
PHYSICAL REVIEW B 99, 085140 (2019)

Phase diagram of the Kondo model on the zigzag ladder
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The effect of next-nearest-neighbor hopping t2 on the ground-state phase diagram of the one-dimensional
Kondo lattice is studied with density-matrix renormalization-group techniques and by comparing with the phase
diagram of the classical-spin variant of the same model. For a finite t2, i.e., for a zigzag-ladder geometry, indirect
antiferromagnetic interactions between the localized spins are geometrically frustrated. We demonstrate that t2

at the same time triggers several magnetic phases which are absent in the model with nearest-neighbor hopping
only. For strong J , we find a transition from antiferromagnetic to incommensurate magnetic short-range order,
which can be understood entirely in the classical-spin picture. For weaker J , a spin-dimerized phase emerges,
which spontaneously breaks the discrete translation symmetry. The phase is not accessible to perturbative means
but is explained, on a qualitative level, by the classical-spin model as well. Spin dimerization alleviates magnetic
frustration and is interpreted as a key to understand the emergence of quasi-long-range spiral magnetic order,
which is found at weaker couplings. The phase diagram at weak J , with gapless quasi-long-range order on top
of the twofold degenerate spin-dimerized ground state, competing with a nondegenerate phase with gapped spin
(and charge) excitations, is unconventional and eludes an effective low-energy spin-only theory.

DOI: 10.1103/PhysRevB.99.085140

I. INTRODUCTION

One-dimensional lattice models have served as important
paradigms for unconventional states of matter. This holds
for pure spin models, such as the spin-S Heisenberg model,
and for interacting models of itinerant electrons, such as the
Hubbard model, for example. The one-dimensional Kondo
lattice with nearest-neighbor hopping −t1 (t1 > 0) and local
antiferromagnetic exchange coupling J can be seen as a hybrid
model including localized spins as well as itinerant electrons
[1]. The model is interesting as it incorporates the competition
between Kondo-singlet formation [2] and, on the other hand,
the emergence of nonlocal magnetic correlations due to indi-
rect magnetic couplings between the local spins mediated by
the conduction-electron system [3–5]. This competition has
been pointed out early [6]. At half-filling and as a function
of J , however, there is no quantum-phase transition. [7].
Furthermore, the half-filled Kondo model for arbitrary J and
on an arbitrary but bipartite lattice is well known to have a
unique total spin-singlet ground state [8].

Much less is known for the nonbipartite model with hop-
ping beyond nearest neighbors −t2. The one-dimensional
Kondo lattice with nearest-neighbor hopping −t1 and next-
nearest-neighbor hopping −t2 is equivalent with the Kondo
model on a zigzag ladder with hopping along the rungs −t1
and along the legs −t2. In the strong-coupling limit, i.e., for all
0 � t1, t2 � J , the state of the system is a featureless Kondo
insulator and is obtained by nondegenerate perturbation the-
ory from the ground state of the atomic-limit t1 = t2 = 0,
given by a simple tensor product of completely local Kondo-
singlet states. This adiabatic connection is indicated by the
paths C in Fig. 1. Actually, see paths C ′ in the figure, the
adiabatic connection to the atomic limit not only holds for
strong J but for all finite J in two limits, the single-chain limit
t1 �= 0, t2 = 0, and the limit of two decoupled chains t1 = 0

but t2 �= 0. Here, previous exact-diagonalization calculations
and density-matrix renormalization-group (DMRG) studies
[7] have demonstrated that the system is an insulator with
gapped spin and charge excitations and exponentially decay-
ing two-point correlations for all J . Only in the (nonperturba-
tive) limit J → 0, the spin gap is expected to get exponentially
small [1,7].

Apart from the more or less trivial limits of a single chain
or of two decoupled chains, the zigzag Kondo ladder at half-
filling has only been studied recently, namely for t1 = t2, see
Ref. [9] and the path C ′′ in Fig. 1. Our DMRG study has in fact
uncovered the presence of (at least) two quantum-phase tran-
sitions along C ′′. Starting from the strong-J limit, the system
first undergoes a continuous (or at most a weakly first-order)
transition at J (dim)

c = 0.89t1 to a spin-dimerized state. This
is indicated by a finite dimerization order parameter OD =
|〈Si−1Si〉 − 〈SiSi+1〉|. Second, at Jmag

c = 0.84t1 < J (dim)
c , the

system develops quasi-long-range spiral magnetic order. With
decreasing J , the spin gap closes at Jmag

c , and the spin-
structure factor diverges at the wave vector Q = π/2, while
charge excitations remain gapped at any coupling strength.

The emergence of magnetic order in this model is highly
unconventional for several reasons: It only shows up in the
magnetically frustrated system while the unfrustrated model
with t1 = 0 or with t2 = 0 is paramagnetic. Furthermore, the
magnetic ordering also eludes a simple perturbative explana-
tion. The relevant parameter regime is well beyond the weak-
coupling (Ruderman-Kittel-Kasuya-Yoshida, RKKY) regime
[3–5] and also beyond the strong-coupling regime, where a
superexchange-like perturbation theory applies. The proxim-
ity to the spin-dimerization transition, however, provokes an
idea that has also been suggested for the two-dimensional
Kondo lattice [10,11] and that has been tested on the dy-
namical [12] and static mean-field level [13], namely, that a
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FIG. 1. Sketch of the ground-state phase diagram of the Kondo
lattice on the zigzag ladder. Paths C adiabatically connect to the
atomic limit t1 = t2 = 0 (“local singlets”) via strong-coupling per-
turbation theory. The ground state of the unfrustrated Kondo lattice
(on a chain with nearest-neighbor hopping only) or on two decoupled
chains, adiabatically connects to the atomic limit for all J > 0, as
indicated by paths C ′. Along C ′′ (t1 = t2) a spin dimerization and a
magnetic phase transition have been found in Ref. [9].

spontaneous breaking of spatial symmetries, alleviating the
magnetic frustration, also paves the way for a subsequent
magnetic transition, and should thus be seen as a precursor
of magnetism. Finally, the spiral nature of the magnetic state
with the spin-structure factor diverging at Q = π/2 is remi-
niscent of the magnetism of classical spin degrees of freedom
and of the generic compromise in the presence of geometrical
frustration in classical spin models.

The purpose of the present study is to systematically trace
the spin-dimerization and the magnetic phase transition in
the t1-t2-J parameter space and to check whether one can
connect to a perturbatively accessible parameter regime. To
this end, we employ a recently developed [14] density-matrix
renormalization group (DMRG) [15] code. We furthermore
map out the complete phase diagram of the model with
quantum spins replaced by classical spins. This allows us to
check to what degree quantum fluctuations are essential in
explaining the phase diagram and provides a different and
independent view on the problem. While the classical, or
actually quantum-classical hybrid model is expected to have
a magnetically long-range-ordered ground state, the presence
or absence of a dimerized state is of particular interest.

The paper is organized as follows: The model and the
notations are introduced in the next section II, and some
issues of the numerical methods are discussed in Sec. III.
Results for the classical-spin case are presented in Sec. IV
and compared to perturbation theory in Sec. V. The DMRG
results are presented in Sec. VI, and an extended discussion
and our conclusions are given in Sec. VII.

II. FRUSTRATED KONDO LATTICE MODEL

The Hamiltonian of the Kondo-lattice model is given by

H =
∑
i jσ

ti jc
†
iσ c jσ + J

∑
i

siSi. (1)

J t1

t2

i

Si

J

t2
t1

Si

i

(a)

(b)

FIG. 2. (a) One-dimensional Kondo-lattice model with nearest-
neighbor hopping −t1 and next-nearest-neighbor hopping −t2, pa-
rameterized as t1 = t cos ϕ and t2 = t sin ϕ with t > 0 and 0 �
ϕ � π/2. Local antiferromagnetic exchange J > 0, see Eq. (1). (b)
Equivalent representation of the same model. On the zigzag ladder,
sites linked by t1 on the rungs of the ladder or by t2 along the legs
of the ladder will both be denoted as nearest neighbors. For ϕ = 0,
i.e., t1 = t and t2 = 0, the model reduces to the Kondo lattice on
the one-dimensional chain. At ϕ = π/4, we have t1 = t2, and for
ϕ = π/2, i.e., t1 = 0 and t2 = t , the model is given by two decoupled
one-dimensional chains.

Here, c†
iσ (ciσ ) creates (annihilates) an electron at site

i = 1, . . . , L with spin projection σ = ↑,↓, and si =
1
2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ is the local conduction-electron spin at site
i, where τ denotes the vector of Pauli matrices. The local
spin si couples antiferromagnetically, with interaction strength
J > 0, to the localized spin Si at the same site. Two model
variants will be studied: (i) the conventional Kondo lattice
where the latter is taken as a quantum spin with S = 1/2, and
(ii) the corresponding classical-spin variant where Si is treated
as a classical vector of fixed length |Si| = 1/2. Furthermore,
we consider the system at half-filling with N = L electrons,
where L is the number of lattice sites.

The first term in Eq. (1) describes the hopping of the con-
duction electrons on a one-dimensional lattice with hopping
amplitude ti j = −t1 between nearest neighbors i, j and with
hopping −t2 between next-nearest neighbors. We parametrize
the hopping as t1 = t cos ϕ and t2 = t sin ϕ where 0 � ϕ �
π/2 and t > 0. Figure 2(a) provides a sketch of the geometry.
Nearest neighbors are linked by the hopping t1. An equivalent
view is the zigzag-ladder geometry (b). For convenience, we
refer to nearest neighbors for both, a pair of sites linked by t1,
i.e., on the rungs of the ladder, and a pair of sites linked by t2,
i.e., along the legs of the ladder. The model studied in Ref. [9]
is recovered for ϕ = π/4 (t1 = t2). Whenever convenient, we
set t ≡ 1 to fix the energy unit.

III. METHODS

A. Matrix-product states

For the numerical solution of the Kondo lattice
model, Eq. (1), we employ a conventional density-matrix
renormalization-group (DMRG) algorithm [14,15] as well
as a recently suggested variationally uniform matrix-product
state approach (VUMPS) [16]. The DMRG calculations
are based on a single-site algorithm, where we make use
of a subspace expansion scheme as recently suggested in
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Ref. [17]. Our implementation explicitly takes into account
the continuous symmetries of the Kondo lattice, namely
the invariance under U(1) gauge transformations related to
conservation of the total particle number as well as the SU(2)
spin-rotation symmetry related to conservation of the total
spin. Here, we follow previous work detailed in Refs. [18,19].
Exploiting the SU(2) symmetry is particularly important for
the present case and leads to a substantial gain in efficiency
and accuracy. The VUMPS calculations follow the recently
developed method for obtaining the ground state directly in
the thermodynamic limit [16]. The method explicitly makes
use of the translational symmetry of the system to get the
exact matrix-product-state representation of the ground
state for one-dimensional gapped Hamiltonians. For gapless
systems, the method yields an approximation to the ground
state only, and all observables need to be scaled to the
infinite-bond-dimension limit. Our VUMPS implementation
respects the U(1) and SU(2) gauge symmetries.

For the DMRG calculations presented here, we keep up to
m ≈ 8000 density-matrix eigenstates. These are grouped into
symmetry blocks labeled with the irreducible representations
(N, S) of U(1) and SU(2), respectively. This would correspond
to mtot ≈ 40 000 states if only Abelian symmetries were used.
For the VUMPS calculations, we keep up to m ≈ 15 000
states, which corresponds to mtot ≈ 100 000 states in the
Abelian case.

B. Classical spins

The DMRG results will be compared with those obtained
for the classical-spin variant of the Kondo lattice. Generally,
the ground-state spin configuration is obtained by minimiza-
tion of the energy

E ({S}) =
∑
ii′σσ ′

(
tii′δσσ ′ + J

2
(τSi )σσ ′δii′

)
〈c†

iσ ci′σ ′ 〉{S}. (2)

as a functional of the spin configuration {S} = (S1, . . . , SL )
subject to the constraints |Si| = 1/2. The hopping correlation,
i.e., the elements

ρii′σσ ′ = 〈c†
i′σ ′ciσ 〉 (3)

of the 2L × 2L one-particle reduced density matrix ρ are
obtained via ρ = �(−teff ) = U�(−ε)U† from the effective
Hermitian hopping matrix teff with elements

teff,ii′,σσ ′ = tii′δσσ ′ + J

2
(τSi )σσ ′δii′ (4)

by diagonalization, teff = UεU†, where ε is the diagonal ma-
trix of the eigenvalues of teff for the given spin configuration
and where � denotes the Heaviside step function.

Antiferro- and ferromagnetic spin configurations as well as
spiral phases with arbitrary pitch angle θ and spin-dimerized
phases can be covered with a (θ,	θ ) parametrization of
the classical spin configurations, see Fig. 3. Note that the
transformation θ → π − θ and 	θ → π − 	θ is a sym-
metry. Assuming periodic boundary conditions, the allowed
pitch angles are given by θ = n 2π/L with integer n. For
convenience, the same grid is used for 	θ . Minimization of
the corresponding energy function E = E (θ,	θ ) is typically
performed numerically for systems with up to L = 200 lattice

2θ

θ
−Δ

θ

θ
+

Δ
θ

2θ

FIG. 3. Parameterization of possible classical spin configura-
tions. 2θ : angle between neighboring spins along the legs of the
zigzag ladder. θ + 	θ and θ − 	θ : alternating angles between
neighboring spins along the rungs. 	θ �= 0 indicates a dimerized
state. Incommensurate spiral states with pitch angle θ are described
with 	θ = 0. For the given example spin configuration, θ = π/2,
	θ > 0. It is sufficient to consider the parameter ranges 0 � θ � π

and 0 � 	θ � π/2.

sites. In the range π/4 � ϕ < π/2 and for strong J , however,
converged results can only be achieved for systems as large as
L = O(105) (see discussion in Sec. V A).

IV. GROUND-STATE PHASE DIAGRAM
FOR CLASSICAL SPINS

We start with the discussion of the classical-spin case. The
resulting phase diagram is shown in Fig. 4 for the entire
ϕ range and for coupling strengths J spanning the param-
eter range between the perturbatively accessible regimes of
weak (J � t) and strong coupling J � t . Due to the missing

IC

FIG. 4. ϕ-J magnetic phase diagram of the classical-spin variant
of the Kondo lattice with an antiferromagnetic phase (AF, θ =
π , 	θ = 0), an incommensurate spiral phase (IC, π/2 < θ < π ,
	θ = 0), and a dimerized phase (DIM, θ = π/2, 	θ = π/2). The
dotted line indicates t1 = t2 (ϕ = π/4). Calculations have been
performed for L = 200. This is sufficient for convergence, except
for the regime ϕ � π/4 where much larger systems with up to
L = 100 000 sites are necessary (see text for discussion). The dashed
line interpolates between the data points.
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quantum fluctuations, the ground state exhibits long-range
magnetic order and is degenerate with respect to global SO(3)
rotations of the classical spins. We expect, however, that
the type of magnetic order is related to the corresponding
type of magnetic short-range correlations or quasi-long-range
(algebraic) magnetic order of the quantum-spin case since
the classical-spin approach comprises the relevant indirect
magnetic coupling mechanisms at work.

For ϕ = 0, i.e., for the unfrustrated chain, we find the
expected antiferromagnetic order (θ = π , 	θ = 0) for all
coupling strengths 0 < J < ∞. This corresponds to the well-
known quantum-singlet state with short-range antiferromag-
netic correlations [1,7]. At weak J , this is driven by the anti-
ferromagnetic RKKY indirect magnetic interaction between
the classical spin, while for strong J a superexchange-like
mechanism is responsible (see below).

As the classical-spin system acts like a staggered magnetic
field, the magnetic unit cell is given by twice the unit cell of
the lattice, and the electronic band structure consists of two
dispersive bands in the reduced Brillouin zone −π/2 < k �
π/2 with a gap of JS = J/2 at the zone boundary. Hence, the
system is an insulator.

Switching on the hopping t2 on the rungs of the zigzag
lattice, the system stays insulating. For all magnetic phases
found, including the incommensurate spiral phase, there is
a finite gap between the highest occupied and the lowest
unoccupied one-particle energies, given by the eigenvalues
of the effective hopping matrix, Eq. (4). For very weak J ,
however, a somewhat more cautious statement is appropriate.
As the gap is of the order of J , it becomes of the order of the
finite-size gap ∼t/L for J → 0 at fixed L such that no clear
statement is possible for J � t/L.

For finite ϕ > 0, the antiferromagnetic phase extends in
the entire J range up to some J-dependent critical value
ϕc(J ). In the weak-coupling limit, we find ϕc(J → 0) ≡ ϕ0 ≈
0.148π . This corresponds to t2 = t1/2 or, equivalently, to
ϕ0 = arctan( 1

2 ), which is exactly the Lifschitz point where the
number of Fermi points in the noninteracting band structure
changes from two (for ϕ < ϕ0) to four (for ϕ > ϕ0), see
Fig. 5. In the strong-J limit, on the other hand, the critical
value is found as ϕc(J → ∞) ≡ ϕ∞ ≈ 0.148π . This perfectly
reproduces the result of strong-coupling perturbation theory,
namely, ϕ∞ = arctan( 1

2 ), see Eq. (7) below, which is a coin-
cidental match with the value for ϕ0.

At J = Jtri ≈ 4.1t there is a “triple point” on the critical
line ϕc(J ) (with ϕtri = ϕc(Jtri ) ≈ 0.188π ). Above the line
ϕc(J ), we find a spin-dimerized phase with θ = π/2 and
	θ = π/2 for weaker J . Here, the spins are ferromagneti-
cally aligned on every second rung and antiferromagnetically
between the rungs. This phase is separated by a line ϕ(dim)

c (J )
from an incommensurate spin-spiral phase for stronger J with
	θ = 0 and with a continuously varying pitch angle in the
range π/2 < θ < π . ϕ(dim)

c (J ) is a monotonously decreasing
function with decreasing J and, at J = Jtri terminates at the
triple point.

The transition between the antiferromagnetic (AF) and
the dimerized phase (DIM), see Fig. 4, is discontinuous.
Across the line ϕc(J ), there is a finite jump of the optimal
values for θ and 	θ as obtained by minimization of the
total-energy function E (θ,	θ ), i.e., the local minimum at

FIG. 5. Location of the Fermi points in k space as a function of ϕ.
The Lifshitz transition between a state with two (2 FP) and with four
Fermi points (4 FP) takes place at ϕ = ϕ0 = arctan( 1

2 ) ≈ 0.148π ,
i.e., at t1 = 2t2 (dashed red line). Horizontal arrows: nesting vectors.
Vertical arrows mark the decoupled-chains limit ϕ = π/2.

(θ = π,	θ = 0) becomes degenerate with the local minimum
at (θ = π/2,	θ = π/2). Similarly, transitions between the
DIM and the incommensurate spiral phase (IC) are discontin-
uous, opposed to transitions between the AF and IC phases,
which turn out as continuous. In the latter case, and as a
function of ϕ, for example, the total-energy minimum at (θ =
π,	θ = 0) continuously shifts from θ = π to θ < π , or vice
versa, while the derivative ∂E/∂ϕ shows a finite jump across
the critical line.

The most remarkable result of classical-spin theory con-
sists in the prediction of the spin-dimerized phase. This can
be seen as a simple effective theory of the spin dimerization
found in the full quantum-spin Kondo lattice [9]. Clearly,
due to the mean-field character inherent to the classical-
spin theory, one cannot expect correct order of magnitude
for the critical parameters but still the comparison with the
exact DMRG results is instructive. One would expect that the
necessary critical interaction strength J (dim)

c,class would be much
stronger than J (dim)

c , the DMRG value, since mean-field-like
and classical approaches tend to overestimate ordering, i.e.,
dimerization due to absence of quantum fluctuations that act
against ordering. Indeed, on the t1 = t2 line, for example,
we find 6.4t ≈ J (dim)

c,class � J (dim)
c ≈ 0.62t instead, see Ref. [9].

Below we will argue that spin dimerization cannot occur in
the strong-J limit and it is rather the alleviation of frustration
which drives spin dimerization.

V. PERTURBATIVE APPROACHES

A. Strong Kondo coupling J

In the ground state of the atomic limit t1 = t2 = 0, each
lattice site i is occupied by exactly one electron. The local
spin moment 〈si〉 is fully polarized and oriented antipar-
allel to the classical spin Si. To compute the functional
E ({S}), see Eq. (2), the configuration of classical spins {S} =
(S1, . . . , SL ) must be considered as fixed, and thus the elec-
tronic ground state |0〉 is nondegenerate. The first nonzero
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contribution to the functional within nondegenerate perturba-
tion theory in powers of t/J is found at second order:

E ({S}) = −L
J

4
+

∑
n �=0

|〈0|H1|n〉|2
E0 − En

+ O(t3/J2). (5)

Here, the perturbation H1 = ∑
i jσ ti jc

†
iσ c jσ is the hopping

term in Eq. (1), |0〉 and |n〉 are the ground and the excited
states of the Kondo term H0, and E0 = −LJ/4 and En are
the corresponding unperturbed eigenenergies. The straightfor-
ward calculation is given in the Appendix A and results in

E (θ,	θ ) = const. + L

4
(J1 cos θ cos 	θ + J2 cos(2θ ))

+O(t4/J3), (6)

which is just the energy of the classical-spin (|Si| = 1/2)
Heisenberg model on the zigzag ladder with exchange cou-
plings J1 = 8t2

1 /J and J2 = 8t2
2 /J and for the same para-

metrization of the spin configuration as assumed above for
the classical-spin Kondo lattice (see Appendix B). The con-
stant, {S}-independent energy offset is given by Eq. (A8) of
Appendix A.

We note that Eq. (6) holds up to fourth-order corrections.
Namely, the ground-state energy correction at order t3/J2

vanishes identically for all (θ,	θ ) due to a cancellation of
two different types of virtual ring-exchange processes. The
according calculation is a bit more tedious but still straight-
forward and is not reported here.

Minimization of the energy functional yields 	θ = 0, i.e.,
there is no spin dimerization in this limit. We furthermore get
θ = π for t1 > 2t2 and

θ = arccos

(
− t2

1

4t2
2

)
= arccos

(
− 1

4 tan2(ϕ)

)
(7)

for t1 < 2t2.
Strong-coupling perturbation theory also explains why

convergence of the results with increasing L is extremely poor
in the range π/4 � ϕ < π/2 and for strong J . As detailed in
Appendix C, comparatively large systems must be considered
to control the finite-size effects. Calculations in this parameter
regime are performed for systems with up to L = 100, 000
sites, see dots in Fig. 4.

B. RKKY theory at weak J

Standard RKKY theory [3–5] provides us with an effective
spin Hamiltonian

HRKKY =
∑

k

JRKKY(k)SkS−k (8)

at order J2 in the limit J → 0. The effective RKKY coupling
JRKKY(k) = −J2χ0(ω = 0, k) is given by the static magnetic
susceptibility of the conduction electrons

χ0(ω = 0, k) = 1

2L

∑
q

nk+q,↑ − nq,↓
ε(q) − ε(k + q)

, (9)

where nkσ = �(−ε(k)) is the occupation number. For the
zigzag lattice, the dispersion reads

ε(k) = −2t1 cos(k) − 2t2 cos(2k). (10)

If t2 < t1/2 [ϕ < ϕ0 = arctan( 1
2 ) ≈ 0.148π ], there are two

Fermi points at kF = ±π/2, independent of ϕ as dictated
by Luttinger’s sum rule [20,21]. The susceptibility diverges
logarithmically with L → ∞ at k = π , as is easily seen by
expanding the denominator in q around q = kF. Hence, spin
correlations are predominantly antiferromagnetic, consistent
with the antiferromagnetic phase found numerically.

If t2 > t1/2, there are four Fermi points, see Fig. 5, result-
ing in a logarithmic divergence of the susceptibility χ0(0, k)
at the ϕ-independent nesting “vector” k = π/2. This is con-
sistent with a π/2 spin spiral as well as with a spin-dimerized
phase.

We conclude that weak-coupling perturbation theory ap-
pears to explain the presence of the phase transition at t1 =
2t2 in the J → 0 limit. One has to be aware, however, that
the effective RKKY model (8) is actually ill-defined in one
dimension [1] due to the divergence of the coupling constant.

As a standard regularization let us consider arbitrary but
finite L. Here weak-coupling perturbation theory is well be-
haved, and one may compute the RKKY coupling constants
numerically using Eq. (8) or in the real-space representation
as given in the supplemental material of Ref. [22], for in-
stance. At half-filling N = L, we have to choose the system
size as L = 4n + 2 with integer n if t2 < t1/2 (ϕ < ϕ0) to
get a nondegenerate electronic ground state, and L = 4n for
t2 > t1/2 (ϕ > ϕ0). In the latter case, occupied twofold spin-
degenerate one-particle states labeled by wave vectors k come
in pairs ±k, except for k = 0 and k = π . Restricting ourselves
to homogeneous, to commensurate or incommensurate spin-
spiral, and to spin-dimerized states, the ground-state classical-
spin configuration is obtained by minimization of the energy
function

ERKKY(θ,	θ ) = E0 +
∑

i j

JRKKY,i jSiS j . (11)

Here, the constant offset E0 is given by the total ground-
state energy of the half-filled conduction band at J = 0,
i.e., E0 = ∑

i jσ ti j〈c†
iσ c jσ 〉. Equation (11) is easily evaluated

numerically, and we find a nontrivial θ and 	θ dependence of
ERKKY(θ,	θ ).

RKKY theory does not recover the spin-dimerized phase:
Computing the respective ground-state energies of the RKKY-
Hamiltonian (8) for ϕ > ϕ0 and for arbitrary but finite L = 4n,
shows that states with 	θ = π/2 and states with 	θ = 0
are degenerate. Hence, higher-order-in-J perturbation theory
would have to be invoked to lift this degeneracy and to
reproduce the spin-dimerized phase that is found numerically
within the full theory.

The full semiclassical theory predicts a discontinuous tran-
sition at ϕc(J ) between an antiferromagnetic (θ = π , 	θ = 0)
and a dimerized state (θ = π/2, 	θ = π/2), which are both
characterized as local energy minima. At weak J and for any
finite L, we find

ϕc(J ) = ϕ0 + const × J2 + O(J4). (12)

It is important to understand that the J2 term is already beyond
second-order perturbation theory. Expanding the energy of
both minima (i = 1, 2) in powers of J , we have

Ei(J, ϕ) = Ei,0(ϕ) + J2Ei,1(ϕ) + J4Ei,2(ϕ) + O(J6). (13)
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L=10

L=22

L=50

L=70

L=102

FIG. 6. Difference between the total energy of the full semi-
classical theory and of the RKKY perturbation theory per site as
a function of J4 in the weak-J regime at ϕ = 0.4 < ϕ0 and for
different system sizes as indicated. (Inset) Corresponding slope,
i.e., the coefficient α4 ≡ limJ→0(E (J ) − ERKKY)/(LJ4) as a function
of L2.

For J = 0, the total energy does not depend on the spin
configuration such that trivially E1,0(ϕ) = E2,0(ϕ). Therefore
the J2 term of ϕc(J ) is obtained from the condition E1,1(ϕc) +
J2E1,2(ϕc) = E2,1(ϕc) + J2E2,2(ϕc), i.e., one has to go to
O(J4). The RKKY Hamiltonian, on the other hand, involves a
single energy scale only and thus predicts ϕc(J ) = ϕ0 = const
(and this relates to the transition with respect to θ only). We
note that ϕ0 itself is independent of L as this is related to the
Lifschitz transition which is L-independent in turn.

Figure 6 demonstrates that RKKY theory is perfectly valid
in the weak-J limit for any finite system size L. Namely,
the difference between the total energy, as obtained from the
full semiclassical theory, and the RKKY energy, Eq. (11), is
zero up to corrections of the order of J4. We also note that
for a small system with L = 10 sites, for instance, there is
almost perfect agreement between ERKKY(θ,	θ ) and the ex-
act ground-state energy E (θ,	θ ) up to J = 0.5 (not shown).
In the same J range but for larger lattices with L = 100,
however, there are qualitative deviations between the RKKY
and the exact data for E (θ,	θ ). In fact, the magnitude
of the O(J4) correction strongly increases with increasing
system size, as can be seen in the main part of Fig. 6.
This can be quantified by the coefficient α4 ≡ E1,2(ϕ)/L =
limJ→0(E (J ) − ERKKY)/(LJ4), i.e., by the slope of the linear
trend with J4. The inset demonstrates that α4 diverges as L2

when L → ∞. This illustrates the breakdown of perturbation
theory in the thermodynamical limit.

At the order J2, on the other hand, α2 ≡ E1,1(ϕ) =
limJ→0(ERKKY − E0)/(LJ2), converges to a finite value as
L → ∞, as is well known for the free electron gas [23,24].
The logarithmic divergence of χ0(0, k) at k = π/2 is inte-
grable, which implies that the total RKKY energy per site,
Eq. (8), converges to a finite value in the thermodynamic limit
[25]. We conclude that the J2 term of ϕc(J ), see Eq. (12),
is ill-defined when L → ∞ since it is fixed by a condition
involving both α2 and α4.

C. Perturbation theory around t1 = 0

Finally, we briefly discuss perturbation theory in powers
of t1 around t1 = 0, i.e., ϕ = π/2. At t1 = 0, the ground
state is given by two decoupled antiferromagnetically ordered
chains, where both the dimerized and the incommensurate
spiral configurations are degenerate. This is lifted at finite t1
and produces a line J (dim)

c (t1) of first-order transitions. This
can also be written as J (dim)

c (ϕ) or, in the notation used above,
as ϕ(dim)

c (J ). The phase diagram, Fig. 4, shows that for t1 → 0,
the line J (dim)

c (t1) → J0 ≈ 9.7t .
One may use nondegenerate perturbation theory in t1 to

compute the total energy for a given configuration of the
classical spins. Dimerized states (i = 1) with 	θ = π/2 and
spiral states (i = 2) with 	θ = 0 are given by local minima.
We expand the energy of both minima (i = 1, 2) in powers
of t1,

Ei(J, t1) = Ei,0(J ) + t2
1 Ei,1(J ) + t4

1 Ei,2(J ) + . . . , (14)

and exploit the degeneracy E1,0(J ) = E2,0(J ) in the
decoupled-chain limit, where the energy is trivially
independent of 	θ . Note that odd powers of t1 do not
contribute. The explicit computation at order t2

1 is already
somewhat tedious (and is not reported here), but it does
not suffer from divergencies (as for perturbation theory
in J), and yields the simple result E1,1(J ) = E2,1(J ). This
implies that the degeneracy is lifted, at the earliest, at
order t4

1 . The condition fixing J (dim)
c (t1) then reads as:

E1,2(J (dim)
c ) + t2

1 E1,3(J (dim)
c ) = E2,2(J (dim)

c ) + t2
1 E2,3(J (dim)

c ).
We conclude that for an analytical computation of J0 one
would have to go O(t6

1 ) at least. In any case we have
J (dim)

c (t1) = J0 + const. × t2
1 + O(t4

1 ), or put differently,
J (dim)

c (ϕ) − J0 ∝ (ϕ − π/2)2. Note that this is fully consistent
with the dotted line in Fig. 4 interpolating between the data
points.

VI. DMRG RESULTS

Let us now turn to the Kondo lattice with quantum spins
S = 1/2. The ground-state ϕ-versus-J phase diagram as ob-
tained by extensive DMRG calculations is shown in Fig. 7. We
will first give a rough overview over the different phases and
parameter regimes and then proceed with a detailed discussion
and the comparison with the classical-spin phase diagram.

For strong J , there are two different homogeneous phases,
one with short-range antiferromagnetic spin correlations char-
acterized by the wave vector Q = π (AF-SRO), and another
one with short-range incommensurate (spiral) spin correla-
tions (IC-SRO) characterized by a wave vector in the range
π
2 � Q < π , at which the spin-structure factor is at its max-
imum. Both phases are separated by the green line in Fig. 7.
The green arrow indicates the boundary in the J → ∞ limit.

For weaker interaction strength, J � 0.9t , the spin-
structure factor gets more complicated such that the “phase
boundary” is no longer well defined. In particular, with de-
creasing J , a second peak grows near π

2 . This is a precursor
of a gapless ground state with quasi-long-range 90◦ spiral
magnetic order (SP-QLRO, Q = π

2 ), which is found at still
weaker J (see red line).
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FIG. 7. Ground-state phase diagram in the J-ϕ plane for the half-
filled quantum-spin Kondo model on the zigzag ladder, as obtained
by DMRG calculations for systems of up L = 52 sites (and extrapo-
lated to L = ∞) as well as by VUMPS calculations working directly
in the thermodynamical limit (with bond dimensions extrapolated to
m = ∞ where necessary). AF-SRO: antiferromagnetic short-range
order with wave vector Q = π . IC-SRO: incommensurate spiral
short-range order with π/2 � Q < π . DIM: spin-dimerized phase.
SP-QLRO: spiral quasi-long-range order, Q = π/2. Points with error
bars locate the various transitions. Black dashes lines: t2 = t1 (upper)
and t2 = t1/2 (lower). Blue and red dashed lines: see text.

The transition to this magnetic state, however, is preempted
by a spin-dimerized phase (DIM) with spontaneously bro-
ken translation symmetry (blue line). This is characterized
by alternating ferro- and antiferromagnetic nearest-neighbor
correlations on the rungs of the ladder. In the weak-coupling
limit, the phase transition between the dimerized and the
short-range antiferromagnetic states takes place at ϕc(J →
0) = arctan( 1

2 ) ≈ 0.148π and exactly coincides with the tran-
sition point in the strong-coupling limit ϕc(J → ∞) as is
indicated by the dotted line. Finally, the system is insulating
in the whole phase diagram. Charge excitations are gapped
and the momentum-distribution function is does not show a
singularity.

A. Strong-J regime

In the extreme strong-coupling limit J → ∞, the unique
ground state of the system consists of local singlets between
the localized spin and the local conduction-electron spin at
each site of the lattice. All excitations are gapped by an energy
of the order of J and consequently all two-point correlations
exhibit an exponential decay with increasing distance. For
the unfrustrated chain with t2 = 0 (ϕ = 0), the short-range
magnetic order is known [1,7] to be antiferromagnetic. This
reflects itself in a well-defined peak of the spin-structure factor

S(Q) = 1

L

L∑
i j

eiQ(Ri−Rj )〈SiS j〉 (15)

with a peak maximum at the wave vector Q = π and a width
determined by the spin correlation length.

FIG. 8. Position in the reciprocal unit cell Q of the peak max-
imum in the spin-structure factor S(Q), see Eq. (15), as a function
of ϕ. The kink defines ϕc(J ), i.e., the crossover from short-range
AF to IC magnetic order. Results of VUMPS calculations in the
thermodynamic limit for various interaction strengths J (symbols).
For strong J , the peak position matches with the pitch angle of the
classical-spin configuration obtained by perturbation theory (PT),
i.e., from Eq. (7), see the solid line.

At strong J , the spin-structure factor is dominated by
a single well-defined peak in the entire range 0 � ϕ � π

2 .
The evolution of the position of the peak maximum with
increasing frustration t2, i.e., Q(ϕ), is displayed in Fig. 8. For
small ϕ, the maximum remains at Q = π until a critical ϕc(J )
is reached. For ϕ > ϕc(J ), the peak maximum smoothly shifts
away from Q = π and finally approaches Q = π

2 for ϕ → π
2 .

Hence, there is a sharp crossover from antiferromagnetic to
incommensurate short-range magnetic order.

The crossover point ϕc(J ) is very weakly J-dependent in
the strong-J regime and almost perfectly matches the pre-
diction ϕc(J → ∞) = ϕ∞ = arctan( 1

2 ) ≈ 0.148π of strong-
coupling perturbation theory for the classical-spin Kondo
lattice. Furthermore, there is almost perfect agreement of the
peak position Q(ϕ) with the pitch angle θ (ϕ), as given by
Eq. (7), in the entire ϕ range (see black line in Fig. 8). Slight
deviations that are visible on the scale used in the figure
show up for J = 4t only and close to the “critical” point. We
conclude that the short-range spin correlations are purely clas-
sical. The quantum character of the spins does manifest itself
in the long-distance limit though. Opposed to the classical-
spin model, quantum fluctuations destroy the long-range AF
or IC order. The quantum state is rather characterized by
a finite spin gap 	ES (see below) and, correspondingly, by
exponentially decaying spin correlations on a scale given by a
finite correlation length.

With decreasing J the crossover point ϕc increases. The
line ϕc(J ) clearly separates two states with different (antifer-
romagnetic and incommensurate) short-range magnetic order
down to J ≈ 0.9 and comes close to touch the critical line
for the dimerization transition; see the green line separating
AF-SRO and IC-SRO in Fig. 7. This phase-diagram topology
is almost the same as in the classical-spin case (cf. Fig. 4 for

085140-7



PESCHKE, WOELK, AND POTTHOFF PHYSICAL REVIEW B 99, 085140 (2019)

FIG. 9. Short-range spin correlations 〈SiS j〉 (color code) as obtained from DMRG for a chain with L = 52 sites at J = 0.7t1 and for various
values of the next-nearest-neighbor hopping t2 as indicated.

comparison). Essentially, there are two differences. First,
in the classical-spin case, the triple point (Jtri, ϕtri ) ≈
(4.1t, 0.188π ) is found at a much stronger interaction. This
is interpreted as being due to a destabilization of the spin
dimerization caused by quantum fluctuations. Second, in the
quantum-spin case, and for J very close to the dimeriza-
tion transition, there is another peak developing in the spin-
structure factor close to but larger than π

2 . The emergence of
this peak is accompanied by a disappearance of the crossover
at ϕc(J ) for J � 0.9t . Namely, the peak structure at Q = π

first remains but becomes weak as compared to the new peak
at Q � π

2 and finally vanishes.
The peak in S(Q) at Q ≈ π

2 (but Q > π
2 ) is interpreted

as a precursor of the magnetic Q = π
2 spiral phase found at

weaker J (see the red transition line in the phase diagram
Fig. 7). It is observed whenever (J, ϕ) is close to the magnetic
transition line. There is, however, no direct transition from the
gapped phase with magnetic short-range order to the gapless
quasi-long-range ordered spiral phase. The magnetic phase
transition is rather preempted by spin dimerization.

B. Translational symmetry breaking

Dimerization is the simplest form of a spontaneous
breaking of the discrete translational symmetries of a one-
dimensional lattice. In a dimerized state, the nearest-neighbor
correlation 〈AiAi+1〉 of a local observable Ai depends on the
site index i and alternates around the spatial average, i.e., the
dimerization order parameter

〈Ai−1Ai〉 − 〈AiAi+1〉 = const. × (−1)i (16)

oscillates, while 〈Ai〉 = 〈A〉 = const, since each site i belongs
to both inequivalent bonds (i − 1, i) and (i, i + 1). Here, we
discuss spin dimerization with order parameter

OD = |〈SiSi+1〉 − 〈Si+1Si+2〉|. (17)

The ground state of the unfrustrated (t2 = 0) Kondo lattice
at half-filling is homogeneous in the entire J-range with
antiferromagnetic nearest-neighbor spin correlations 〈SiSi+1〉
while next-nearest neighbor correlations 〈SiSi+2〉 are ferro-
magnetic. Contrary, as has been shown in Ref. [9], the Kondo
model on the zigzag lattice with t2 = t1 has weakly anti-
ferromagnetic spin correlations on the rungs as well as for
nearest neighbors along the legs of the ladder for strong J
and undergoes a spin-dimerization transition at J = J (dim)

c ≈
0.89t1. For J < J (dim)

c , the spin correlations on the rungs
alternate between different antiferromagnetic or even between
anti- and ferromagnetic values. Consequently, we expect a
spin-dimerization transition for fixed J when passing from
t2 = 0 to t2 = t1.

Figure 9 demonstrates that this is indeed the case. It
displays the nearest-neighbor spin correlations on the rungs
and along the legs for at J = 0.7t1 and for various values of
t2. For weak frustration, t2 = 0.1t1 (top panel), we find strong
antiferromagnetic correlations on the rungs and ferromagnetic
correlations on the legs as for the unfrustrated limit t2 = 0.
With increasing t2 up to t2 = 0.7, frustration of antiferromag-
netic order gets more and more important and leads to weaker
but still antiferromagnetic rung correlations. At the same time,
the increasing hopping along the legs leads to a decrease of
the ferromagnetic leg spin correlations and finally, for t2 =
0.7t1, to antiferromagnetic values 〈SiSi+2〉 < 0. The figure
also demonstrates that edge effects, though clearly visible, do
not affect the central region of the ladder for L = 52.

At t2 = 0.76t1, the system has undergone the spin-
dimerization transition. There is a clearly alternating pattern
between weaker and stronger antiferromagnetic correlations
on the rungs that breaks the translational symmetry of the sys-
tem. This dimerization pattern is even more apparent at t2 =
0.8t1, as rung correlations are now even oscillating between
antiferro- and ferromagnetic values. In the thermodynamic
limit L → ∞, the ground state would be twofold degener-
ate. For the finite system studied here (L = 52) and for the
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FIG. 10. Order parameter for spin dimerization OD, Eq. (17),
as a function of t2/t1 for different L at J = 0.7t1, as obtained by
DMRG. The L = ∞ values are obtained by the VUMPS algorithm
after scaling to the infinite bond-dimension limit. The red arrow
marks the transition: (t2/t1)(dim)

c ≈ 0.785 ± 0.005. This corresponds
to ϕ (dim)

c ≈ 0.67 ≈ 0.21π at J ≈ 0.55t , see the phase diagram in
Fig. 7.

particular geometry considered, the presence of the edges
explicitly breaks the symmetry with respect to a reflection at
the chain center and thus favors one of the two states. At t2 =
0.9t1, the spin correlations form a structure reminiscent of
unfrustrated antiferromagnetic correlations that would emerge
when switching off the nearest-neighbor hopping on every
second rung, thereby forming a simple bipartite lattice again.
In this way, the spin-dimerization alleviates magnetic frustra-
tion, and thus paves the way for quasi-long-range magnetic
order (see Sec. VI C). Note that this is somewhat different
but very much in the same spirit as the mechanism of partial
Kondo screening (PKS) suggested for the frustrated Kondo
lattice on the two-dimensional triangular lattice [10].

A precise location of the transition point can be achieved
by studying the dimerization order parameter OD, computed
via Eq. (17) from the site-dependent nearest-neighbor corre-
lations 〈SiSi+1〉. DMRG results for OD are presented in Fig. 10
for several system sizes L. The transition point is expected to
be located at the crossing of the curves obtained for different
finite L. This yields a value (t2/t1)(dim)

c ≈ 0.79t1, which is also
consistent with additional VUMPS calculations working in
the thermodynmic limit L = ∞. The latter, after scaling to
the infinite bond-dimension limit, locate the transition point
at (t2/t1)(dim)

c ≈ 0.785 ± 0.005, corresponding to ϕ(dim)
c ≈

0.67 ≈ 0.21π at J ≈ 0.55t , see the phase diagram Fig. 7. The
VUMPS data shown in Fig. 10 suggest a first-order (or weakly
first-order) transition, the order parameter OD appears to jump
at the transition point. This is supported by the finite-size
DMRG data when extrapolating to the L → ∞ limit.

We have systematically computed the phase boundary for
the transition to the dimerized state in the J-ϕ plane. There
is a large region, where the ground state has a broken trans-
lational symmetry (see blue dots in Fig. 7). We were able to
trace the transition down to J ≈ 0.1t . Generally, computations

get much more involved in the weak-J regime. Here, the
physics is more and more dominated by RKKY-type long-
range effective spin interactions which produce an increase
of the entanglement entropy. For the weakly frustrated regime
(t2 � t1), the situation is different. Here, calculations can be
done for J ∼ 0.1t1 without difficulty, and the phase boundary
of the spin-dimerized phase could be obtained accurately.
Within the symmetry-broken phase (for t2 � 0.5t1 at J =
0.1t1), however, the entanglement is considerably higher, so
that computations become very challenging and prevent us
from further systematic studies in this regime.

Starting from ϕ = π/4 (i.e., t1 = t2) ϕc(J ) the phase
boundary decreases with decreasing J . The data support a
scenario with ϕc(J ) → ϕ0 ≈ 0.148π for J → 0, see the solid
blue line. This exactly recovers the result of the classical-spin
model and coincides with the ϕ, at which the number of Fermi
points in the noninteracting band structure changes.

Starting again from ϕ = π/4 but increasing J , the phase
boundary ϕc(J ) first increases, reaches a maximum at J ≈
0.68t , and then bends back, see Fig. 7. This is important as
the boundary must bend back, in fact. The dashed blue line in-
dicates a possible further trend. The reason is that it is impos-
sible to have the transition line ending in a critical point J = Jc

at ϕ = π/2, i.e., in the decoupled-chain limit t1 = 0. Clearly,
in this limit the ground state is nondegenerate and excitations
are gapped for all J > 0 so that nondegenerate perturbation
theory with respect to the hopping term t1 applies, excluding
a dimerization transition along t1 = 0. Note that this is a qual-
itative difference to the phase diagram of the classical-spin
model (see Fig. 4). The important point is that in the classical-
spin case the ground-state for t1 = 0 is highly degenerate. It
is tempting to assume that the phase boundary finally ends at
ϕ(J = 0) = π/2, since apart from ϕ0 there is no further qual-
itative change in the noninteracting dispersion (see Fig. 5).

C. Quasi-long-range magnetic order

The unfrustrated model at t2 = 0 exhibits short-range anti-
ferromagnetic order with an exponential decay of the spin-
correlation function for all J > 0 and a finite energy gap
to excited states. For finite t2 > 0 and with increasing t2,
antiferromagnetic correlations are more and more frustrated.
At t2 = t1, however, the ground state supports quasi-longe-
range antiferromagnetic order at interactions weaker than
the critical interaction Jmag

c ≈ 0.84t1 (i.e., Jmag
c ≈ 0.594t , see

Fig. 7), as known from our previous work [9]. In view of the
strong geometrical frustrations, this is quite surprising. The
magnetic state shows up on top of the spin dimerization, and
the magnetic order is given by a 90◦ spin spiral rather than a
collinear antiferromagnetic state. The quasi-long-range order
is characterized by algebraically decaying spin correlations,
by a vanishing spin gap, and by a spin-structure factor di-
verging at the wave vector Q = π

2 in the thermodynamic limit.
Note that according to the Mermin-Wagner theorem [26], the
presence of quantum fluctuations merely excludes long-range
order for the ground state of one-dimensional systems.

Here, we like to check this result by studying the emer-
gence of the spiral state for fixed J with increasing t2. Fur-
thermore, the magnetic phase boundary shall be tracted in the
J-ϕ plane to see whether the magnetic state is bound to the
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FIG. 11. Spin gap 	ES for J = 1.0t1 and different t2/t1 as in-
dicated. (Right) L dependence of the spin gap. Lines: linear fits
	ES(L) − 	ES(∞) ∝ 1/L. (Left) 	ES(∞), obtained by extrapola-
tion to the 1/L → 0 limit, as a function of t2/t1. Bars: extrapolation
error. A linear fit of the t2 dependence of 	ES(∞) (grey line) yields
the critical value tmag

2,c = 1.26t1 ± 0.03t1 (see red horizontal bar). This
corresponds to ϕmag

c (J ) ≈ 0.90 ≈ 0.29π at J ≈ 0.62t , see the phase
diagram in Fig. 7.

spin dimerization. To this end, we compute the spin gap 	ES,
which is defined as

	ES = E (L, 1) − E (L, 0) (18)

where E (Ntot, Stot ) is the ground-state energy in the sector of
the Hilbert space with total particle number Ntot and total spin-
quantum number Stot.

Figure 11 displays the spin gap at J = 1.0t1 and as a
function of t2 in the critical regime. 	ES = 	ES(L) is com-
puted for several system sizes L � 40 and extrapolated to
the thermodynamical limit L → ∞. With increasing hopping
along the legs of the ladder t2, i.e., with increasing frustration,
the spin gap decreases and finally closes at a critical value
tmag
2,c . In the vicinity of the transition, 	ES(∞) is an almost

linear function of t2, such that the critical hopping is obtained
by linear extrapolation. We find tmag

2,c = 1.26t1 ± 0.03t1 (see
the red horizontal bar in Fig. 11), corresponding to ϕ

mag
c (J ) ≈

0.90 ≈ 0.29π at J ≈ 0.62t (see Fig. 7).
Figure 12 displays our data for the spin gap, extrapolated

to the L = ∞ limit, for J = 0.7t1 as a function of t2/t1. Here,
we give an overview over the full t2 range from t2 = 0 up to
the phase transition. The charge gap,

	EC = E (L + 2, 0) + E (L − 2, 0) − 2E (L, 0)

2
, (19)

is shown in addition.
For the unfrustrated Kondo lattice at t2 = 0, both the spin

and the charge gap are finite, and the charge gap is almost an
order of magnitude larger than the spin gap. This is consistent
with earlier DMRG studies [7]. With increasing t2, the charge
gap decreases and appears to saturate at a finite value for the
largest t2 available. This is the expected trend as this increases
the itineracy of the electrons at fixed J .

FIG. 12. The spin gap 	ES [see Eq. (18)] and the charge gap
	EC [see Eq. (19)] as functions of next-nearest-neighbor hopping
t2/t1 at J = 0.7t1. All values are obtained by extrapolation to the
thermodynamic limit. Bars: errors of the fit. Blue dotted line: linear
fit 	ES ∝ (t2 − tmag

2,c ). The spin gap closes at tmag
2,c ≈ 0.83t1 ± 0.03t1.

This corresponds to ϕmag
c (J ) ≈ 0.69 ≈ 0.22π at J ≈ 0.54t , see the

phase diagram in Fig. 7.

The dependence of the spin gap on t2, however, is un-
conventional. With increasing t2, antiferromagnetic nearest-
neighbor correlations are more and more frustrated. This
explains the initial increase of 	ES. However, the spin gap
reaches a maximum at t2 ≈ 0.6t1 and starts to decrease when
further increasing t2. Eventually, the spin gap closes at the crit-
ical value tmag

2,c ≈ 0.83 ± 0.03t1, corresponding to ϕ
mag
c (J ) ≈

0.69 ≈ 0.22π at J ≈ 0.54t (see Fig. 7). This signals the onset
of quasi-long-range magnetic order.

The phase boundary to the magnetic state has been com-
puted for several values in the J-ϕ plane, see red data points
in Fig. 7. On the phase boundary, the spin-structure factor,
Eq. (15), diverges at Q = π

2 as L → ∞. Our data are well
described by a logarithmic divergence S(Q = π/2) ∼ ln L
corresponding to a decay of long-range spin correlations
〈Si+	iSi〉 ∝ e−iQ	i/	i, see Refs. [27–30]. Hence, the order
is characterized as a 90◦ spin spiral.

As can be seen from Fig. 7, the magnetic quasi-long-range
order shows up within the spin-dimerized phase. The magnetic
phase boundary is clearly distinct from but closely follows the
boundary to the dimerized phase. This strongly corroborates
our interpretation that the spin dimerization can be seen
as a precursor of the magnetic state. The pattern of nearest-
neighbor spin correlations in the dimerized phase, see Fig. 9 at
J = 0.8t1 or J = 0.9t1, for example, comes close to a pattern
formed on a bipartite lattice. Dimerization strongly alleviates
the frustration and thus helps to build up longer-range spin
correlations. As pointed out above, this is similar to the
mechanism of partial Kondo screening (PKS) [10,13].

It is an open question how far the spiral magnetic order
extends. Either it exists down to the J → 0 range or it forms
an “island” in the J-ϕ plane. We performed calculations as
shown in Fig. 12 but for weaker J . Using DMRG, we were
not able, however, to trace the magnetic phase boundary to
the weak-J regime. The spin gap gets progressively smaller
with decreasing J in the nonmagnetic state and is eventually
dominated by an exponentially small energy scale, similar to
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the Kondo scale of the corresponding impurity problem [7].
As a result, the DMRG computations get too costly to achieve
sufficiently small errors. Still we could verify that the spin
gap is finite in the range from t2 = 0 up to the onset of spin
dimerization and down to J = 0.1t1.

VUMPS calculations in the weak-J regime and within the
dimerized phase do not give a conclusive answer either. Cal-
culations suffer from a comparatively large standard deviation
of the total energy per site, computed following Ref. [16],
which typically amounts to about 5% of t at bond dimension
m ≈ 15 000 (see Sec. III A). This is not sufficient for reliable
results. To give an example, for t2 = t1 and at weak J , e.g.,
J = 0.1t , we find a state with extremely strong spin dimeriza-
tion, which is close to a valence-bond solid and indications
for which have been reported in Ref. [9] already. The state
(i.e., one of two degenerate ground states) is characterized by
almost perfect nearest-neighbor local-spin singlets 〈SiSi+1〉 ≈
−0.75 for, say, the even sites i while 〈SiSi+1〉 ≈ 0 for odd i.
Beyond nearest neighbors, spin correlations 〈SiS j〉, are tiny
(of the order of 10−3) and decay exponentially (at finite bond
dimension m). The spin-structure factor is peaked at the wave
vector Q = π

2 due to short-range spiral magnetic order on a
length scale of several tens of lattice constants. The interesting
question is, whether there is quasi-long-range magnetic order.
However, extracting the correlation length by fitting the long-
distance behavior of S(Q) for several bond dimensions m and
extrapolation to m = ∞ is not possible since the results de-
pend in an irregular way on m. Furthermore, in this parameter
regime, there is an artificial dependence of the results on the
choice of the size of the unit cell k. Using k = 2, 4, 6, 8,
we find more complex valence-bond-solid-like states almost
degenerate with, and at k = 4 even stable as compared to the
spin-dimerized one. VUMPS calculations using much higher
bond dimensions (m � 15 000) would be necessary to get an
acceptable variance, and conclusive results on the question of
the quasi-long-range order and the stability of the valence-
bond-like state at weak J .

VII. DISCUSSION AND CONCLUSIONS

Let us summarize and discuss where we are at in the
Kondo-lattice problem: The limit t2 = 0, i.e., the unfrustrated
one-dimensional Kondo lattice at half-filling is well under-
stood. The ground state is nondegenerate with gapped charge
and spin excitations [1,7]. Spin correlations are antiferromag-
netic and short ranged. In the weak-J limit, the spin gap
is exponentially small [31–34]. Nondegenerate perturbation
theory smoothly connects the model with weak t2 > 0 to the
t2 = 0 limit. The same holds for the limit t1 = 0, i.e., two
decoupled Kondo chains. At arbitrary J > 0 and weak t1 > 0,
the ground state is smoothly connected to the t1 = 0 limit.
There is no quantum-phase transition in both limits.

For finite t2 (and t1), the system is magnetically frustrated.
At a fixed ratio of the hopping t2/t1 = tan ϕ, frustration
becomes more and more effective with decreasing J . At fixed
J , on the other hand, antiferromagnetic correlations along the
legs tend to be less frustrated as compared to the correlations
on the rungs. The purely geometrical reason is that there is
only a single path involving two nearest-neighbor hops, which
connects nearest neighbors along the legs, while there are two

such paths, which connect nearest neighbors on the rungs.
Hence, frustration is expected to be strongest for t2 < t1. Note
that the phase diagram is indeed asymmetric with respect to
ϕ = π

4 .
The asymmetry already shows up for strong J . In the J =

∞ limit, the ground state is a trivial product of local Kondo
singlets. At strong but finite J , however, we find a precisely
defined boundary between a state with antiferromagnetic
(AF) short-range spin correlations, for 0 � ϕ � ϕc(J ), and
a state with incommensurate (IC) short-range order (for
ϕc(J )�ϕ � π

2 ). This is easily understood with the help of
the classical-spin model. Due to the absence of quantum
fluctuations, the ground state exhibits long-range AF or IC
magnetic order, and the phase transition between the AF and
the IC phase perfectly matches with the shift of the maximum
of the spin-structure factor from Q = π for ϕ < ϕc(J ) to
Q < π for ϕ > ϕc(J ) in the quantum-spin case. In this
regard, spin correlations in the strong-J regime are almost
classical. For J → ∞, the ϕ dependence of the pitch angle
of the incommensurate magnetic order can be determined
analytically by mapping onto a classical Heisenberg model on
the zigzag ladder. At ϕ = π/4 (t1 = t2), we recover the pitch
angle θ ≈ 104.5◦ on the zigzag ladder [35], to be compared
with the 120◦ configuration in the classical Heisenberg model
on the triangular lattice, for example.

The classical-spin model also explains the occurrence of
spin dimerization. The dimerized phase, characterized by the
pitch angle θ = π/2 and an alternating angle θ ± 	θ with
	θ = π/2 between classical spins on the rungs, has mini-
mal ground-state energy in the weak-J-weak-t1 range of the
phase diagram, limited by a boundary ϕ(dim)

c (J ). Dimerization
is a nonperturbative phenomenon. For J → 0, we find that
standard RKKY theory does not recover spin dimerization, at
least not at order J2, even though the phase boundary ends at
J = 0 for a finite hopping ratio: ϕ(dim)

c (J ) → ϕ0 = arctan( 1
2 )

for J → 0. Nevertheless, it is obvious that in the J → 0 limit
the spin dimerization is caused by the Lifschitz transition at
ϕ0, where the number of Fermi points in the noninteracting
band structure changes. Is is noteworthy that ϕ0 coincides
with ϕ∞ = ϕ(dim)

c (J = ∞). However, this must be seen as
a coincidental match; for example, the wave vectors of the
incommensurate phase for strong J do not correspond to
nesting vectors connecting noninteracting Fermi points.

The phase diagram for the classical-spin model is charac-
terized by the boundary ϕ(dim)

c (J ), up to which the dimerized
phase is existing, starting from the weak-J-weak-t1 limit, and
by the line ϕc(J ), separating AF and IC long-range magnetic
order for strong J . The latter hits the dimerization boundary
at a “triple” point, given by Jtri ≈ 4.1t and ϕtri = ϕc(Jtri ) =
ϕ(dim)

c (Jtri ) ≈ 0.188π . Transitions between the AF and the IC
phase are continuous, while transitions between the AF or IC
phase and the dimerized phase are discontinuous.

This phase diagram is constitutive for the quantum-spin
case but there are important additional effects of quantum
fluctuations. First, quantum fluctuations destroy the
long-range AF and IC magnetic order leaving, however,
a clear separation between AF and IC short-range ordered
states. Second, spin dimerization is strongly suppressed by
quantum fluctuations, such that the spin-dimerized phase
extends towards much weaker, an order of magnitude smaller
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interaction strengths J only. Third, the line ϕ(dim)
c (J ) cannot

terminate at a finite critical J on the t1 = 0 axis, opposed to
the classical-spin case, since the ground state is unique and
fully gapped, unlike the classical-spin case where the global
SO(3) spin-rotation symmetry leads to an infinite ground-state
degeneracy. Apart from ϕ0, which marks the termination point
of ϕ(dim)

c (J ) for J → 0, not only in the classical but also in
the quantum-spin case, there is no second critical point of the
noninteracting bandstructure in the range 0 < ϕ < π

2 , so that
it seems likely that ϕ(dim)

c (J ) → π
2 for J → 0 represents the

second termination point on the J = 0 axis. Fourth, there is
no well-defined triple point in the quantum-spin case. With
decreasing J , the boundary ϕ(dim)

c (J ) becomes less and less
well defined, and a second peak grows in the spin-structure
factor at Q � π

2 , which is a precursor of the spiral (Q = π
2 )

phase at still weaker J .
An important difference between the Kondo model on

the zigzag ladder for classical and for quantum spins is the
different kind of how the system deals with the magnetic
frustration. For strong J and sufficiently strong t2, i.e., in
the moderately frustrated regime, incommensurate (long- or
short-range) order represents the preferred compromise in
both cases. While the ground state of the classical-spin model
supports long-range magnetic order in the entire J-ϕ plane
with different collinear or noncollinear magnetic structures,
quantum fluctuations entirely destroy magnetic long-range
order in the quantum-spin case. It is surprising, however, that
quasi-long-range magnetic order with algebraic decay of the
spin correlations is realized in a parameter regime (weak J
and strong t2) of the quantum-spin model where frustration
is expected to be dominant. Frustration in a way appears to
favor magnetic order as far as possible to be consistent with
the Mermin-Wagner theorem. To understand this effect, it is
instructive to see that the quasi-long-range spiral (Q = π

2 )
order, SP-QLRO, only shows up within the spin-dimerized
phase and that the phase boundary of the SP-QLRO phase
closely follows the boundary for the onset of dimerization.
Spin dimerization is thus the main reaction of the system to
magnetic frustration in this parameter regime, while magnetic
order is favored as a secondary effect. Hence, SP-QLRO
appears as an epiphenomenon that necessarily requires the
alleviation of frustration due to a dimerized spin structure
which mimics an unfrustrated bipartite lattice.

At weak J , one usually expects a spin-only Heisenberg
model as the appropriate low-energy theory, at least if there
is magnetic ordering. RKKY theory [3–5], however, pre-
dicts an oscillatory effective spin coupling, which is long-
ranged, Ji j ∝ 1/|i − j|, such that a numerical solution is not
straightforward. Our DMRG and VUMPS calculations for
the full Kondo lattice in the weak-J limit and for weak
next-nearest-neighbor hopping t2, such that the system is still
in its homogeneous phase with full translational symmetry
[ϕ < ϕ(dim)

c (J )], have shown that the system, in this parameter
regime, has a unique ground state and at the same time a finite
spin (and finite charge) gap. Arguing with the Lieb-Schultz-
Mattis (LSM) theorem [36], this implies that the physics
cannot be not captured by an effective spin-1/2 model, since
the excitation spectrum would have to be gapless in this case.

There is also direct evidence that RKKY theory is not
appropriate in our case. For the classical-spin variant of

the Kondo model, we have seen that the RKKY coupling
constants JRKKY(k) diverge at the wave vector k = π or at
k = π

2 , depending on ϕ. Furthermore, the RKKY theory does
not capture the spin-dimerization transition at finite L in the
limit J → 0, and in the thermodynamic limit L → ∞, the
convergence radius even shrinks to J = 0. On the other hand,
for the quantum-spin Kondo lattice with t2 = 0, previous
studies [1,7,31–34] have shown that the spin gap is finite but
exponentially small in J . Again this suggests that the low-
energy physics is not RKKY-like but rather reminiscent of the
Kondo effect. Our calculations for weak J and ϕ < ϕ(dim)

c (J )
support this picture.

For stronger frustration in the weak-coupling regime, i.e.,
for ϕ > ϕ(dim)

c (J ) and weak J , we find a spin-dimerized phase
with a doubly degenerate ground state. Hence, given that an
effective spin-1/2 model was applicable, the LSM theorem
would no longer require a gapless spectrum. This scenario is
well known from the antiferromagnetic J1-J2 spin-1/2 Heisen-
berg chain beyond the Majumdar-Ghosh point [37]. For suf-
ficiently strong J2, this model exhibits spin dimerization as
well. Furthermore, the ground state is twofold degenerate, and
spin excitations are gapped. It is important to note, however,
that the transition point at ϕ(dim)

c (J ) in the zigzag Kondo lattice
is not at all comparable to the Majumdar-Gosh point, since
in the Kondo-lattice case spin excitations are gapped on both
sides of the transition.

It is an open question whether the magnetic quasi-long-
range ordered phase with gapless spin excitations, found at
intermediate coupling strengths and on top of the spin dimer-
ization, persists down to the J → 0 limit. Again, a twofold
degenerate ground state together with a gapless spectrum of
spin excitations is not in the spirit of the LSM theorem, such
that it is tempting to argue that the magnetic phase must form
an “island” in the J-ϕ plane and should not extend down to the
J = 0 axis. Also this argument would require, however, that
the effective low-energy physics was correctly described by
an effective spin-1/2 model, as suggested by RKKY theory.

Another conceivable idea is that the effective spin-only
theory is different from RKKY in this parameter range and es-
sentially involves spins with S = 1, and possibly an admixture
of S = 0 singlets, since the unit cell of the spin-dimerized state
consists of two sites. In this case, a magnetic phase transition
within the spin-dimerized state for J → 0 at ϕc, closing the
spin gap, appears unconventional, too, as it falls into the class
of integer-spin Heisenberg chains [38,39].

We conclude that the weak-J limit of the frustrated Kondo
lattice in one dimension is not yet fully understood. Apart
from computationally demanding more systematic DMRG
studies of the zigzag Kondo lattice in the weak-J regime,
it would be highly interesting to tackle the RKKY problem
directly, i.e., to compute the RKKY couplings and to solve
the resulting quantum-spin model with long-range spin inter-
actions numerically.
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APPENDIX A: STRONG-COUPLING PERTURBATION
THEORY FOR CLASSICAL SPINS

For J � t , we write H = H0 + H1 with

H0 = J
∑

i

siSi, H1 =
∑
i jσ

ti jc
†
iσ c jσ (A1)

and apply nondegenerate perturbation theory for a given
configuration of the classical spins with length S = 1/2, as
introduced in Sec. V A. The unperturbed energy of the ground
state |0〉 is E0 = −LJ/4. Assuming tii = 0, the first-order
correction vanishes.

At second order, the excited states |n〉 contributing to the n
sum in Eq. (5) are given by tensor products of L − 2 atomic
states with a singly occupied electronic orbital and two atomic
states with empty and doubly occupied orbitals. Hence, the
excitation energy is En − E0 = −J (L − 2)/4 + JL/4 = J/2.

To compute the matrix element 〈0|H1|n〉 or 〈0|c†
iσ c jσ |n〉 for

a given classical-spin configuration, we use coherent states

|θ, φ〉 =
(

eiφ cos(θ/2)
sin(θ/2)

)
, (A2)

with φ = 0 for all sites i, as the spins are assumed to lie in the
x-z plane. A classical spin configuration is described by the
set of polar angles (θ1, . . . , θL ), and the unperturbed ground
state can be written as |0〉 = |θ1〉 ⊗ · · · ⊗ |θL〉 For a given pair
of sites i, j, we have:

〈0| c†
iσ c jσ |n〉 = 〈θi|〈θ j | c†

iσ c jσ |v〉ic
†
jσ c†

j−σ |v〉 j (A3)

where |v〉i is the vacuum state at site i. Hence,∑
σ

〈0| c†
iσ c jσ |n〉 = 〈θi|↑〉i〈θ j |↓〉 j − 〈θi|↓〉i〈θ j |↑〉 j

= cos

(
θi

2

)
sin

(
θ j

2

)
− (i ↔ j)

= sin

(
θi j

2

)
, (A4)

where θi j denotes the angle between spins at sites i and j. For
nearest neighbors on a rung, θi j = θ ± 	θ , while for nearest
neighbors along a leg, θi j = 2θ , see Fig. 3. This yields

∑
n �=0

|〈0|H1|n〉|2
E0 − En

= −2

J

i �= j∑
i j

t2
i j sin2(θi j/2)

= −2t2
1

J
L

(
sin2 θ + 	θ

2
+ sin2 θ − 	θ

2

)
− 4t2

2

J
L sin2 θ

= −2t2
1

J
L − 2t2

2

J
L + 2t2

1

J
L cos θ cos 	θ + 2t2

2

J
L cos 2θ.

(A5)

As shown in Appendix B, the energy for the classical J1-J2

Heisenberg model with |Si| = 1/2 on the zigzag ladder is

EHeis(θ,	θ ) = L

4
(J1 cos θ cos 	θ + J2 cos 2θ ). (A6)

Hence, with

J1 = 8t2
1

J
, J2 = 8t2

2

J
(A7)

and with

	E = L

(
−1

4
J − 2t2

1

J
− 2t2

2

J

)
, (A8)

we finally get

E (θ,	θ ) = 	E + EHeis(θ,	θ ) + O
(

t3

J3

)
. (A9)

APPENDIX B: HEISENBERG MODEL ON
THE ZIGZAG LADDER

Consider the Heisenberg model on the zigzag ladder with
classical spins of length |Si| = 1/2 and exchange interactions
J1 and J2 between nearest neighbors along the rungs and along
the legs, respectively. The energy of a spin configuration,
parameterized via θ and 	θ is

E = 1

2

∑
i j

Ji jSiS j

= L

8
(J1 cos(θ + 	θ ) + J1 cos(θ − 	θ ) + 2J2 cos(2θ ))

= L

4
(J1 cos(θ ) cos(	θ ) + J2 cos(2θ )). (B1)

A minimum of the function E = EHeis.(θ,	θ ) requires van-
ishing partial derivatives with respect to θ and 	θ . This means

sin θ (J1 cos 	θ + 4J2 cos θ ) = 0 (B2)

and

cos θ sin 	θ = 0. (B3)

These conditions can be satisfied with (i) θ and 	θ being
integer multiples of π . There is a stable minimum if J1 > 4J2.
Another set of solutions (ii) is obtained by setting θ and 	θ

to π/2 plus arbitrary integer multiples of π . However, for
arbitrary J1 and J2, this is a saddle only. The remaining case
(iii) is

θ = arccos

(
− J1

4J2

)
, 	θ = 0 (B4)

and yields a minimum if J1 < 4J2.

APPENDIX C: ANALYSIS OF FINITE-SIZE EFFECTS

For the Kondo lattice, we have t2/t1 = tan ϕ, such that for
t1 < 2t2 and strong J the optimal spin configuration is given
by 	θ = 0 and

θ = arccos

(
− 1

4 tan2(ϕ)

)
, (C1)

see Eqs. (A7) and (B4).
For the infinite system, θ must be considered as a contin-

uous variable which smoothly approaches π/2 from above as
ϕ → π/2 from below. For the actual numerical calculations,
performed at finite L and using periodic boundary conditions,
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θ runs on a discrete θ grid with spacings of 2π/L. As ϕ →
π/2 from below, the optimal θ jumps from θ = π/2 + 2π/L
to θ = π/2 at a certain value ϕ = ϕL < π/2. For large L, we
can determine ϕL from

π

2
+ π

L
= arccos

(
− 1

4 tan2(ϕL )

)
. (C2)

Solving for ϕL yields

ϕL = arctan

(
1√

4 sin(π/L)

)
. (C3)

The convergence of ϕL to ϕ∞ is rather slow. System sizes of
about L ≈ 50 000 are necessary to determine ϕ close to π/2
with an accuracy of better than 1%.
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