factor describes the

correlations in both space and time, which can be studied by
inelastic neutron scattering (INS) or x-ray Raman scattering.
In the Lanczos iteration method [68,69], the dynamical struc-
ture factor can be computed by continued fraction expansion
[70] using Lanczos coefficients and rewritten as

Szz(q, ω)

= − 1

π
lim
η→0

Im

[
〈ψ0|

(
Ŝz

q

)† 1

ω + E0 − Ĥ + iη
Ŝz

q |ψ0〉
]

,

= − 1

π
lim
η→0

Im

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈ψ0|
(
Ŝz

q

)†
Ŝz

q |ψ0〉

z − a0 − b2
1

z − a1 − b2
2

z − a2 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where z = ω + E0 + iη, ai and bi+1 are the diagonal and
subdiagonal elements of the tridiagonal Hamiltonian matrix
obtained by the Lanczos method with initial vector Ŝz

q|ψ0〉.
The Lorentz broadening factor we use is η = 0.02.

In Figs. 6(a1)–6(d1), we show the dynamical structure
factor Szz(q, ω) at different J2 along the high-symmetry path
� → M → K → � in the large randomness case with � =
1.0. For small J2, we can see a broad maxima at the K point

FIG. 6. (a1)–(d1) Dynamical spin structure factor Szz(q, ω) along the high-symmetry path � → M → K → � in the momentum space.
We show the results of only the 24-site cluster here. The results on other system sizes, such as 12 and 18, are similar to the 24-site cluster.
(a2)–(d2) Static spin structure factor obtained on the YC8-24 cylinder using DMRG. We take the middle 8 × 8 sites in the cylinder to do the
Fourier transform. As the cylinder geometry does not respect the C6 rotation symmetry, the three M points are not equivalent.
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FIG. 7. (a, b) The dynamical structure factor at the K and M
points for J2 = 0.1 on the 24-site torus system with different bond
randomness strengths. (c, d) The momentum-integrated dynamical
spin and dimer correlations for J2 = 0.1, � = 1.0 in the SLL phase
on different system sizes.

with a low frequency, showing the short-range spin corre-
lation dominated by the 120o Néel type. With increasing
J2, the spectrum weight gradually transfers to the M point,
which indicates the dominant stripelike short-range correla-
tion for J2 � 0.2. This behavior can be seen more clearly from
the static spin structure factor S(q) = (1/N )

∑
i j eqri j [〈ŜiŜ j〉]

shown in Figs. 6(a2)–6(d2), where the broad peak at the K
point transfers its weight to the M point as J2 increases.
Even with strong bond randomness, frustration seems to still
affect short-range spin correlation. In the dynamical structure
factor, we also find that the broad finite spectrum extends to
zero frequency, supporting the gapless excitations suggested
in Fig. 5(b).

For further insight into the K point and M point at the edge
of the BZ, we show the dramatic changing of the dynamic
spectrum as a function of randomness strength � in Figs. 7(a)
and 7(b), starting from the J1 − J2 spin-liquid regime. In small
randomness, we see a sharp peak at the K point with frequency
ω ∼ 0.5, which seems to signature coherently propagating
magnon excitation. Note that this sharp peak might be due to
possible strong finite-size effects [55,57,71] in the intermedi-
ate J1 − J2 spin-liquid phase. Meanwhile, the spectrum at the
M point exhibits several weaker peaks. As the randomness
increases, the peak at the K point transfers its weight to
lower and higher frequencies, keeping a broad maxima near
ω ∼ 0.5. On the other hand, the peak at the M point also
becomes broad but shifts to the lower frequency. When the
randomness is sufficiently large, a broad continuum spectrum
with an exponentially decaying high-frequency tail not only
appears at the K and M points but also stretches to other wave
vectors near the edge of the Wagner-Seitz Brillouin zone,
which is quite different from the magnonlike excitations.

In order to consider the finite-size effects, we show the lo-
cal or momentum-integrated dynamical spin-spin correlation
with different system sizes in Fig. 7(c), which is defined as

Szz
loc(ω) =Szz

ii (ω) =
∫

dqSzz(q, ω)

= − 1

π
lim
η→0

Im

[
〈ψ0| Ŝz

i

1

ω + E0 − Ĥ + iη
Ŝz

i |ψ0〉
]

,

(11)

where i is the real-space lattice site. Although randomness
breaks translation symmetry, it can be approximately restored
if the number of random samples is large enough and thus we
can take i as any lattice site. We have also calculated the local
dynamical dimer correlation in Fig. 7(d), which is defined as

Dii(ω) = − 1

π
lim
η→0

Im

[
〈ψ0| B̂†

i

1

ω + E0 − Ĥ + iη
B̂i |ψ0〉

]
,

(12)

where B̂i is defined in Eq. (6). The two local dynamical
correlations share similar behaviors, including the broad spec-
trum and the finite density in the zero frequency. Mostly
significantly, the finite-size effects in the SLL phase are not
manifest, even though we use small clusters due to the limit
of system size.

In the recent INS measurements on the triangular spin-
liquid material YbMgGaO4 [42,43,72], broad continuum spin
excitations have been reported. While the high-energy spin
excitations between 0.25 and 1.5 meV have been conjectured
to be related with either a gapless spinon Fermi surface [42]
or the nearest-neighbor resonating valence-bond correlations
[72], the low-energy excitations down to 0.02 meV [72] seem
to include crucial information on the origin of the spin-
liquid-like behaviors in the material, which is currently de-
bated between an intrinsic spin liquid and a disorder-induced
mimicry of a spin liquid [42,43,45,46,48]. By considering
the scenario of the disorder-induced spin-liquid-like phase,
we compare our numerical results in the SLL phase with the
INS data of YbMgGaO4. The SLL phase shows some similar
behaviors of dynamical spin correlations with the experiment
of YbMgGaO4, including the broadly spread spectral weights
in the Brillouin zone and the suppressed spectral intensities
near the � point [43]. In the INS intensity data, the maxima
at the K point above 0.5 meV shifts to the M point below
0.1 meV [43,72]. The broad low-energy excitation maxima at
the M point could be consistent with our SLL phase with a
small J2 coupling as shown in Fig. 6(d1).

Therefore, we identify a gapless SLL phase in the presence
of strong bond randomness. In this SLL phase, we have
not observed any conventional order or glass-type order. For
further understanding on this phase, we calculate the sample
distribution of spin correlation 〈ŜiŜ j〉 as shown in Fig. 8(a).
Interestingly, at the larger distance side r � 6, the width of
correlation distribution saturates to some finite value, which
indicates the emergent long-range correlations between two
spins with near equal probability of both positive and negative
signs for different randomness configurations. To look into the
details of nearest-neighbor correlation, we show the histogram
of its distribution in Fig. 8(b). Compared with a 1D ran-
dom singlet phase in the bond randomness Heisenberg chain
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FIG. 8. (a) Spin-spin correlations along the x direction on the
YC6-24 cylinder. The reference site m is taken in the middle of the
cylinder. r is the distance of the two sites along the x direction.
We show the results of 720 independent random samples in the
figure. The dashed lines show the lower and upper bounds of spin-
spin correlation. (b) The histogram of nearest-neighbor spin-spin
correlation obtained from 720 independent random samples. We take
0.1 as the bar unit of the x axis. The y axis denotes the count number
that the random sample gives the spin-correlation value in the range
of the given unit bar. Here, the next-nearest-neighbor interaction and
bond randomness strength are chosen as J2 = 0.125, � = 1.0.

(see Appendix D), this distribution in the SSL phase shows a
low probability near − 3

4 J . Different values of the next-nearest
neighbor J2 would not change this behavior. The geometry
frustration and the high coordination number z = 6 in the
triangular lattice may play an important role here.

C. J1 − J2 spin-liquid and the SLL phase

In this section, we study the difference between the J1 − J2

spin-liquid and the SLL phase. In the absence of randomness,
the nature of the J1 − J2 spin liquid is still debated between a
gapless Dirac spin liquid and a gapped spin liquid [52–57,71].
We calculate the triplet gap on the torus clusters up to 48 sites
(see Appendix B); nonetheless the small-size data may not
draw conclusive evidence to show whether the gap is finite
or not. If the gap is finite, we may expect a quantum phase
transition from the gapped QSL to the gapless SLL phase, as
suggested in Fig. 9. However, if the ED calculation suffers
from strong finite-size effects and the spin liquid turns out to

FIG. 9. Linear size scaling of the spin triplet gap with inverse
system size 1/N at (a) J2 = 0.1 and (b) J2 = 0.15. We see the blend
down behavior with growing randomness on finite-size system.

(a) (b)

FIG. 10. The YC8 cylinder with the even (a) and odd (b) bound-
ary conditions in the x direction. In the odd boundary condition (b),
a spin-1/2 site is removed in each open edge.

be gapless [52,56], our present size scaling may not correctly
show the phase transition.

Since the QSL and the SLL state may have different entan-
glement structures, we calculate the entanglement spectrum
on the cylinder geometry with two different open edges in
the x direction. We denote the even boundary as the usual
boundary conditions shown in Fig. 10(a) and the odd bound-
ary by removing a spin-1/2 site on each open edge of the
cylinder, as shown in Fig. 10(b). In Fig. 11, we show the
entanglement spectra obtained on the YC8-24 cylinder. First
of all, we analyze the spectrum in the SLL phase. In the even
boundary shown in Figs. 11(a1)–11(c1), the spectrum always
shows a twofold near degeneracy separated by a finite gap
from the higher levels. The twofold eigenvalues are identified
as coming from the S = 0 and the S = 1 sectors (S is the good
quantum number of total spin for the subsystem). In the odd
boundary shown in Figs. 11(a2), 11(b2), and 11(c2), one level

FIG. 11. Entanglement spectra in the (a1–c1) even and (a2–c2)
odd boundary conditions obtained on the YC8-24 cylinder using
DMRG. λi are the eigenvalues of the reduced density matrix. The
error bars are estimated from 15 independent randomness samples.
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with S = 1/2 and two levels with S = 1/2, 3/2 are found
in the low-lying spectrum. These features in both boundary
conditions seem to be independent of J2 for systems with large
strength of randomness, which might be used to characterize
the SLL phase.

Next, we investigate the change of entanglement spec-
trum with randomness, starting from the J1 − J2 spin liquid.
Since the characterization of the spin-liquid phase in the even
boundary conditions is likely to have large finite-size effects
[55,71], here we consider the spectrum in the odd boundary
conditions as shown in Fig. 11(b2). In the absence of random-
ness, the entanglement spectrum has a double degeneracy for
all the eigenvalues [54,55]. With increasing randomness, the
two lowest eigenvalues split. For large randomness, we can
see one level with S = 1/2 and two levels with S = 1/2, 3/2,
which are separated from the higher spectrum. This feature
for the SLL phase appears at � ∼ 0.5. We have also checked
the entanglement spectrum of the YC6-24 cylinder and got
a similar result as the YC8-24. In the kagome Heisenberg
model, a possible phase transition induced by randomness
between the clean kagome spin-liquid and the SLL phase
has been suggested at � ∼ 0.4 [39], where the randomness
sampling starts to have probability for the triplet ground state.
In the ED calculation of the triangular model with J2 = 0.1,
we find the probability for triplet ground state at J2 � 0.6,
which is close to 0.5. The consistency between these different
pictures suggests that the entanglement spectrum may be used
as a characterization to distinguish the spin-liquid and the SLL
phase.

IV. SUMMARY AND DISCUSSION

By using the exact diagonalization (ED) and density-
matrix renormalization group (DMRG) techniques, we have
studied the spin-1/2 J1 − J2 triangular Heisenberg model with
bond randomness in both J1 and J2 couplings. In the absence
of the randomness, the model has two magnetic order phases
and a spin-liquid phase between them [52–57]. This spin-
liquid phase may even extend to the anisotropic model that
could be relevant to materials [73]. By turning on the bond
randomness, we find a randomness-induced spin-liquid-like
(SLL) phase above a finite randomness strength � for a given
J2, as shown in the phase diagram Fig. 2. This SLL phase
does not show any spin, dimer, spin-glass, or valence-bond-
glass order in our finite-size scaling. The spin triplet and
singlet gaps also seem to be vanishing after the finite-size
scaling. These static properties suggest a gapless spin-liquid-
like phase induced by bond randomness, which is supported
by the dynamical spin structure factor Szz(q, ω). In the SLL
phase, Szz(q, ω) shows a broad continuum in both momentum
and frequency space. With growing J2, the broad maxima at
the K point transfers its weight to the M point, showing that
frustration affects short-range spin correlations even in the
presence of strong randomness. We compare the dynamical
spin correlations of the SLL phase with the inelastic neutron
scattering (INS) data of the spin-liquid-like triangular material
YbMgGaO4. The dynamical spectrum of the SLL phase with
a small J2 coupling could be consistent with the INS data of
the low-energy excitations of YbMgGaO4, which shows the
dominant broad maxima at the M point [43,72].

For studying randomness effects in the disordered J1 − J2

spin liquid, we examine the bipartite entanglement spectrum
on cylinder geometry. We find the low-lying spectrum features
in the SLL phase, which seems independent of J2 and may
characterize the random phase. This feature of entanglement
spectrum appears at � � 0.5, which may suggest a phase
transition from the spin-liquid to the SLL phase and deserves
more further studies. Before further discussion, we would
like to remark that although most of our calculations are
based on the ED method, we have pushed the system size as
large as we can. Due to the limit of system size, one should
not interpret all the results as the final answer; however, we
believe that our main results are convincing, including the
gapless nonmagnetic behavior of the SLL phase, the absent
glass-type orders, and the characteristic features of dynamical
spin structure factor. In the absence of J2 coupling, the bond
randomness has been studied in previous ED calculation,
which also proposed a spin-liquid-like phase with growing
randomness [14]. Based on our phase diagram Fig. 2, it seems
that the disordered phase extends to a large region with finite
J2. No other disorder phase such as spin glass has been found.

Furthermore, we would like to discuss the nature of the
SLL phase. In 2D systems, randomness may induce different
quantum phases, with some examples such as a spin-glass
[29], VBG [61,62], and quantum Griffiths phase [28,74].
These phases have been found in the diluted and random-
graph-like systems, which are quite different from our model
with bond-coupling randomness and a perfect lattice geome-
try. For the SLL phase in this J1 − J2 triangular model, our re-
sults suggest that spin-glass and VBG phases are unlikely. The
numerical SDRG analysis for frustrated Heisenberg models
suggested a spin-glass fixed point [37], which, however, seems
inconsistent with our result and recent numerical studies on
other frustrated models [14,36,38,39]. In a recent theoret-
ical paper by Kimchi et al., the authors have studied the
effects of bond randomness on 2D valence-bond solid and
spin-liquid states [48]. They found that the bond randomness
inevitably leads to the nucleation of topological defects with
spin-1/2 when destructing the valence-bond order, which
would yield gapless spin excitations and the short-ranged
VBG order would be unstable. The SLL phase found in our
numerical calculation, which shows gapless spin excitations
and vanished VBG order, appears to be in agreement with the
proposed state in Ref. [48]. The next check of this SLL phase
could be the thermodynamic properties such as specific heat
and susceptibility, which we leave for future study.

Finally, we would like to make some remarks about the
application of our results to experiments. For YbMgGaO4,
bond randomness may not be weak [44], and second-neighbor
interaction may play an important role for the observations
of experiments [43]. Theoretical calculations found that the
spin anisotropic interactions may not drive a spin-liquid-like
behavior but support magnetic ordering [45,46]. By consid-
ering a minimum model to study the effects of competing
interaction and disorder, we find that the dynamical structure
factor of the spin-liquid-like phase with a small J2 agrees
with the INS data of YbMgGaO4. The gapless excitations
and the absence of the spin-glass order are also consistent
with experimental observations. All these results indicate a
consistent description of the spin-liquid-like phase on the
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ground state of YbMgGaO4 from our minimum model. In
this J1 − J2 model, we do not find a spin-glass order in the
presence of bond randomness. For understanding the spin-
glass-like freezing in materials such as YbZnGaO4 [50], other
spin anisotropic couplings may play important roles, which
deserves further study.

Note added. Recently, we became aware of an interesting
work [75] which studied a spin-1/2 J-Q model on the square
lattice with bond randomness using quantum Monte Carlo.
The authors also found a disorder-induced spin-liquid-like
phase, which was suggested as a random singlet phase.
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APPENDIX A: FINITE-SIZE CLUSTERS

In this paper, we use both ED and DMRG to do the tori
calculations. These tori are made of two dimension clusters
(which are shown in Fig. 12) under periodic boundary condi-
tions. In order to get unbiased extrapolations, the geometries
of tori are important. Since 120o Néel order and stripe order
are the two competing magnetic phases, they need to be
considered on an equal footing. Therefore, almost all the
geometries (except for the 48-site geometry) we chose are
commensurate to the 120o antiferromagnetic order, i.e., they
have two K momentum points in the Brillouin zone (BZ). And
all the clusters with even sites are also commensurate to the
collinear or stripe order. We also note that the 36-site and 48-
site clusters have both three M points in the BZ, while other
clusters with even sites have only one M point in the BZ. As
a consequence of that, the square sublattice magnetization for
the stripe phase on the 36-site torus is overestimated compared
to other system sizes (such as 18, 24, 30), as can be seen in
Fig. 1 of the main text. One should also note that the 24-site
cluster we use here is different from those in Ref. [39].

For the tori smaller than or equal to 30 sites, we use exact
diagonalization to do the calculations, while for the 36- and
48-site clusters we use SU(2) DMRG by keeping as many
as 8000 U(1)-equivalent states to do the calculations. The
truncation errors are less than 5 × 10−5 in all calculations.

APPENDIX B: J1 − J2 TRIANGULAR
HEISENBERG MODEL

We have used finite-size tori to study the nonrandomness
J1 − J2 Heisenberg model on a triangular lattice. Using linear

12 15 18

21

36

27

30

24

a1

a2

FIG. 12. Most of the finite-size clusters used in the numerical
calculations. The red, green, and olive solid points represent three
sublattices of 120o AF order or

√
3 × √

3 magnetic order. a1 = (a, 0)
and a2 = (a/2,

√
3a/2) are primitive vectors. Here we set the lattice

constant or nearest-neighbor bond length a = 1 as a unit of length.
The dashed lines which connect the bond centers of the triangular
lattice in the 24-site cluster form a kagome lattice. The bottom three
figures show the finite-size points in momentum space. In addition,
18- and 48-site rhombic clusters can be easily obtained by expanding
6 × 3 and 8 × 6 primitive cells. The 18-site rhombic cluster was used
in the calculation of singlet and triplet gaps in Figs. 14 and 15.

extrapolation of magnetic order parameters (see Fig. 13),
we determined the nonmagnetic region, which is about
0.05(1) < J2 < 0.16(2). This phase region is similar to the
previous DMRG results [54,55] and is larger than the varia-
tional Monte Carlo (VMC) results [52].

Both the 120o AF phase and stripe antiferromagnetic phase
spontaneously break the spin SU(2) continuous symmetry in
the thermodynamic limit. According to the Nambu-Goldstone
theorem, the system in these magnetic phase regions has
gapless excitations. In finite-size systems, a characteristic and
systematic structure of the continuous symmetry breaking is
the Anderson tower of states (TOS) in the energy spectrum.
The TOS energy levels scale with 1/N to the ground state,
while the low-energy magnon excitations scale with 1/

√
N

(or 1/L, L is the linear system size). Based on that knowledge,
we scale the singlet gap with 1/

√
N and triplet gap with 1/N ,

where N is the number of lattice sites.
In the SU(2) symmetry-breaking phases, the singlet and

triplet gaps should go to zero in the thermodynamic limit
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FIG. 13. Linear finite-size scaling of square magnetization of
(a) 120o AF order and (b) stripe AF order vs 1/

√
N at various

next-nearest-neighbor interactions J2. The insets are the extrapolated
values in the thermodynamic limit.

in the magnetic regions. From our finite-size calculations,
though some data has large variance, we still can see the
gapless tendency in Figs. 14(a), 14(b) and Figs. 15(a), 15(d).
Unfortunately, the system size is still not large enough to
unbiasly extrapolate the triplet gap to zero in the finite-size
scaling. For the nonmagnetic phase [Figs. 14(c), 14(d) and
Figs. 15(b), 15(c)], it is even harder to draw a conclusion
whether it is gapless or not using the finite-size clusters and
linear extrapolation.

APPENDIX C: DIMER CORRELATION

In this sector, we show some dimer-dimer correlation
function in momentum space. In order to see the possible
off-diagonal valence-bond solid pattern, we take every bond
as a new lattice site which is sitting in the middle of each
bond. These new sites form a kagome lattice (1/4-depleted

FIG. 14. Linear extrapolation of singlet gaps with 1/
√

N at vari-
ous J2. The solid lines are least-squares fitting lines. The singlet gaps
all seem to be zero in the thermodynamic limit.

FIG. 15. Triplet gaps scale with 1/N at various J2. The solid lines
in (a) and (c) are least-squares fitting lines using even-size tori. At
J2 = 0.1, we use two groups of data to do the fitting and ignore the
small 12-site torus. Two 18-site tori are used here, one is illustrated
in Fig. 12 and the other is a rhombic cluster expanded by 6 × 3
primitive cells. The 18-site rhombic cluster has smaller triplet gaps
than the nonrhombic cluster.

triangular lattice, dashed lines in Fig. 12), or with 3N lattice
sites, N is the number of sites in the original triangular
lattice. Then we take the Fourier transform from real space
to momentum space using Eq. (6). Here, we show the contour
plot of dimer correlation in momentum space using the 24-site
cluster, which is shown in Fig. 16. We take the maximum
D(X ) to do the structure factor scaling. X is the momentum
site where D(q) takes its maximum. And it is the same or
close to the middle point in between K and M points [see
Fig. 16(a)], depending on the geometry of the finite-size
clusters. There is no pattern of long-range valence-bond-solid
(VBS) order in our numerical study (see Fig. 3 in the main
text). In Fig. 16(a), the solid hexagon is the Brillouin zone
edge of the original triangular lattice with N sites, while
the dashed hexagon is the “Brillouin zone” edge of the new
depleted triangular lattice with 3N sites.

FIG. 16. Contour plot of dimer correlation in momentum space
at J1 = 0.125, � = 0.0 and J1 = 0.125, � = 1.0.
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FIG. 17. Histograms of nearest-neighbor spin correlation with
different bond randomness strengths �. The finite-size system we
take is a 24-site torus with 400 independent disorder configurations,
and the next-nearest-neighbor exchange interaction J2 is set to be
0.125 J1. The percentages shown in the boxes mean the proportions
of triplet ground state under 400 disorder configurations.

APPENDIX D: HISTOGRAM OF SPIN CORRELATIONS
UNDER DIFFERENT BOND RANDOMNESS STRENGTHS

Here, we want to show how the distribution of nearest-
neighbor (n.n.) spin correlation changes with the bond ran-
domness strength. As the bond randomness strength increases,

FIG. 18. (a) Spin-spin correlations (with distributions) at dif-
ferent distances on the L = 16 Heisenberg chain with bond ran-
domness � = 1.0. The logarithmic corrections to the power-law
decaying correlations have been found in recent quantum Monte
Carlo simulations [26]. (b) The histogram of nearest-neighbor spin-
spin correlation obtained from 600 independent random samples.
Two nearest-neighbor spins have a large probability to form a singlet
with the correlations trending to − 3

4 J .

the distribution of n.n. spin correlation becomes broad and
extends to − 3

4 J and 1
4 J . Also, the distribution changes from

a Gaussian-like shape to an asymmetric one (see Fig. 17).
However, it is a rare event to be a (approximated) singlet
between two nearest-neighbor sites. It is a striking difference
between a 1D random singlet phase and the SLL phase. In the
1D random-singlet phase, the n.n. spin correlation has a large
probability to be − 3

4 J in Fig. 18.
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