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Numerical study of the Kondo cloud using finite-U slave bosons

L. C. Ribeiro
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ, Campus Nova Iguaçu, 26041-271, Nova Iguaçu-RJ, Brazil

G. B. Martins*

Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil

G. Gómez-Silva and E. V. Anda
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio),RJ, 22453-900, Brazil

(Received 25 March 2018; revised manuscript received 14 February 2019; published 26 February 2019)

In this work, using the finite-U slave boson mean-field approximation to solve the single-impurity Anderson
model, the authors apply two different strategies to study the Kondo cloud, by analyzing quantities that are
dependent on the distance to the magnetic impurity and then finding a universal distance scale ξK through the
collapse of the results into an universal function. The first method is based on the analysis of the local density
of states of the conduction electrons (denoted as ξL

K ), while the second relies on the analysis of spin correlations
(ξ�

K ). Our calculations show that there is exact quantitative agreement, in the way ξK depends on U/�, between
ξ�

K and the results obtained through the heuristic expression ξK ∝ vF/TK , while there is very close quantitative
agreement between ξ�

K and ξL
K . The use of the slave boson technique to calculate the spin correlations, which

eliminates finite size effects, allowed us to study very large Kondo clouds, something that is very difficult using
other techniques, like the density matrix renormalization Group method, for example. In addition, the very
smooth curves obtained for the spin correlations allowed us to qualitatively identify a region in the Kondo
cloud, adjacent to the impurity, that had been connected to the free orbital fixed point in previous numerical
renormalization group calculations [Phys. Rev. B 84, 115120 (2011)].
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I. INTRODUCTION

Since the measurement of the Kondo effect [1,2] in quan-
tum dots (QDs) by the group of Mark Kastner in 1998 [3],
there has been a revival of interest in proposals for experimen-
tally observing the so-called Kondo “cloud,” which occupies
a mesoscopically sized region containing the spin density of
conduction electrons screening a localized magnetic moment
that is coupled to a Fermi sea. The extension of this cloud is
associated to the Kondo length scale ξK . In more formal terms,
in the same way that the Kondo temperature TK represents a
universal energy scale for the Kondo state, renormalization ar-
guments suggest that, deep in the Kondo regime, physical ob-
servables measured at a distance r from the localized magnetic
moment should vary as r/ξK . While the physics associated
to the Kondo temperature TK is well known, that associated
to ξK (and the Kondo cloud) is more controversial [4]. An
heuristic estimation of ξK takes in account that conduction
electrons scattered off the Kondo resonance, which has width
kBTK , traveling with the Fermi velocity vF , will have a lifetime
∼h̄/kBTK . Thus the Kondo length scale can be estimated as
ξK = h̄vF/kBTK , where kB and h̄ are the Boltzmann and Planck
constants, respectively. For TK = 1 K and typical Fermi ve-
locities, ξK ranges between 0.1 to 10 μm. As discussed below,
the experimental observation of a Kondo length scale in this
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range of values has a long and mostly unsuccessful history,
leading to controversies regarding its actual existence. One
often cited puzzle [5], for example, is that systems with Kondo
clouds much larger than the interimpurity separation have
properties, like magnetic susceptibility and resistivity, that are
linear in magnetic impurity concentration and well-described
theoretically by single-impurity models.

In this paper, we considerably improve on a previous theo-
retical proposal, made by some of the authors, to numerically
evaluate ξK using the local density of states (LDOS) [6]. We
also compare our new results for ξK with those obtained by
using spin correlations. More specifically, we study a one-
dimensional (1d) system, consisting of a magnetic moment
coupled to a 1d metallic chain, and use the LDOS in the chain
sites to probe the Kondo cloud. The details will be described in
Sec. III and an schematic description of the method is shown
in Fig. 1. As extensively argued below, recent experimental
developments in unrelated fields (adsorbates in metallic sur-
faces [7], cold atoms [8,9], circuit-QED [10], etc.) raise the
possibility of directly building, in the laboratory, systems akin
to the one proposed here, which was once considered as just
a toy model. Thus, to substantiate our choices of a 1d system
and of the LDOS as one of the possible physical quantities
to be measured, in the next sections, we review the literature
for spin- and LDOS-based experimental attempts to measure
ξK , as well as theoretical proposals to detect the Kondo cloud.
Given that the detection of the Kondo cloud continues to be an
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FIG. 1. Anderson impurity, with Coulomb interaction U , cou-
pled by a hopping t ′ to a semi-infinite tight-binding chain with
half-bandwidth D = 2t . Top panel illustrates the situation when there
is no Kondo effect (t ′ = 0). The black curve under the chain is the
LDOS of site n = 4. Bottom panel illustrates the situation when the
Kondo state is formed (finite t ′). Notice the change in the LDOS of
site n = 4, mainly around the Fermi energy, when comparing upper
and lower panel.

open problem, we will see that there have been many recent
theoretical proposals to accomplish its detection. Some of
them include using cold atoms, quantum entanglement ideas
probed in the orbital Kondo effect in a double QD system,
QED circuits, etc. We obviously do not try to exhaust this
extensive field of research, as the idea here is just to place our
proposal in the context of what can be experimentally done,
and which proposals have been already made.

A. Using spin to measure the Kondo cloud: NMR

Attempts to observe the Kondo cloud have a reasonably
long history. Although the initial fingerprint of the Kondo
effect was obtained through resistivity measurements in gold
and silver samples in 1936 [11], once Jun Kondo recognized in
the early 1960s [1] that the effect was eminently connected to
the exchange interaction of conduction electrons with isolated
magnetic impurities, it did not take long for nuclear magnetic
resonance (NMR) to be used for probing the Kondo cloud. A
quarter of a century before the QD breakthrough, Boyce and
Slichter [12,13] used Knight shift measurements (an NMR
technique to measure Pauli paramagnetism) to detect the
Kondo cloud in samples of copper with diluted Fe impurities
(CuFe alloys) [14]. The Knight shift can measure the local
susceptibility χ (r) of the conduction electrons at subsequent
shells of Cu atoms around a Fe magnetic impurity. The expec-
tation was that once the temperature was lowered below the
Kondo temperature TK , and the Kondo state was formed, the
conduction electron polarization present in the Kondo cloud
would shift the NMR line of the Cu nuclei (the Knight shift)
close to an Fe impurity. Unfortunately, no shift was observed,
aside from that coming from the Pauli susceptibility. It turns
out (see Ref. [4]) that the local susceptibility χ (r), measured
by NMR (r is the distance from the impurity), factors into

the product of two r-dependent functions: (i) the first one,
which signals the presence of the Kondo cloud, varies too
slowly with r to be picked up by the NMR signal, and (ii) the
second one, which varies as r−3, makes χ (r) vanish before
an oscillation caused by the Kondo part could be detected.
This discussion indicates that measurements involving spin
seem to suffer from very stringent limitations. Given the large
size of the Kondo cloud, and the fact that it is comprised by a
single compensating spin, one may argue that the spin density
in the Kondo cloud is spread so thinly that it resembles more
a Kondo “fog” [15]. One additional factor may contribute to
complicate the situation: the spin screening is not static, it is
a dynamic spin-flip process (quantum fluctuations) that would
require measurements at frequencies around tens of gigahertz
[16].

B. Using the LDOS to measure the Kondo cloud: STM

The spin flipping process just mentioned can be qualita-
tively described as the result of the impurity electron, located
at a level εd below the Fermi energy εF , being virtually excited
from deep inside the magnetic ion core to a delocalized state at
the Fermi surface. The reverse process will bring an electron
with opposite spin from εF to εd . A coherent sequence of these
processes establishes a spin-singlet state between the impurity
electron and a delocalized conduction electron, forming the
Kondo cloud. In addition, the frequent “visits” of the impurity
electron to the Fermi surface causes its LDOS to acquire
spectral weight at εF , the so-called Abrikosov-Suhl resonance
(or Kondo peak), with a width kBTK . However, in addition
to that, the LDOS of the conduction electrons is also altered
at the Fermi energy. This reflects the LDOS counterpart to
the r-dependent spin polarization in the Kondo cloud, which
NMR failed to measure. This Kondo peak ‘echo” in the LDOS
of the Fermi sea is evident in lattice models, especially in 1d,
as is our case, where an alternating sequence of resonances
and antiresonances at εF , in the chain sites, can be seen as
one moves away from the impurity, as schematically shown in
Fig. 1 (for additional details, see our previous work, Ref. [6]).
This behavior resembles the Kondo-mirage effect seen in
quantum corals [17]. Therefore, it seems only natural, rather
than using spin polarization to probe the Kondo cloud, to look
into variations in the LDOS ρ(�r) at a distance �r from the
impurity.

Incidentally, in the same year as the QD breakthrough
[3], using a scanning tunneling microscope (STM) to mea-
sure differential conductance dI/dV , two groups indepen-
dently reported the observation of the Kondo effect occurring
in Cerium adatoms on Ag(111) surfaces [18] and Cobalt
adatoms on Au(111) surfaces [19]. As dI/dV ∝ ρ(�r), these
STM results could potentially observe the Kondo cloud. Since
then, many measurements to observe the Kondo effect in
magnetic impurities adsorbed on metallic surfaces have been
performed using STM [7,17,20–32]. For a review of STM
experiments involving Kondo in adatoms up to 2009, see M.
Ternes et al., Ref. [33]. These initial measurements [18,19]
were shortly thereafter partially reproduced by a conduction
electron LDOS calculation through a combination of first
principles band structure and many-body [noncrossing ap-
proximation (NCA)] calculations [34]. The main discrepancy
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between measurements and theory, as described in more detail
below, were that the measured STM signal vanished a short
distance from the impurity (≈10 Å), while theory predicted a
long-range signal with a periodic oscillation of the shape of
the resonance.

Being a local probe with high space- and energy-
resolution, STM seemed particularly well suited for observing
the Kondo cloud. In that respect, the theoretical predictions of
Újsághy et al. [34] (see also Refs. [35,36]) indicated that the
Kondo resonance on an adsorbed magnetic impurity induces
strong spectroscopic signatures in the conduction electron
LDOS around the Fermi energy, with line shapes that oscillate
between asymmetric Fano and Lorentzian with distance to the
impurity. The theory reproduced the Fano line-shape observed
when the STM tip was located right above the impurity, but
the measurements did not show the extended range of the
signal nor the line-shape oscillation. For example, Madhavam
et al. [19] (see also N. Knorr et al., Ref. [21]) reported that
the asymmetric Fano line-shape, observed when the STM tip
is located above a Co atom in Au(111), turned into a flat
signal ≈10 Å away from the impurity, with a continuous loss
of asymmetry in the line-shape up to ≈4 Å. Note that the
asymmetry in the line shape was initially explained as an
interference effect, as studied previously by Fano for similar
noninteracting systems [37], although this effect was later
recognized as not being actually responsible for the Fano
line-shape [34,38]. It should also be noted that, calculations
by Schiller and Hershfield [35], using NCA to calculate the
impurity’s dressed Green’s function and a tight-binding model
to calculate the surface’s Green’s function, produced results
in agreement with the limited spatial extent of the Kondo
resonance obtained in the experiments. An important point to
consider is what conduction electron states (bulk and/or sur-
face) couple more strongly to the adatom [38]. Experimental
evidence [21] seems to indicate that bulk states couple much
more strongly to the impurity than surface states.

It was then a surprise when Prüser et al. [30,31] reported
the observation of a long-range Kondo signature for single
magnetic atoms of Fe and Co buried a few layers under
a Cu(100) surface. Their experimental results, supported by
self-consistent calculations, showed a periodic variation in
line shape away from the impurity, as well as the persistence
of a Kondo-like signal much farther away from the impu-
rity than in previous results. These measurements, and their
interpretation, relied on an effect called “electron focusing”
[39]: specific anisotropies of a metal’s Fermi surface result in
strong directional propagation of quasiparticles, which, after
scattering off the buried magnetic impurity, are detected by
the STM tip at the surface of the metal. Their modeling
of the results showed that the line-shape characterizing the
STM Kondo signal is directly connected to the band structure
of the host crystal, making clear that the initial interference
explanation of the Fano line shape is too simplistic. One
should also note that a realistic calculation by Dang et al. for
Co and Mn adsorbed into a Cu(111) surface, see Ref. [40],
using a combination of density functional theory (Korringa-
Kohn-Rostoker method) and two different impurity solvers
(continuous time quantum Monte Carlo and exact diago-
nalization), covering a range of temperatures and different
impurity fillings, and, more importantly, taking all five 3d

orbitals in account, showed a quite intricate combination of
effects leading to a complex variation of the expected STM
spectra with distance from the impurity. In conclusion, using
the STM of transition metal ions adsorbed in metallic surfaces
(or buried under them) as a route to study the Kondo cloud
is a promising avenue. However, as just described, this route
seems to involve too many additional aspects (like multiorbital
Kondo, dependence with filling and double counting of cor-
relations [40]; which state—surface or bulk—couples more
strongly to the adsorbate [38]; buried versus adsorbed [30],
etc.) to unmistakably characterize experimentally the Kondo
cloud.

However, despite the complications just mentioned, given
that STM did observe long-range signals [30,31], one would
still like to use the probing of changes in ρ(�r) to detect
the Kondo cloud, but maybe in a simpler environment, for
example, a linear chain, like the one recently used by N. Néel
et al. [7] to study the competition between Kondo and RKKY
for two Cobalt atoms attached at the ends of a short Copper
chain.

Other examples of one-dimensional mesoscopic systems
that could be used to probe the properties of the Kondo
cloud, include, for example, a very interesting proposal [10]
involving a one-dimensional circuit-QED setup consisting of
a Cooper pair box coupled to a chain of Josephson junctions.
The authors of this work find that there is a deep connection
of the ground state of this system with that of the Kondo
state. They also point out that their results for this circuit-
QED system point to the universality of its ground state, as
in the Kondo state. Along the line of “Kondo-box” ideas
[41], a few proposals [42–44] involve connecting a QD to
1d wires of finite length L. Since the conductance G through
the QD is a probe of the Kondo state, an experimental study
of G(L) would provide information on ξK . A variation of the
Kondo-box idea was proposed by J. Park et al. in Ref. [45]. In
that work, in a system involving a QD connected to metallic
leads, a kind of Kondo box is created by applying a gate
voltage beyond a distance L from the QD. Poor-man’s scaling,
numerical renormalization group (NRG), and Fermi liquid
theory are used to study the change in the properties of the
system (mostly conductance G and TK ) with L to detect the
Kondo cloud and estimate ξK . It should be noted that it is not
really a physical Kondo box that is being proposed, but rather
a systematic perturbation of the electron states at the edges of
the Kondo cloud, by varying the orbital energy of conduction
electrons on sites located a distance r � L.

Another example of 1-dimensional system to probe the
Kondo cloud involves the metallic edge states in two-
dimensional (2d) topological insulators. The theoretical pre-
diction of the existence of the quantum spin Hall state [46] and
its observation in HgTe quantum wells [47] (see Ref. [48] for a
detailed review) has spurred a wave of new research involving
the metallic helical states circling the edge of a 2d topological
insulator. An interesting work [49,50] studies the coupling of
a magnetic moment (in an antidot) with these helical states
(which act as contacts) and concludes that the measurement
of the space- and time-resolved current cross correlations can
directly detect the Kondo cloud and even resolve it spatially.

In addition, we mention two theory papers that describe
cold atom systems whose ground states are of the Kondo type.

085139-3



RIBEIRO, MARTINS, GÓMEZ-SILVA, AND ANDA PHYSICAL REVIEW B 99, 085139 (2019)

In the first, Y. Nishida [8] proposes a cold atom set up that
exhibits an SU(3) orbital Kondo state. Shortly thereafter, J.
Bauer et al. [9] proposed a mixture of 40K and 23Na atoms
whose low-energy physics they describe with an Anderson
impurity model (AIM). According to the authors, current
atomic physics spectroscopic tools could be applied to mea-
sure the equal time spin correlation function away from the
impurity, providing a finger print of the Kondo cloud. These
systems could, in principle, be built in a one-dimensional
optical lattice.

As already mentioned above, in the last few years, given
that the Kondo cloud detection is still an open problem, alter-
native ways of theoretically analyzing it have been developed.
Notable among new theoretical tools are the ones that rely on
entanglement ideas. With the development of nanostructures
capable of performing, at least in a limited scale, quantum
computations and manipulating quantum information, con-
cepts like entanglement entropy in condensed matter systems
gained in popularity (see Ref. [51] for a comprehensive re-
view, especially Sec. 4.2, about the Kondo state). Using a
variational ground state introduced by Yosida [52], S. Oh
and J. Kim [53] presented results analyzing the entanglement
of the quantum impurity to the conduction electrons. These
results were followed by a series of works by Affleck and col-
laborators [54–56] where the structure of the Kondo cloud was
specifically addressed using entanglement concepts. To that
end, an especially interesting result is presented in Ref. [57],
where it is shown through numerical calculations that an
impurity coupled to the end of a spin chain with nearest and
next-nearest antiferromagnetic couplings (a J1-J2 spin chain,
or, an open frustrated Heisenberg chain), in a certain regime
of parameters (when J2 is equal to a critical value above which
the spin chain becomes dimerized, i.e., the spectrum becomes
gapped), has low-energy long distance physics equal to that
of the Kondo model (note that H. Frahm and A. Zvyagin
had noted this connection to the Kondo problem as early as
1997 [58]). This impurity–J1-J2 model was then used to do
extensive entanglement studies of the Kondo cloud by Af-
fleck’s group [54–56]. One interesting result was the heuristic
description of ξK as the length of the “impurity valence bond”
(IVB). Indeed, one can use a “resonating valence bond” basis
(essentially singlets connecting two spins in the chain) to
describe the ground state of a spin chain; for an even number
of sites the impurity will always be part of a valence bond, the
IVB. One may argue that the typical length of this IVB can
be associated to ξK (see Ref. [56] and references therein for
details).

The Kondo physics in the impurity–J1-J2 model was an-
alyzed by other groups to study the Kondo cloud by using
different definitions of entanglement entropy. For example, A.
Bayat et al. [59] used the so-called negativity to measure en-
tanglement and with it determine ξK and found that the impu-
rity spin is indeed maximally entangled with the Kondo cloud.
The same group uses again the same spin chain model to study
the role of the Kondo cloud in quench dynamics [60] and also
on the RKKY interaction between two impurities placed on
the J1-J2 spin chain [61]. More recent approaches have used
specialized tools of quantum information, like “entanglement
of formation” and “entanglement witness operators” [62], as
well as “concurrence” [63] to study the Kondo state. For

FIG. 2. LDOS at sites n = 4 and 52 inside the tight-binding
chain, in (a) and (b), respectively. Results are shown when the
impurity is coupled to the chain, for U = 1.25 and U/� = 10.0
[(black) solid line], and when it is decoupled from it [� = 0.0, (red)
dashed line]. The inset in each panel shows a zoom of the main-panel
data around the Fermi energy. A finite � results in a Kondo state,
while a vanishing � suppresses it, and the difference between the two
corresponding LDOS is used to calculate the Kondo cloud extension
function L(n) [see Eq. (7)].

example, C. Yang and A. Feiguin [63] have proposed the use
of concurrence, which measures entanglement, to analyze the
properties of the Kondo cloud. In addition, they have used the
idea of “projected natural orbitals” to study the Kondo state
and contrast its properties at the weak and strong coupling
regimes. Similar ideas have been also applied through the
use of the so-called Natural orbitals renormalization group
approach [64] to study the properties of a “natural orbital”
single conduction electron state that is involved in screening
more than 90% of the impurity spin. Finally, G. Yoo et al.
[65], studying single and double quantum dot systems, were
able to directly relate the entanglement entropy (between the
impurity spin and the conduction electrons) with the total
conductance through a double QD system setup in the orbital
Kondo regime, which could then be manipulated by electrical
gates, uncovering the spatial properties of the Kondo cloud.

An important parentheses should be opened here: as pre-
sented in our previous work (Ref. [6]), as well as in the present
manuscript, and related publications from other groups (see,
for example, Ref. [66]), the observation by STM of some
Kondo-peak-related effect in the LDOS at sites away from
the impurity (see, for example, the insets in both panels of
Fig. 2) can be considered as a trivial effect that, by itself, is
not able to uncover the spatial scaling properties of the Kondo
cloud. For that, it is necessary to measure this effect in each
site for all values of energy, integrate them, subtract the effects
in the absence of the impurity [see Eqs. (6) and (7)] and then
analyze the spatial dependence of the obtained results. Noise
and measurement errors should make it all but impossible to
obtain STM results that allow for a scaling analysis, unfortu-
nately. That is not to say the results to be described in this
work are worthless. There are systems (already mentioned
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above [10]) whose low-energy physics can be described by
the dissipative two-level model (DTLM), which can then be
mapped to the anisotropic Kondo model (AKM) [67]. That is
the case, for example, of a Cooper-pair-box coupled to a chain
of Josephson junctions, a so-called circuit-QED setup, as
described in Ref. [10]. In that work, the authors analyzed the
equivalent to the Kondo cloud spin correlations (see Eq. (7) in
Ref. [10]) and proposed a way of measuring it with a “comb”
of local gates applied along the chain of Josephson junctions.
Here, we speculate that one can do a “reverse mapping”
(from the AKM back to the DTLM) and find what quantity
is equivalent to the AKM chain-site LDOS. This may offer
the possibility of performing spatial scaling measurements of
the Kondo cloud of the LDOS-type described next.

In this work, we present two methods to study the Kondo
screening cloud in a system composed by a single magnetic
impurity, with Coulomb interaction U , coupled to a charge
reservoir (see bottom panel in Fig. 1). The charge reservoir
will be modeled by a semi-infinite chain, therefore the re-
sults obtained here describe either a QD embedded between
metallic leads or a Cobalt ion, for example, coupled to a
Copper chain adsorbed onto a metallic surface, a system that
can be experimentally probed by STM [7]. The first method
uses the LDOS along the semi-infinite chain to characterize
the Kondo cloud, and therefore could be tested, in principle,
by STM. The second method is based on probing spin-spin
correlations, as done along the years (for both the Kondo
and the Anderson models) by several groups, using different
techniques (details can be found in Refs. [16,68–71]). We will
show that our method to obtain the spin correlations, based on
the finite-U slave boson mean-field approximation (SBMFA)
[72], has a few advantages when compared to other methods,
like DMRG [70,71], for example. As mentioned above, the
Kondo screening length can be estimated through the equation

ξ
vF/TK
K = h̄vF /kBTK , (1)

where vF is the Fermi velocity of the electrons in the charge
reservoir. As has been done in previous studies of the Kondo
screening length (see, for example, Refs. [70,71]), we com-
pare the results obtained by our two different methods to the
ones obtained using Eq. (1), where we use the value of TK as
obtained by the finite-U SBMFA.

As will be shown below, an interesting outcome of our
results was the identification of a region adjacent to the
impurity where the universality of the r-dependent quantities
we probed (LDOS and spin correlations) was lost (where r
measures the distance to the impurity). This loss of universal-
ity was qualitatively associated to NRG results presented in
Ref. [66], where this region was connected to the free orbital
fixed point (see discussion around Fig. 6). The identification
of what could be called an internal structure of the Kondo
cloud, and how it varies with the single impurity Ander-
son model (SIAM) parameters, could be a further step into
providing ways of experimentally detecting this very elusive
many-body quantum state.

The rest of the paper is organized as follows. In Sec. II,
we present the details of the Hamiltonian for the SIAM.
This is followed by Sec. III, where the LDOS-based method
is presented, together with the numerical results obtained

through it for the Kondo cloud extension (see Fig. 4),
denoted as ξL

K . Then, Sec. IV introduces the spin correlations
method and the corresponding results obtained for the cloud
extension (see Fig. 5), denoted as ξ�

K . Section V compares the
results obtained through both methods to those obtained by
using Eq. (1), in addition to a summary of the main results,
as well as our conclusions. Finally, in Appendix, we present
details of the finite-U SBMFA.

II. SINGLE-IMPURITY ANDERSON
MODEL HAMILTONIAN

The total Hamiltonian has the following terms:

HT = Himp + Hband + Hhybrid, (2)

where Himp and Hband represent the Hamiltonian of the impu-
rity and the noninteracting band, respectively, and Hbybrid is
the hybridization between them:

Himp = Vg

∑
σ

ndσ + U/2
∑

σ

ndσ nd σ̄ , (3)

Hband = t
∞∑

n=1,σ

(c†
nσ cn+1σ + c†

n+1σ cnσ ), (4)

Hhybrid = t ′ ∑
σ

(c†
dσ

c1σ + c†
1σ cdσ ), (5)

where c†
dσ

creates an electron with spin σ =↑,↓ at the im-
purity, ndσ = c†

dσ
cdσ is the number operator at the impurity,

and c†
nσ creates an electron with spin σ at the nth site of

the semi-infinite chain. The gate potential Vg controls the
position of the localized level of the impurity in relation to
the Fermi energy εF = 0 of the band, while the Coulomb
repulsion between two electrons occupying the impurity’s
localized level is given by U . The broadening of the impurity
level is given by � = 2πt ′ 2ρband(εF ), where ρband(εF ) is
the LDOS of the first site in the semi-infinite chain at the
Fermi energy εF and t ′ is the hopping between the impurity
and the first site of the semi-infinite chain. Our unit of energy
is the hopping in the semi-infinite chain, denoted t (see Fig. 1),
therefore the half-bandwidth is D = 2.0. We will analyze how
ξK varies for different values of �, keeping U = 1.25, unless
stated otherwise. All calculations were done at the particle-
hole symmetric point Vg = −U/2.

III. KONDO CLOUD EXTENSION OBTAINED
THROUGH LDOS

In two previous works by some of the authors (see
Refs. [6,73]), it was proposed a strategy to probe the Kondo
cloud extension ξK that relied on measuring the distortion
caused by the Kondo resonance (which occurs at the impurity)
in the LDOS of sites in the Fermi sea. Figures 1 and 2 explain
how that is accomplished. The top panel in Fig. 1 illustrates
the situation when the impurity (in blue, on the right side) is
disconnected from the charge reservoir (t ′ = 0) and therefore
the Kondo state does not form [74]. The black curve right
below the chain shows ρNK

n=4(ω), i.e., the LDOS of site n = 4 in
the absence of the Kondo state (“NK” stands for non-Kondo).
The (red) dashed curve in the main panel in Fig. 2(a) shows
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the details of ρNK
n=4(ω), with a zoom around the Fermi energy

shown in the inset. On the other hand, in the bottom panel of
Fig. 1, we reconnect the magnetic impurity to the semi-infinite
chain (finite t ′), allowing for the formation of a Kondo state.
Notice the presence of the Kondo peak at the Fermi energy
on the impurity’s LDOS [(blue) gray shaded curve above the
impurity in the bottom panel]. The crucial point displayed in
this figure is that the Kondo peak at the impurity induces a
corresponding peak (at the Fermi energy) in the LDOS of the
n = 4 site, which is schematically shown by the black curve
above the lower panel chain (denoted ρK

n=4(ω), where “K”
stands for Kondo). Again, the details of ρK

n=4(ω) are displayed
by the black solid curve in Fig. 2(a). Figure 2(b) shows that
the peak at the Fermi energy in ρK

n (ω) is still present for site
n = 52, although it is now narrower than the one in panel
(a) for n = 4. Note that the procedure to calculate the LDOS
inside the chain in the Kondo state has been described in detail
in Ref. [6], here we will provide just a brief outline of it:
after calculating the dressed Green’s function at the impurity
site (in this paper, we use the finite-U SBMFA for that), we
use an equation of motion (EOM) method to calculate the
Green’s function at an arbitrary site n inside the chain, and
from it we obtain the LDOS ρK

n (ω) [75]. On the other hand,
ρNK

n (ω) can be obtained exactly as it requires the solution of
an independent electron problem. A very similar idea, based
in the use of the EOM, was used in Ref. [66] to study the
properties of the Kondo cloud using NRG. In that work, the
authors define regions inside the Kondo cloud that are clearly
associated to the fixed points occurring in the RG flow of
the SIAM and which seem to unveil an internal structure of
the Kondo cloud. Our results indicate the possibility that we
are seeing signals of this structure in the region close to the
impurity.

We now describe how we can use ρK
n (ω) and ρNK

n (ω) to
obtain ξK . Intuitively, one can loosely say that the difference
between these two LDOS, after integrating in energy, should
contain a snapshot of the Kondo cloud at site n. Obviously,
an integral in energy of ρK

n (ω) − ρNK
n (ω) over −∞ � ω �

∞ vanishes, therefore a different strategy should be adopted.
In our previous work [6], the distortion caused by the Kondo
state was quantified by the absolute value of the function F (n),
as defined by

F (n) =
∫ ∞

−∞

[
ρK

n (ω) − ρNK
n (ω)

]
L�(ω) dω, (6)

where L�(ω) is a Lorentzian distribution with a width �

that is controlled by the Kondo temperature. This strategy
provided results for ξK that were in agreement with other
methods (see Ref. [6] for details).

In the present work, we will make a modification to the
definition of F (n) [and rename it L(n)], by removing the con-
volution with the Lorentzian and taking instead the absolute
value of the difference ρK

n (ω) − ρNK
n (ω), namely,

L(n) =
∫ ∞

−∞

∣∣ρK
n (ω) − ρNK

n (ω)
∣∣ dω. (7)

The main motivation to make this modification [76] is as
follows. As emphasized by Anderson through his poor-man’s
scaling analysis of the Kondo effect, using a perturbative

FIG. 3. The (red) solid curves show |ρK
n (ω) − ρNK

n (ω)| results
for U/� = 10.0 [(a) and (b)] and U/� = 5.0 [(c) and (d)] at sites
n = 12 [(a) and (c)] and n = 52 [(b) and (d)]. The black dashed
curves are the LDOS at the impurity (the Kondo peak), equivalent
to the L�(ω) used in our previous method [6] [see Eq. (6)]. It is
clear that a convolution with L�(ω) suppresses spectral weight at
higher energies. In addition, by comparing the left-side panels with
the right-side panels it is easy to see that, for fixed �, the envelope
function of |ρK

n (ω) − ρNK
n (ω)| depends very weakly on n. All results

obtained for U = 1.25.

renormalization group approach [77], all energy scales (up
to a cutoff given by D, the half-bandwidth) contribute to the
Kondo state. The consequence of that in our calculation can
be appreciated in Fig. 3, where |ρK

n (ω) − ρNK
n (ω)| results are

shown for n = 12 (left-side panels) and 52 (right-side panels),
for U/� = 10.0 (top panels) and 5.0 (bottom panels), for
U = 1.25. A Lorentzian L�(ω) (black dashed curve) centered
around the Fermi energy, and with a width given by the
associated Kondo temperature, is also shown, highlighting
that although its convolution with ρK

n (ω) − ρNK
n (ω) [as done

in our previous method, see Eq. (6)] preserves the LDOS
difference around the Fermi energy, it suppresses it at higher
energies. Thus the convolution done with L�(ω), besides
artificially introducing TK into the calculation of ξK , was also
suppressing higher energy contributions to it.

In addition, it is also interesting to remark that a compari-
son between the left- and right-side panels in Fig. 3 indicates
that |ρK

n (ω) − ρNK
n (ω)| presents an envelope function which

is very weakly dependent on n. As the number of oscillations
in |ρK

n (ω) − ρNK
n (ω)| increases with n, the value of L(n) will

tend to a fraction of the area under the envelope function as n
increases, resulting in the plateauing of L(n), as clearly seen in
Fig. 4(a), where L(n) results for five different values of U/� =
16.7, 13.9, 10.0, 6.25, and 4.17 are shown, for U = 1.25. The
multiplicative factors shown on the right side of panel (a) were
used to narrow the window in the vertical axis and improve
visualization. As mentioned above, and easily observed for
these results, L(n) plateaus as n increases. We define ξL

K , for
each value of �, as the value of n for which we obtain the
best collapse of the normalized L(n), namely L(n)/Lmax, as a
function of n/ξL

K . The result of the collapse is shown in panel
(b), and the values obtained for ξL

K are shown as black stars in
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FIG. 4. (a) Function L(n), obtained through Eq. (7), calculated
for 4.17 � U/� � 16.7, as indicated in the legend in (b), and U =
1.25. The scale ξL

K (marked by a black star) corresponds to the value
of n for which the normalized L(n)/Lmax vs n/ξL

K curves collapse into a
universal curve [see (b)]. The factors indicated on the right side of
panel (a) were used to narrow the window in the vertical axis and
improve the visualization of the data. (b) Semilogarithmic plot of
L(n)/Lmax, the normalized L(n) curves from (a), as a function of n/ξL

K ,
showing their collapse into a universal curve f (n/ξL

K ) (black solid and
dotted lines).

Fig. 4(a). Figure 4(b) shows a semi-log plot of L(n)/Lmax vs n/ξL
K ,

confirming that all the normalized L(n) curves in panel (a)
collapse perfectly into a single universal curve denoted f (n/ξL

K )
(black solid and dotted lines) and characterized by a length
scale that, from now on, we will refer to as ξL

K to indicate that
it was obtained through LDOS calculations, using the L(n)
function. The functional form of the universal curve shown
in Fig. 4(b) is given by f (n/ξL

K ) = α ln(n/ξL
K ) + β ln2(n/ξL

K ) +
γ [solid black line in Fig. 4(b)], where α = 1.39 × 10−1,
β = −1.15 × 10−2, and γ = 0.58, while f (n/ξL

K ) 	 1.0 once
n/ξL

K � 1.0 [dotted black line in Fig. 4(b)]. In agreement with
the discussion around Fig. 6, the universality occurs only after
a certain distance from the impurity, which depends on the
value of U/�.

IV. KONDO CLOUD EXTENSION OBTAINED THROUGH
SPIN CORRELATIONS

The second method, which is more traditional [69–71], is
based on the calculation of the spin-spin correlations �Sd · �Sn

between the impurity spin �Sd and the conduction electron
spin �Sn at the nth site, located inside the semi-infinite chain.
In this context, the screening length ξK of the Kondo cloud
is extracted from �Sd · �Sn through the following procedure.
Considering the integrated spin correlation function �(N ) =∑N

n=1〈�Sd · �Sn〉—where n runs over the sites inside the semi-
infinite chain and 〈· · · 〉 represents an average taken in the
ground state—a certain value for �(N ) will be chosen (see
below) to define the Kondo cloud screening length ξK = N
[78]. This method depends on developing a way to calculate
〈�Sd · �Sn〉. As the finite-U SBMFA is a mean-field procedure,
it results in a one-body effective model with renormalized

FIG. 5. (a) Spin-spin correlations 〈�Sd · �Sn〉 between the impurity
and the conduction electron in the nth site inside the chain for
U = 1.25 and different values of U/�, as indicated in the inset legend
(same values as in Fig. 4). The inset shows a zoom for n < 30. Note
that only results for odd values of n are shown, as 〈�Sd · �Sn〉 vanishes
for even n. (b) Semilogarithmic plot of 1 − �(N )/�(0) as a function
of N/ξ�

K , for U = 1.25 and same values of U/� as in (a). Note the
very good collapse of the curves (aside from a region around the
impurity), indicating their universality. The inset shows how the ξ�

K

values (indicated as black stars, except for the (red) squares curve,
which falls outside the range shown) used to collapse the curves in
the main panel were obtained: ξ�

K is the value of N for which the sum
�(N ) reaches fs = 95% of �(0) = −〈�S2

d 〉, i.e., ξ�
K is the distance

from the impurity for which 95% of the impurity’s magnetic moment
is screened by the conduction electrons that form a singlet with the
impurity.

coupling �̃ and impurity energy level ε̃d , with the first being
dependent on a renormalization factor z and the second on
a Lagrange multiplier λ, which are self-consistently obtained
using the finite-U SBMFA. Therefore, to calculate 〈�Sd · �Sn〉,
for the renormalized Hamiltonian, we will use the one-body
expression [71]

〈�Sd · �Sn〉 = 3
2 〈c†

d cn〉(δdn − 〈c†
ncd〉), (8)

where the EOM was used to obtain 〈c†
d cn〉 and its Hermitian

conjugate [79]. In addition, notice that, given the SU(2)
symmetry of the problem, the cd and cn operators refer to
either spin up or spin down. Notice that a full justification of
the use of Eq. (8) is provided in the last two paragraphs of this
section, including the results in Fig. 7.

The Kondo screening length obtained using spin correla-
tions, from now on denoted as ξ�

K , will be defined as the
value of N for which �(N ) reaches a determined percent-
age of �(0) = −〈�S2

d〉, i.e., the negative of the square of the
impurity spin to be screened [78], as originally proposed
in Refs. [69–71,80,81]. We will call the percentage used to
determine ξ�

K as the shielding factor, and denote it by fs.
Thus we will define the screening length ξ�

K as the value of
N for which �(N ) equals fs = 95% of −〈�S2

d〉. In other words,
when the quantity 1 − �(N )/�(0) reaches the value 0.05 [see
the inset in Fig. 5(b)]. In qualitative terms, this is equivalent
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to stating that fs = 95% of the Kondo cloud is contained
within a distance ξ�

K from the impurity, or, equivalently, the
distance from the impurity for which 95% of the Kondo
singlet is formed. Or, lastly, if one pictures a conduction
electron forming a singlet with the impurity, the extent of its
wave function is approximately ξ�

K . Therefore, for fs = 95%,
the distance ξ�

K , when measured from the impurity, effectively
defines the edge of the Kondo cloud.

The results obtained through the spin correlations method
are presented in Fig. 5. Panel (a) shows 〈�Sd · �Sn〉 results
for 4.17 � U/� � 16.7, with U = 1.25. Notice that, as these
results are for an effective noninteracting model, all even-
n results vanish, therefore only odd-n results are shown.
As expected, the magnitude of 〈�Sd · �Sn〉, for n close to the
impurity [see the inset to panel (a)], starts at large values
and rapidly approaches zero as n increases. Again, note that
the negative values for these correlations reflect the fact that
only results for odd n are shown. In addition, close to the
impurity [inset in Fig. 5(a)], larger values of � (smaller values
of U/�) result in larger values (in magnitude) of 〈�Sd · �Sn〉,
as one expects to obtain larger effective Kondo exchanges
(JK ) for larger � values at fixed U . As a consequence, one
also expects that 〈�Sd · �Sn〉 will approach zero faster for larger
� as n increases (see main panel). Therefore, at fixed U ,
a larger �, which also leads to a larger Kondo temperature
TK , leads to a smaller Kondo cloud. We then have the well
known rule of thumb stating that as the Kondo temperature
increases, the Kondo cloud decreases, a result encoded in
Eq. (1).

In the inset to Fig. 5(b), we show 1 − �(N )/�(0) results
for U = 1.25 and the same U/� values as in panel (a). The
intersection of the horizontal dotted line (at 0.05) with the
different curves indicates the values of N for which the sum
�(N ) = ∑N

n=1〈�Sd · �Sn〉 reaches fs = 95% of �(0) = −〈�S2
d〉,

and therefore results in 1 − �(N )/�(0) = 0.05. We take the
value of N at the intercept as an estimate of ξ�

K for each �,
marking them with black stars. In the main panel of Fig. 5(b),
we show a semilogarithmic plot of 1 − �(N )/�(0) versus N/ξ�

K ,
using the ξ�

K values as obtained in the inset. These results
clearly show that the decay of 1 − �(N )/�(0) follows a uni-
versal curve g(N/ξ�

K ) characterized by a length scale that, as
mentioned above, we will refer to as ξ�

K , indicating that it
was obtained through the spin correlations procedure just
described. Finally, it should be noted that using fs < 95%,
thus resulting in smaller ξ�

K values, produces collapsed curves
that are very similar to the ones in the main panel of Fig. 5(b).
This is not surprising, since the results in Fig. 5(b) already
indicate that the integrated spin correlations are universal over
a large region of the Kondo cloud. We compared results (not
shown) for fs values down to 70%, which results in screening
lengths ξ�

K that are very similar to the ξL
K values obtained

through the LDOS method [Fig. 4(b)]. Therefore the L(n)
method probes the Kondo cloud up to a distance from the
impurity where just 70% of its localized magnetic moment has
been screened by the conduction electrons. However, as just
argued, since this region of the Kondo cloud already displays
universal behavior, the LDOS and the spin correlations results
for ξK provide compatible information, as discussed next.

It is interesting to note that the quality of the collapse of
the curves in Figs. 4(b) and 5(b) is clearly degraded as one

FIG. 6. (a) and (b) show a zoom of Figs. 4(b) and 5(b), re-
spectively, at the region adjacent to the impurity up to the point
where the data collapse into a universal curve. The arrows in (b)
approximately indicate the point where each curve, starting with the
one for U/� = 4.17 [(magenta) diamonds], starts to deviate from the
others (i.e., the point where the free orbital region starts, see text).
Note that in (a) we are not showing the data for even sites to facilitate
the comparison with data in (b).

approaches the impurity. Motivated by this, and by previous
results in Ref. [66], we believe that this loss of universality
may be connected to the presence of a region around the
impurity (associated to the free orbital fixed point [66]) where
physical quantities that depend on the distance from the impu-
rity, like L(n) and �(N ), do not follow anymore the universal
scaling functions, f (n/ξL

K ) and g(N/ξ�
K ), that were obtained at

regions progressively closer to the edge of the Kondo cloud.
This loss of universality can be seen in more detail in Fig. 6,
where panels (a) and (b) show a zoom of the data in Figs. 4(b)
and 5(b), respectively, at the region adjacent to the impurity
up to the point where the L(n)/Lmax and 1 − �(N )/�(0) data start
to follow their corresponding universal curves. It is important
to note that the rightmost point in the horizontal axis in
both panels in Fig. 6, i.e., n/ξL

K = 1 and N/ξ�
K = 0.075 are at

approximately the same distance from the impurity. This can
be easily verified by counting the number of symbols from
the beginning of each curve up to the rightmost edge of
each panel [notice that in panel (a) we removed the even
site symbols to facilitate the comparison with panel (b)]. A
comparison of both panels shows that the loss of universality
in the LDOS and spin correlation probes of the Kondo cloud
are qualitatively similar, indicating that they are providing
similar information, as can be confirmed in Fig. 8 by noticing
the very good agreement in the dependence of ξ�

K and ξL
K

with U/�. Finally, the data in Fig. 6 do not lend itself to an
easy quantitative analysis of the so-called free orbital region
[66] around the impurity. However, the data clearly show
that the ratio between the size of this putative central region
and the total size of the Kondo cloud decreases sharply as
U/� increases. This is indicated by the vertical arrows in
Fig. 6(b), which roughly mark the point where each curve
starts to deviate from the others (i.e., the point where the free
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FIG. 7. Log-log plot of |�Sd · �Sn| (dashed black curves) as a
function of n/ξ�

K for U/� = 4.17, 10.0, and 16.7 in (a) to (c). All
results for U = 1.25. The gray (red) solid curves are ∝ 1/r2

n , with a
proportionality constant chosen so that it matches the spin correlation
calculated for the largest value of n, and rn is the distance to the
impurity. The comparison of the two curves clearly indicates that
the spin correlations decay as the second power of distance to the
impurity outside of the cloud, as defined by ξ�

K .

orbital region starts for each value of U/�), beginning with the
U/� = 4.17 curve [(magenta) diamonds], up to the U/� = 13.9
curve [(green) circles]. The position of these arrows allows us
to roughly estimate that the ratio between the size of the free
orbital region and the size of the Kondo cloud decreases by
more than one order of magnitude as we approximately triple
U/�. This is in qualitative agreement with the results shown in
the bottom panel of Fig. 2 in Ref. [66].

Before proceeding to a comparison of the ξK results ob-
tained through L(n) and �(N ), in Figs. 4 and 5, respectively,
we wish to clarify a possibly contentious point regarding
the approximation we have taken. Note that, as mentioned
above, Eq. (8) is the expression one obtains for the spin
correlations when U = 0. This does not mean that our results
were obtained for U = 0 in Eq. (3). In reality, what this
means is that the SBMFA, being a mean-field technique, when
applied to the SIAM, results in a one-body effective model,
where the correlation effects are taken care of by the self-
consistent renormalization factors z and λ, which depend on
U and �. Thus the U = 0 expression for the spin correlations
[Eq. (8)] is the appropriate one to be used, as the resulting
effective model is a renormalized U = 0 model. However,
exactly because of that, it is not at all obvious that the
use of this (uncorrelated) one-body equation to calculate the
spin correlations will provide accurate information about the
Kondo state, which is highly correlated. The results just shown
in Fig. 5 (and later on, in Fig. 8) provide indirect evidence
in support of our approach to calculate the spin correlations
using the SBMFA. Indeed, the universality of the curves in the
main panel of Fig. 5(b), and the fact that the ξ�

K extracted from
it have the expected dependence with U/� (see Fig. 8), are quite
reassuring. Figure 7 provides further support to the approach
we have taken: the magnitude of the spin correlations for odd

sites (dashed curve), since those for even sites vanish, for
three different values of U/� = 4.17, 10.0, and 16.7 [panels
(a) to (c)], behaves as 1/r2

n [solid (red) curve], outside of the
Kondo cloud (i.e., for rn � ξ�

K ), where rn is the distance
from the impurity. This is the expected behavior for the spin
correlations in the Kondo state as predicted by Fermi-liquid
theory [16,68]. In summary, the very good agreement between
the calculated spin correlations (dashed curve) for rn � ξ�

K
(to the right of the dashed vertical line) and the ∝ 1/r2

n curve
(solid line), where the ξ�

K values used are the ones obtained in
Fig. 5, adds extra support to the results obtained.

Two additional points regarding the use of Eq. (8) should
be discussed in more detail. First, as mentioned above,
〈�Sd · �Sn〉 = 0 for even-n sites, i.e., the corresponding ferro-
magnetic correlations, obtained at even-n sites for finite U,
vanish when Eq. (8) is used. At first sight, this may throw into
question the results for �(N ). However, as can be checked in
Ref. [71], the finite-U ferromagnetic correlations for even-n
have a much smaller magnitude than the antiferromagnetic
correlations for odd-n sites. In addition, the ferromagnetic
correlations also decay much faster than the antiferromagnetic
ones. Therefore the integrated spin correlation function �(N ),
obtained through the use of Eq. (8), will deviate quantitatively
from its exact value just for N values that are very close to
the impurity (see left panel of Fig. 3 in Ref. [71]). It is also
interesting to note that for the Kondo model, the ferromagnetic
correlations, present in the Anderson impurity model, vanish.
This can be observed in Fig. 2 of Ref. [16].

Second, the use of Eq. (8) for the U = 0 effective model
results in 〈�S2

d〉 = 3/8, thus �(ξ�
K ) ≈ −3/8. It can be shown (see

below) that the corresponding finite-U results (at the particle-
hole symmetric point and deep inside the Kondo regime)
are, very approximately, 3/4 and −3/4, respectively. The 1/2

multiplicative factor in the results obtained from Eq. (8) can
be intuitively understood by solving a toy model comprised
of two U = 0 sites, where one of the sites represents the
impurity, the other plays the role of the “chain,” and they are
coupled by an overlap integral t ′. The ground state of this toy
model is given by

|GS〉U=0 = 1
2 [| ↑,↓〉 − | ↓,↑〉 + | ↑↓, 0〉 + |0,↑↓〉], (9)

where ↑ and ↓ indicate spin up and spin down, respectively,
and we use the notation |site 1, site 2〉. It is straightforward
to show that for this ground state 〈�S2

1〉 = 3/8 and 〈�S1 · �S2〉 =
−3/8, as the singlet comprises just half of the ground state,
which now also contains double occupied and empty sites
contributions. Nevertheless, the localized spin in the impurity
(site 1) will be perfectly screened by the antiferromagnetic
correlations, between sites 1 and 2, inside the “Kondo cloud.”
The same toy model, but now with finite U on site 1, results in
a ground state given by

|GS〉U = (1 + β2)−
1
2√

2
[| ↑,↓〉 − | ↓,↑〉

+β(| ↑↓, 0〉 + |0,↑↓〉)], (10)

where β = 4t ′
/U , which becomes vanishingly small deep in-

side the Kondo regime, removing the double occupied states,
thus 〈�S2

1〉 ≈ 3/4 and 〈�S1 · �S2〉 ≈ −3/4, as mentioned above.

085139-9



RIBEIRO, MARTINS, GÓMEZ-SILVA, AND ANDA PHYSICAL REVIEW B 99, 085139 (2019)

In addition, it is interesting to note that, for a toy model like
the one just described, but where U → ∞ and the impurity
level is at the “Fermi energy” (ε1 = 0), the ground state is
given by

|GS〉U→∞ = 1√
2

[
1√
2

(| ↑,↓〉 − | ↓,↑〉) + |0,↑↓〉
]
,

(11)

where, as for the U = 0 case, 〈�S2
1〉 = 3/8 and 〈�S1 · �S2〉 = −3/8.

This U → ∞ toy model can be slightly modified to provide
more information regarding this issue: one can move the
impurity level below the Fermi energy (ε1 < 0), and in this
case, if 8t ′2

/ε2
1 � 1, the ground state, to first order in t ′2

/ε2
1 , is

given by

|GS〉U→∞ ≈ (1 + α)−
1
2 |s〉 + (1 + α−1)−

1
2 |0,↑↓〉 (12)

where α = γ/(1+γ )2, γ = 2t ′2
/ε2

1 , and |s〉 = 1/
√

2(|↑,↓〉 −
|↓,↑〉). For this ground state, we have that 〈�S2

1〉 = (1 +
α)−1 3/4, which is ≈3/4, if γ � 1 (with 〈�S1 · �S2〉 = −〈�S2

1〉).
Thus, by varying ε1 from the Fermi energy to deep below
it, and keeping the system in Kondo while doing it, we have
that 3/4 � 〈�S2

1〉 � 3/8 (with 〈�S1 · �S2〉 = −〈�S2
1〉). Therefore this

infinite-U toy model suggests that one can cover the whole
3/8 to 3/4 range by suitably adjusting the ε1 and t ′ parameters,
while staying inside the Kondo regime, with full screening of
the impurity. This illustrates what was stated above, i.e., that
the most relevant is not the specific value of 〈S2

d〉, but that there
is screening of the localized moment.

The two points just argued above, together with the good
universal collapse shown in Fig. 5(b), the indications of an
internal structure of the Kondo cloud presented in Fig. 6(b),
the asymptotic behavior of the spin correlations (for different
values of U/�) shown in Fig. 7, and the agreement with the
expected dependence of ξ�

K versus U/� (see Fig. 8), leads us
to believe that Eq. (8) captures the main features of the spin
correlations inside the Kondo cloud.

In conclusion, it should also be noted that there are a couple
of advantages in using this procedure to calculate the spin
correlations. First, once the renormalized one-body model is
obtained through SBMFA, there are no further approxima-
tions to be done, neither analytical [as Eq. (8) is exact], nor
numerical, as the spin correlations can be obtained to any
distance from the impurity with machine-precision accuracy.
Therefore, contrary to the use of DMRG to calculate spin
correlations (see, for example, Ref. [70]), which can only be
done in finite clusters, we do not have to deal with finite-size
effects in our calculations. Second, and quite importantly,
since the spin correlations for U = 0 at even sites vanish,
contrary to the spin correlations for a finite-U model, which
are ferromagnetic (see, for example, Refs. [70,71]), our �(N )
turns out to be monotonic, instead of oscillating with N , as
is the case for the DMRG calculations [70]. As discussed in
Ref. [70], this makes the universal collapse of the 1 − �(N )/�(0)

functions rather more difficult, which, added to the finite-size
effects intrinsic to DMRG, increases the uncertainty of the
DMRG ξK results. Our use of Eq. (8) eliminates all of these
problems, as can be seen from the very nice collapse obtained
in Fig. 5(b), aside from a region around the impurity.

FIG. 8. Semilogarithmic plot of the Kondo screening length ξK ,
as a function of U/�, obtained through vF/TK [(blue) solid line],
the L(n) function [(green) triangles], and through the �(N ) spin
correlations method [(red) plus signs]. The first two were multiplied
by a scaling factor (as indicated in the legend) to facilitate the
comparison. Note that vF = 2.0 and TK was obtained through the
finite-U SBMFA.

V. COMPARISON OF THE RESULTS OBTAINED BY
THE TWO METHODS

Figure 8 presents the results obtained by both methods. In it
we see a semilogarithmic plot of ξK , obtained in three different
ways, as a function of U/� in the interval [4.0; 17.0]. The
light-gray (red) plus-sign curve shows results for the Kondo
cloud screening length ξ�

K obtained through spin correlations,
while the gray (green) triangles curve shows results for the
Kondo length scale ξL

K obtained through LDOS. The dark
(blue) solid curve shows results for the Kondo cloud extension
ξ

vF/TK
K , calculated using Eq. (1), where TK is the width of

the Kondo peak obtained by the finite-U SBMFA and vF =
2.0 is the Fermi velocity. The results for the last two are
multiplied by scaling factors (as indicated in the legend) to
facilitate comparison. On one hand, the results clearly show
that ξ�

K [(red) plus signs] is quantitatively indistinguishable
from ξ

vF/TK
K [(blue) solid line] for the whole U/� range. On the

other hand, the results for ξL
K [(green) triangles] show some

slight deviation in relation to the other two; it displays very
small quantitative differences in the U/� region closer to the
charge fluctuation regime, while there is a small quantitative
difference once one gets deeper into the Kondo regime region,
where the slope of the ξL

K curve becomes slightly smaller
than the one for the other two curves. The overall quantitative
agreement between the ξL

K and ξ�
K results further validates the

LDOS approach as complementary to the spin correlations
one, as it independently gathers information on the region
adjacent to the impurity, showing the same loss of universality,
in qualitative agreement with the results in Ref. [66]. In
addition, the agreement with the vF/TK results serves as an a
posteriori validation of this heuristic estimate of the Kondo
cloud extension. Finally, as an additional comparison, Fig. 5
in Ref. [63] shows exponential scaling behavior, obtained for
the Kondo model when using entanglement tools such as
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concurrence, in good qualitative agreement with our results
in Fig. 8.

In summary, the use of two different numerical techniques
to estimate the Kondo cloud extension, using the finite-U
SBMFA, allowed us to make a few interesting observations.
First, regarding the extension of the Kondo cloud, obtained
through ξ�

K (using a shielding factor fs = 95%), we showed
that its dependence with U/� is quantitatively indistinguish-
able from the expected vF/TK behavior. By using a technique
that is free from finite size effects, as opposed to DMRG
[70,71], we were able to analyze results much deeper into the
Kondo regime. In addition, the lack of oscillations in �(N )
[70] unveiled a systematic loss of universality close to the
impurity, which may be an indication of the existence of an
internal structure in the Kondo cloud, previously observed
with NRG [66]. A qualitatively similar loss of universality in
the L(n) results gives support to this interpretation. Indeed, the
agreement in the loss of universality between spin correlations
and LDOS shown in Fig. 6, which points to a possible internal
structure of the Kondo cloud, and the agreement between the
spin and charge sectors also shown in Fig. 8, seem an indi-
cation that Eq. (7) captures, through the LDOS, the essential
scaling properties of the Kondo cloud in the charge sector.
The authors believe that the results here presented, which
partially uncover the Kondo cloud’s internal structure, provide
an additional step in the direction of determining ways to
experimentally probe this most elusive concept.
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APPENDIX: FINITE-U SLAVE BOSON
MEAN-FIELD APPROXIMATION

The slave boson mean-field approximation was originally
proposed to treat systems where the Coulomb repulsion U
is the dominant parameter, which was then taken as being
infinity. [82] Therefore double occupancy states were re-
moved from the Hilbert space with the help of projection
operators that include auxiliary bosonic operators, which are

then replaced with their mean-field value (calculated self-
consistently). Thus the many-body Hamiltonian is mapped
into an effective one-body Hamiltonian that can be solved
exactly [82].

The so-called finite-U SBMFA is an extension of the usual
slave boson mean-field that is appropriate to treat problems
with finite U [72]. The first step in the approximation is to
enlarge the Hilbert space by introducing a set of slave boson
operators ê, p̂σ , and d̂ , then replacing the creation d†

σ and
annihilation dσ operators in the Hamiltonian by d̂†ẑ†

σ and ẑσ d̂ ,
respectively, where, following Kotliar and Rukenstein [72],
the operator ẑσ takes the form

ẑσ = [1 − d̂†d̂ − p̂†
σ p̂σ ]1/2[ê† p̂σ + p̂†

σ̄ d̂]

× [1 − ê†ê − p̂†
σ̄ p̂σ̄ ]1/2. (A1)

Notice that the bosonic operators d̂ and d̂† do not carry a
spin index. The enlarged Hilbert space is then restricted to the
physically meaningful subspace by imposing the constraints

P̂ = ê†ê +
∑

σ

p̂†
σ p̂σ + d̂†d̂ − 1 = 0 (A2)

and

Q̂σ = ndσ − p̂†
σ p̂σ − d̂†d̂ = 0. (A3)

Both constraints are included into the Hamiltonian through
Lagrange multipliers denoted λ(1) and λ(2)

σ . The constraint
in Eq. (A2) restricts the impurity to having states with only
zero, single, or double occupancy, while Eq. (A3) relates
the boson with the fermion occupancies. In the mean-field
approximation, the boson operators ê, p̂σ , and d̂ (as well
as their Hermitian conjugates) are replaced by their ther-
modynamic expectation values e ≡ 〈ê〉 = 〈ê†〉, pσ ≡ 〈p̂σ 〉 =
〈p̂†

σ 〉, and d ≡ 〈d̂〉 = 〈d̂†〉. These expectation values, plus the
Lagrange multipliers, constitute a set of parameters to be self-
consistently determined by minimizing the total energy 〈H〉.
Once again, as in the infinite U case, the many-body problem
has been reduced to a one-body problem, whose energy can be
easily minimized. The Green’s function at the impurity, which
is needed to calculate the LDOS at each chain-site, is given by

Gσ
dd = 〈〈zσ dσ ; d†

σ z†
σ 〉〉, (A4)

which is the propagator that carries the correct weight of the
Kondo resonance. Notice that in Ref. [6], the reader can find
how to calculate the Green’s function in the chain sites using
Gσ

dd as an input to the equation of motion formalism. This is
necessary to obtain the LDOS in the chain sites, which is then
used in Eq. (7).
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